Academic literature on the topic 'Wing stress analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wing stress analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wing stress analysis"
Jemitola, P. O., J. Fielding, and P. Stocking. "Joint fixity effect on structural design of a box wing aircraft." Aeronautical Journal 116, no. 1178 (April 2012): 363–72. http://dx.doi.org/10.1017/s0001924000005261.
Full textYu, Chun Jin, Jin Zhang, Wei Song, and Ke Hong Yi. "Deformation and Stress Analysis of Flapping Wing Aerial Vehicles Based on Composites Model." Advanced Materials Research 1006-1007 (August 2014): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amr.1006-1007.7.
Full textJin, Guo Dong, Li Bin Lu, Liang Xian Gu, and Juan Liang. "Numerical Simulation Analysis on Repairing Hole of UAV Wing." Advanced Materials Research 690-693 (May 2013): 2891–95. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.2891.
Full textKalavagunta, Veeranjaneyulu, and Shaik Hussain. "Wing Rib Stress Analysis of DLR-F6 aircraft." IOP Conference Series: Materials Science and Engineering 455 (December 19, 2018): 012033. http://dx.doi.org/10.1088/1757-899x/455/1/012033.
Full textRabbey, M. Fazlay, Anik Mahmood Rumi, Farhan Hasan Nuri, Hafez M. Monerujjaman, and M. Mehedi Hassan. "Structural Deformation and Stress Analysis of Aircraft Wing by Finite Element Method." Advanced Materials Research 906 (April 2014): 318–22. http://dx.doi.org/10.4028/www.scientific.net/amr.906.318.
Full textEsakkiraj, E. S., S. Anish, and V. Anish. "Static and Dynamic Analysis of Aluminium Composite in Wing Section Using ANSYS." Advanced Materials Research 984-985 (July 2014): 367–71. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.367.
Full textZhu, Wen Qing, and Yang Yong Zhu. "The Vibration Response Analysis about High-Speed Train’s Braking Wing." Applied Mechanics and Materials 226-228 (November 2012): 102–5. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.102.
Full textAlsaidi, Bashir, Woong Yeol Joe, and Muhammad Akbar. "Computational Analysis of 3D Lattice Structures for Skin in Real-Scale Camber Morphing Aircraft." Aerospace 6, no. 7 (July 7, 2019): 79. http://dx.doi.org/10.3390/aerospace6070079.
Full textSun, Ya Zhen, Xiao Xing Zhai, and Jie Min Liu. "Analysis of Failure Mode and Propagation for Crack in Uniaxial Compression." Applied Mechanics and Materials 166-169 (May 2012): 2929–32. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.2929.
Full textNabawy, M. R. A., M. M. ElNomrossy, M. M. Abdelrahman, and G. M. ElBayoumi. "Aerodynamic shape optimisation, wind tunnel measurements and CFD analysis of a MAV wing." Aeronautical Journal 116, no. 1181 (July 2012): 685–708. http://dx.doi.org/10.1017/s000192400000717x.
Full textDissertations / Theses on the topic "Wing stress analysis"
Chabada, Martin. "Návrh křídla letounu UAV v kategorii do 600 kg." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442849.
Full textHemmel, Radek. "Výpočet zatížení a pevnostní kontrola křídla a ocasních ploch letounu Parrot." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228128.
Full textFreisleben, Michal. "Výpočet zatížení a pevnostní kontrola křídla kluzáku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228533.
Full textSvětlík, Martin. "Výpočet zatížení a pevnostní kontrola křídla a ocasních ploch letounu Mermaid." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228118.
Full textDevaney, Louise Claire. "Breaking wave loads and stress analysis of jacket structures supporting offshore wind turbines." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/breaking-wave-loads-and-stress-analysis-of-jacket-structures-supporting-offshore-wind-turbines(acef8efd-eae2-4a52-9513-b2873e7a3a25).html.
Full textSilva, Junior Laercio Meneses. "Stress analysis on a thin-walled composite blade of a large wind turbine." reponame:Repositório Institucional da UFSC, 2016. https://repositorio.ufsc.br/xmlui/handle/123456789/175894.
Full textMade available in DSpace on 2017-05-23T04:22:08Z (GMT). No. of bitstreams: 1 345248.pdf: 4540254 bytes, checksum: b61753d1576a6ca395e102d19e3c04e0 (MD5) Previous issue date: 2016
Abstract : Research institutes and industry have recently initiated the development of wind turbines for energy production at sites with lower wind speeds. The relatively high electric power production of this type of wind turbine is related to the growing of the swept area. Thus, in order to increase the swept area, the length of the new blades must be greater than the ones of traditional blades for horizontal axis wind turbines. The expansion of the rotors diameter of large wind turbines has some implications, such as the increase of gravity loads and new transportation logistics challenges. To overcome these challenges, advances in the blade technology have led to more efficient structural and aerodynamic design and optimized material usage. In this context, analytical models have to accurately predict aerodynamic loads acting on the blades and calculate the structural stresses developed during the turbine operation. Since composite materials have high strength/weight ratio compared to other structural materials and are flexible with respect to the fabrication process, they are more appropriate for blade applications. This dissertation presents an improvement in the aerodynamic model that takes into account an iterative procedure for determining Reynolds number instead of depending on experimental data for the process of airfoil selection along the blade span that maximize the power extracted from the wind. The multilayer shell theories and the relationship between the aerodynamic bending and torsional moments acting on the blade are presented. The in-plane normal and shear stresses on the thin-walled multilayer blade are determined by using the Shear Flow Theory. A case study is conducted on a 20 MW wind turbine developed in the Energy Research Centre of the Netherlands-ECN. The normal and shear stresses are calculated and the Tsai-Wu criterion is applied for the strength evaluation of the blade made of glass/epoxy. Results obtained with two stacking sequences are presented.
Institutos de pesquisa e a indústria iniciaram recentemente o desenvolvimento de turbinas eólicas para a produção de energia em locais com baixas velocidades de vento. A produção de energia elétrica relativamente alta deste tipo de turbina está relacionada com o crescimento da área varrida pelo rotor. Assim, de forma a aumentar a área varrida, o comprimento das novas pás deve ser maior que o das pás tradicionais de turbinas eólicas de eixo horizontal. O aumento do diâmetro dos rotores das turbinas eólicas tem algumas implicações, tais como o aumento das cargas gravitacionais e desafios no seu transporte. Para superá-los, avanços na tecnologia de pás têm levado a projetos estruturais e aerodinâmicos mais eficientes. Neste contexto, modelos analíticos têm de prever com precisão as cargas aerodinâmicas atuando sobre as pás, além de calcular as tensões estruturais desenvolvidas durante sua operação. Uma vez que materiais compostos têm uma elevada relação resistência/peso em comparação com outros materiais estruturais, além de serem flexíveis no que diz respeito ao processo de fabricação, estes materiais têm sido os mais investigados para aplicações em pás de turbina eólica. Esta dissertação apresenta uma melhoria no modelo aerodinâmico que leva em conta um processo iterativo para a determinação do número de Reynolds, em vez de depender de dados experimentais para o processo de escolha do aerofólio ao longo da envergadura da pá que maximiza a potência extraída do vento. As teorias de cascas multilaminares e a relação entre os momentos aerodinâmicos fletores e de torção que atuam sobre a pá são apresentados. As tensões normais e de cisalhamento atuantes no plano da pá multilaminar de parede fina são determinadas utilizando a Teoria do Fluxo de Cisalhamento. Um estudo de caso é conduzido em uma turbina eólica de 20 MW desenvolvida no Centro de Pesquisa em Energia dos Países Baixos (ECN). As tensões normais e de cisalhamento são calculadas e o critério de Tsai-Wu é aplicado para a avaliação da resistência da pá feita em vidro/epóxi. Os resultados obtidos com duas sequências de empilhamento de lâminas são apresentados.
Muthirevula, Neeharika. "Cross-Sectional Stiffness Properties of Complex Drone Wings." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/73988.
Full textMaster of Science
Kumar, Nikhil. "Stress analysis of wood-framed low-rise buildings under wind loads due to tornados." [Ames, Iowa : Iowa State University], 2008.
Find full textFernandez, Rodriguez Emmanuel. "Analysis of floating support structures for marine and wind energy." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/analysis-of-floating-support-structures-for-marine-and-wind-energy(f4870ce2-b8b5-4c7e-ba7e-f91a1d3c4bc9).html.
Full textKatsanis, George R. Mr. "Transient Small Wind Turbine Tower Structural Analysis with Coupled Rotor Dynamic Interaction." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/960.
Full textBooks on the topic "Wing stress analysis"
Ko, William L. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system. Edwards, Calif: National Aeronautics and Space Administration, Ames Researach Center, Dryden Flight Research Facility, 1987.
Find full textGregory, Peyton B. Thermal/structural analysis of the shaft disk region of a fan drive system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textLarry, Sobel, and Langley Research Center, eds. Novel composites for wing and fuselage applications: Speedy Nonlinear Analysis of Postbuckled Panels in Shear (SNAPPS) : under contract NAS1-18784. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textLarry, Sobel, and Langley Research Center, eds. Novel composites for wing and fuselage applications: Speedy Nonlinear Analysis of Postbuckled Panels in Shear (SNAPPS) : under contract NAS1-18784. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textH, Hoffmann P., and Joint Institute for Aeronautics and Acoustics., eds. A study of the factors affecting boundary layer two-dimensionality in wind tunnels. Stanford, CA: Stanford University, Dept. of Aeronautics and Astronautics, 1986.
Find full textFrondizi, Alexandre, and Simon Porcher. Sidewalk Queens. Edited by Scott Cunningham and Manisha Shah. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199915248.013.14.
Full textD, Holland Anne, and Langley Research Center, eds. Thermal/structural analysis of the shaft disk region of a fan drive system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full text(Foreword), Anne Devereaux Jordan, Ira Mark Milne (Editor), and Timothy Sisler (Editor), eds. Novels for Students: Presenting Analysis, Context, and Criticism on Commonly Studies Novels (Novels for Students). Gale Cengage, 2004.
Find full textGroup, Abbey. No. 45 province street, Boston, Massachusetts, draft and final project impact report. 1988.
Find full textBook chapters on the topic "Wing stress analysis"
Sondankar, Piyush, and R. R. Arakerimath. "Stress and Failure Analysis of Aircraft Wing Using Glare Composite and Aluminum 7075." In ICRRM 2019 – System Reliability, Quality Control, Safety, Maintenance and Management, 33–39. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8507-0_6.
Full textNgouani, M. M. Siewe, Yong Kang Chen, R. Day, and O. David-West. "Low-Speed Aerodynamic Analysis Using Four Different Turbulent Models of Solver of a Wind Turbine Shroud." In Springer Proceedings in Energy, 149–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_19.
Full textKinne, Marko, Ronald Schneider, and Sebastian Thöns. "Reconstructing Stress Resultants in Wind Turbine Towers Based on Strain Measurements." In Lecture Notes in Mechanical Engineering, 224–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_18.
Full textMa, Ke. "Stress Analysis of 3L-NPC Wind Power Converter Under Fault Condition." In Research Topics in Wind Energy, 63–93. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21248-7_5.
Full textUgwuanyi, Samson O., Opeyeolu Timothy Laseinde, and Lagouge Tartibu. "Physical Approach to Stress Analysis of Horizontal Axis Wind Turbine Blade Using Finite Element Analysis." In Advances in Intelligent Systems and Computing, 392–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51328-3_54.
Full textLee, Myoungwoo, Seok-Gyu Yoon, and Youn-Jea Kim. "Stress Analysis of Wind Turbine Tower Flange Using Fluid-Structure Interaction Method." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 115–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55594-8_12.
Full textBorovsky, Joseph E., and John T. Steinberg. "The freestream turbulence effect in solar-wind/magnetosphere coupling: Analysis through the solar cycle and for various types of solar wind." In Recurrent Magnetic Storms: Corotating Solar Wind Streams, 59–76. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/167gm07.
Full textCavazzini, A., M. S. Campobasso, M. Marconcini, R. Pacciani, and A. Arnone. "Harmonic Balance Navier–Stokes Analysis of Tidal Stream Turbine Wave Loads." In Recent Advances in CFD for Wind and Tidal Offshore Turbines, 37–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11887-7_4.
Full textFiedler, Torben, Joachim Rösler, Martin Bäker, Felix Hötte, Christoph von Sethe, Dennis Daub, Matthias Haupt, Oskar J. Haidn, Burkard Esser, and Ali Gülhan. "Mechanical Integrity of Thermal Barrier Coatings: Coating Development and Micromechanics." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 295–307. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_19.
Full textYermolaev, Y. I., I. G. Lodkina, N. S. Nikolaeva, and M. Y. Yermolaev. "Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta." In Earth-affecting Solar Transients, 607–20. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1570-4_28.
Full textConference papers on the topic "Wing stress analysis"
Alsaidi, Bashir, Muhammad Akbar, Sara La, W. Yeol Joe, Hangil You, Seongik Kim, and Gunjin Yun. "Modeling and Stress Analysis of Composite Skin Structure for Camber Morphing Wing." In 2018 Multidisciplinary Analysis and Optimization Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2934.
Full textAlsaidi, Bashir, Muhammad Akbar, Sara La, W. Yeol Joe, Hangil You, Seongik Kim, and Gunjin Yun. "Correction: Modeling and Stress Analysis of Composite Skin Structure for Camber Morphing Wing." In 2018 Multidisciplinary Analysis and Optimization Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2934.c1.
Full textMilos, F., and T. Squire. "Thermal stress analysis of X-34 wing leading edge tile TPS." In 31st Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1821.
Full textHasan, Zeaid, Hamzeh Hammoudeh, and Ghassan Atmeh. "Design and Analysis of a Smart Composite Wing." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64802.
Full textJammi, Srinivasa R., and P. Shivakumar. "Bird Strike Analysis of a Composite Aircraft Wing." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42818.
Full textGoravi Vijaya Dev, Naveen Prakash, Anoop Kumar Koduru Satish, and Doddabasappa Veerapur. "Optimization of Air Plane Wing Rib Using Finite Element Analysis." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62192.
Full textTang, Xiang-qiong, Chun-yue Huang, Sheng-jun Zhao, and Ying Liang. "Stress and strain analysis of solder joints of gull wing lead in the cooling process of reflow." In 2019 20th International Conference on Electronic Packaging Technology(ICEPT). IEEE, 2019. http://dx.doi.org/10.1109/icept47577.2019.245834.
Full textCarrera, E., A. Pagani, P. H. Cabral, A. Prado, and G. Silva. "Component-Wise Models for the Accurate Dynamic and Buckling Analysis of Composite Wing Structures." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65645.
Full textZhang, Xiaoqin, and Ling Tian. "Numerical Simulation of Micro Air Vehicles With Membrane Wings." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21265.
Full textRadestock, Martin, Johannes Riemenschneider, Alexander Falken, and Johannes Achleitner. "Experimental Study of Flexible Skin Designs Between a Moving Wing Segment and a Fixed Wing Part on a Full Scale Demonstrator." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2310.
Full textReports on the topic "Wing stress analysis"
Brandt, Leslie A., Cait Rottler, Wendy S. Gordon, Stacey L. Clark, Lisa O'Donnell, April Rose, Annamarie Rutledge, and Emily King. Vulnerability of Austin’s urban forest and natural areas: A report from the Urban Forestry Climate Change Response Framework. U.S. Department of Agriculture, Northern Forests Climate Hub, October 2020. http://dx.doi.org/10.32747/2020.7204069.ch.
Full text