Journal articles on the topic 'Winds Antarctica Mathematical models'

To see the other types of publications on this topic, follow the link: Winds Antarctica Mathematical models.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Winds Antarctica Mathematical models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Albert, Mary R., Edward F. Shultz, and Frank E. Perron. "Snow and firn permeability at Siple Dome, Antarctica." Annals of Glaciology 31 (2000): 353–56. http://dx.doi.org/10.3189/172756400781820273.

Full text
Abstract:
AbstractThe nature of air-snow exchange processes depends upon both the physical characteristics of the snow and forcing from the atmosphere. An understanding of snow-air transport processes and models of these processes are important for interpreting ice cores and for predicting remotely sensed snow-surface characteristics. Accurate modeling requires knowledge of the physical characteristics of the snow and firn. In this paper, measurements of snow and firn permeability from the surface down to 12 m depth at Siple Dome, Antarctica, are presented. The permeability varies greatly as a function of layer and depth, generally increasing to approximately 3 m, and generally decreasing below that. The maximum permeability,280 × 10–10 1 0 m2, occurs at approximately 3 m depth. The lowest permeability in the top 12 m of snow and firn, 10 × 10–10w m2, was measured in the surface wind pack/The measurements show that layering and microstructure have large effects on permeability A mathematical expression for the overall variation of permeability with depth is presented It is shown that snow density is a poor indicator of permeability Quantitative microscopy may be helpful in relating observed snow characteristics to permeability, and useful in modeling firnification and chemical-species transport.
APA, Harvard, Vancouver, ISO, and other styles
2

Zuo, Guangyu, Yinke Dou, Xiaomin Chang, and Yan Chen. "Design and Application of a Standalone Hybrid Wind–Solar System for Automatic Observation Systems Used in the Polar Region." Applied Sciences 8, no. 12 (November 24, 2018): 2376. http://dx.doi.org/10.3390/app8122376.

Full text
Abstract:
Continuous power supply for unmanned and automatic observation systems without suitable energy-storage capabilities in the polar regions is an urgent problem and challenge. However, few power-supply systems can stably operate over the long term in extreme environments, despite excellent performance under normal environments. In this study, a standalone hybrid wind–solar system is proposed, based on operation analysis of the observing system in the Arctic Ocean, the polar environments, and renewable-energy distribution in the polar regions. Energy-storage technology suitable for cold regions is introduced to support the standalone hybrid wind–solar system. Mathematical models of the power system at low temperature are also proposed. The low-temperature performance and characteristics of lead–acid battery are comprehensively elucidated, and a dedicated charging strategy is developed. A hybrid wind–solar charging circuit is developed using a solar charging circuit, a wind turbine charging circuit, a driver circuit, a detection circuit, an analog-to-digital converter (ADC) circuit, and an auxiliary circuit. The low temperature stability of charging circuit is test from −50 °C to 30 °C. Temperature correction algorithm is designed to improve the efficiency of the power supply system. The power generation energy of the power system was simulated based on the monthly average renewable energy data of Zhongshan Station. A case study was applied to examine the technical feasibility of the power system in Antarctica. The five-month application results indicate that the power system based on renewable energy can maintain stable performance and provide sufficient power for the observing system in low ambient temperatures. Therefore, this power system is an ideal solution to achieve an environmentally friendly and reliable energy supply in the polar regions.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Jiqing, Shaorong Xie, Jun Luo, and Hengyu Li. "Wind-driven land-yacht robot mathematical modeling and verification." Industrial Robot: An International Journal 43, no. 1 (January 18, 2016): 77–90. http://dx.doi.org/10.1108/ir-03-2015-0052.

Full text
Abstract:
Purpose – The purpose of this paper was to solve the shortage of carrying energy in probing robot and make full use of wind resources in the Antarctic expedition by designing a four-wheel land-yacht. Land-yacht is a new kind of mobile robot powered by the wind using a sail. The mathematical model and trajectory of the land-yacht are presented in this paper. Design/methodology/approach – The mechanism analysis method and experimental modeling method are used to establish a dual-input and dual-output mathematical model for the motion of land-yacht. First, the land-yacht’s model structure is obtained by using mechanism analysis. Then, the models of steering gear, servomotors and force of wing sail are analyzed and validated. Finally, the motion of land-yacht is simulated according to the mathematical model. Findings – The mathematical model is used to analyze linear motion and steering motion. Compared with the simulation results and the actual experimental tests, the feasibility and reliability of the proposed land-yacht modeling are verified. It can travel according to the given signal. Practical implications – This land-yacht can be used in the Antarctic, outer planet or for harsh environment exploration. Originality/value – A land-yacht is designed, and the contribution of this research is the development of a mathematical model for land-yacht robot. It provides a theoretical basis for analysis of the land-yacht’s motion.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhekov, Svetozar A., A. V. Myasnikov, and N. A. Belov. "Radiative colliding winds models: the stagnation point singularity." Symposium - International Astronomical Union 193 (1999): 402. http://dx.doi.org/10.1017/s0074180900205949.

Full text
Abstract:
The singularity at the stagnation point in steady-state colliding winds has a big influence on the structure of the radiative interaction region. None of the existing numerical models treats properly this mathematical problem. As a result, all the available models cannot be used for deriving the stellar winds parameters by making a comparison with the observed X-ray properties.
APA, Harvard, Vancouver, ISO, and other styles
5

Belova, Evgenia, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan. "Validation of wind measurements of two mesosphere–stratosphere–troposphere radars in northern Sweden and in Antarctica." Atmospheric Measurement Techniques 14, no. 4 (April 12, 2021): 2813–25. http://dx.doi.org/10.5194/amt-14-2813-2021.

Full text
Abstract:
Abstract. Two atmospheric VHF radars: ESRAD (Esrange MST radar) located near Kiruna in the Swedish Arctic and MARA (Moveable Atmospheric Radar for Antarctica) at the Indian research station Maitri in Antarctica perform wind measurements in the troposphere and lower stratosphere on a regular basis. We compared horizontal winds at altitudes between about 0.5 and 14 km derived from the radar data using the full correlation analysis (FCA) technique with radiosonde observations and models. The comparison with 28 radiosondes launched from January 2017 to August 2019 showed that ESRAD underestimates the zonal and meridional winds by about 8 % and 25 %, respectively. This is likely caused by the receiver group arrangement used for the FCA together with a high level of non-white noise. A similar result was found when comparing with the regional numerical weather prediction model HARMONIE-AROME (Bengtsson et al., 2017) for the period September 2018–May 2019. The MARA winds were compared with winds from radiosondes for the period February–October 2014 (291 occasions). In contrast to ESRAD, there is no indication that MARA underestimates the winds compared to the sondes. The mean difference between the radar and radiosonde winds is close to zero for both zonal and meridional components. The comparison of MARA with the ECMWF ERA5 reanalysis for January–December 2019 reveals good agreement with the mean difference between 0.1 and −0.5 m/s depending on the component and season. The random errors in the wind components (standard deviations over all estimates in 1 h averages) are typically 2–3 m/s for both radars. Standard deviation of the differences between radars and sondes are 3–5 m/s.
APA, Harvard, Vancouver, ISO, and other styles
6

Zika, Jan D., Julien Le Sommer, Carolina O. Dufour, Alberto Naveira-Garabato, and Adam Blaker. "Acceleration of the Antarctic Circumpolar Current by Wind Stress along the Coast of Antarctica." Journal of Physical Oceanography 43, no. 12 (December 1, 2013): 2772–84. http://dx.doi.org/10.1175/jpo-d-13-091.1.

Full text
Abstract:
Abstract The influence of wind forcing on variability of the Antarctic Circumpolar Current (ACC) is investigated using a series of eddy-permitting ocean–sea ice models. At interannual and decadal time scales the ACC transport is sensitive to both the mean strength of westerly winds along the ACC circumpolar path, consistent with zonal momentum balance theories, and sensitive to the wind stresses along the coast of Antarctica, consistent with the “free mode” theory of Hughes et al. A linear combination of the two factors explains differences in ACC transport across 11 regional quasi-equilibrium experiments. Repeated single-year global experiments show that the ACC can be robustly accelerated by both processes. Across an ensemble of simulations with realistic forcing over the second half of the twentieth century, interannual ACC transport variability owing to the free-mode mechanism exceeds that due to the zonal momentum balance mechanism by a factor of between 3.5 and 5 to one. While the ACC transport may not accelerate significantly owing to projected increases in along-ACC winds in future decades, significant changes in transport could still occur because of changes in the stress along the coast of Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
7

Spencer, S. J., and L. E. Cram. "Magnetic Field Generation by Galactic Winds." Symposium - International Astronomical Union 157 (1993): 357–65. http://dx.doi.org/10.1017/s007418090017442x.

Full text
Abstract:
A new mechanism is presented for the local amplification and possible global dynamo maintenance of non-axisymmetric large-scale magnetic fields in disk galaxies. Shear in a galactic wind or large-scale flow of ionised gas with components axial and radial to the disk plane may regenerate large-scale magnetic fields.Numerical results are presented from kinematic mathematical models based on a local (thin disk) approximation and an exact three-dimensional formulation. The one-dimensional thin-disk model illustrates the possibility of exponential amplification and the resulting local axial spatial structure of large-scale galactic magnetic fields. Three-dimensional results support the possibility of global wind dynamo action.
APA, Harvard, Vancouver, ISO, and other styles
8

Nishimura, Kouichi, and Masaki Nemoto. "Blowing snow at Mizuho station, Antarctica." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1832 (July 2005): 1647–62. http://dx.doi.org/10.1098/rsta.2005.1599.

Full text
Abstract:
Blowing snow observations were carried out at Mizuho station, Antarctica, from October to November 2000. A blowing snow observation system including snow particle counters, which can sense not only the number of snow particles, but also their diameters, was situated on a 30 m tower. All instruments worked correctly and the data obtained revealed profiles of mass flux and particle size distributions as a function of the friction velocity. Measurements were compared with a blowing snow model that accounted for most physical processes including aerodynamic entrainment, grain/bed collisions, wind modification, particle size distribution and turbulent fluctuations on the particle trajectories. Simulated and measured results showed close agreement, and the validity of the model was demonstrated. Vertical profiles of horizontal mass flux from saltation to suspension, as well as the particle size distributions were expressed precisely, which could not be achieved using the previous models.
APA, Harvard, Vancouver, ISO, and other styles
9

Van Den Broeke, Michiel, and Richard Bintanja. "The interaction of katabatic winds and the formation of blue-ice areas in East Antarctica." Journal of Glaciology 41, no. 138 (1995): 395–407. http://dx.doi.org/10.1017/s0022143000016269.

Full text
Abstract:
AbstractBlue-ice areas (BIAs) are an extreme example of a local mass-balance gradient and are furthermore reasonably stable in time and space owing to local feed-back mechanisms. A meteorological experiment, performed in and around a blue-ice area in Dronning Maud Land. East Antarctica, showed that during drifting-snow conditions surface wind speed over the blue ice behind the mountain barrier is equal to that away from the mountains, when corrected for surface roughness and stability. This implies that use of diagnostic katabatic wind models to estimate divergence of drifting snow can be extended to the situation where nunataks are involved in preventing the drifting snow from passing, which is the case for most BIAs. A diagnostic model is tested for a two-dimensional profile in Terre Adélie. after which it is applied to entire East Antarctica. The present order-of-magnitude estimate shows that areas sensitive to blue-ice formation appear where precipitation is low and mean annual wind speed is high, i.e. in Dronning Maud Land and the drainage basin of Lambert Glacier. The results appeared to be especially sensitive to a change in inversion strength: a decrease in inversion strength weakens the katabatic flow, and thus the amount of snowdrift transport, reducing the area where BIAs can develop.
APA, Harvard, Vancouver, ISO, and other styles
10

Van Den Broeke, Michiel, and Richard Bintanja. "The interaction of katabatic winds and the formation of blue-ice areas in East Antarctica." Journal of Glaciology 41, no. 138 (1995): 395–407. http://dx.doi.org/10.3189/s0022143000016269.

Full text
Abstract:
AbstractBlue-ice areas (BIAs) are an extreme example of a local mass-balance gradient and are furthermore reasonably stable in time and space owing to local feed-back mechanisms. A meteorological experiment, performed in and around a blue-ice area in Dronning Maud Land. East Antarctica, showed that during drifting-snow conditions surface wind speed over the blue ice behind the mountain barrier is equal to that away from the mountains, when corrected for surface roughness and stability. This implies that use of diagnostic katabatic wind models to estimate divergence of drifting snow can be extended to the situation where nunataks are involved in preventing the drifting snow from passing, which is the case for most BIAs. A diagnostic model is tested for a two-dimensional profile in Terre Adélie. after which it is applied to entire East Antarctica. The present order-of-magnitude estimate shows that areas sensitive to blue-ice formation appear where precipitation is low and mean annual wind speed is high, i.e. in Dronning Maud Land and the drainage basin of Lambert Glacier. The results appeared to be especially sensitive to a change in inversion strength: a decrease in inversion strength weakens the katabatic flow, and thus the amount of snowdrift transport, reducing the area where BIAs can develop.
APA, Harvard, Vancouver, ISO, and other styles
11

Barral, H., C. Genthon, A. Trouvilliez, C. Brun, and C. Amory. "Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues." Cryosphere 8, no. 5 (October 22, 2014): 1905–19. http://dx.doi.org/10.5194/tc-8-1905-2014.

Full text
Abstract:
Abstract. A total of 3 years of blowing-snow observations and associated meteorology along a 7 m mast at site D17 in coastal Adélie Land are presented. The observations are used to address three atmospheric-moisture issues related to the occurrence of blowing snow, a feature which largely affects many regions of Antarctica: (1) blowing-snow sublimation raises the moisture content of the surface atmosphere close to saturation, and atmospheric models and meteorological analyses that do not carry blowing-snow parameterizations are affected by a systematic dry bias; (2) while snowpack modelling with a parameterization of surface-snow erosion by wind can reproduce the variability of snow accumulation and ablation, ignoring the high levels of atmospheric-moisture content associated with blowing snow results in overestimating surface sublimation, affecting the energy budget of the snowpack; (3) the well-known profile method of calculating turbulent moisture fluxes is not applicable when blowing snow occurs, because moisture gradients are weak due to blowing-snow sublimation, and the impact of measurement uncertainties are strongly amplified in the case of strong winds.
APA, Harvard, Vancouver, ISO, and other styles
12

Turner, John, J. Scott Hosking, Thomas J. Bracegirdle, Gareth J. Marshall, and Tony Phillips. "Recent changes in Antarctic Sea Ice." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2045 (July 13, 2015): 20140163. http://dx.doi.org/10.1098/rsta.2014.0163.

Full text
Abstract:
In contrast to the Arctic, total sea ice extent (SIE) across the Southern Ocean has increased since the late 1970s, with the annual mean increasing at a rate of 186×10 3 km 2 per decade (1.5% per decade; p <0.01) for 1979–2013. However, this overall increase masks larger regional variations, most notably an increase (decrease) over the Ross (Amundsen–Bellingshausen) Sea. Sea ice variability results from changes in atmospheric and oceanic conditions, although the former is thought to be more significant, since there is a high correlation between anomalies in the ice concentration and the near-surface wind field. The Southern Ocean SIE trend is dominated by the increase in the Ross Sea sector, where the SIE is significantly correlated with the depth of the Amundsen Sea Low (ASL), which has deepened since 1979. The depth of the ASL is influenced by a number of external factors, including tropical sea surface temperatures, but the low also has a large locally driven intrinsic variability, suggesting that SIE in these areas is especially variable. Many of the current generation of coupled climate models have difficulty in simulating sea ice. However, output from the better-performing IPCC CMIP5 models suggests that the recent increase in Antarctic SIE may be within the bounds of intrinsic/internal variability.
APA, Harvard, Vancouver, ISO, and other styles
13

Stober, Gunter, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, et al. "Meteor radar vertical wind observation biases and mathematical debiasing strategies including the 3DVAR+DIV algorithm." Atmospheric Measurement Techniques 15, no. 19 (October 13, 2022): 5769–92. http://dx.doi.org/10.5194/amt-15-5769-2022.

Full text
Abstract:
Abstract. Meteor radars have become widely used instruments to study atmospheric dynamics, particularly in the 70 to 110 km altitude region. These systems have been proven to provide reliable and continuous measurements of horizontal winds in the mesosphere and lower thermosphere. Recently, there have been many attempts to utilize specular and/or transverse scatter meteor measurements to estimate vertical winds and vertical wind variability. In this study we investigate potential biases in vertical wind estimation that are intrinsic to the meteor radar observation geometry and scattering mechanism, and we introduce a mathematical debiasing process to mitigate them. This process makes use of a spatiotemporal Laplace filter, which is based on a generalized Tikhonov regularization. Vertical winds obtained from this retrieval algorithm are compared to UA-ICON model data. This comparison reveals good agreement in the statistical moments of the vertical velocity distributions. Furthermore, we present the first observational indications of a forward scatter wind bias. It appears to be caused by the scattering center's apparent motion along the meteor trajectory when the meteoric plasma column is drifted by the wind. The hypothesis is tested by a radiant mapping of two meteor showers. Finally, we introduce a new retrieval algorithm providing a physically and mathematically sound solution to derive vertical winds and wind variability from multistatic meteor radar networks such as the Nordic Meteor Radar Cluster (NORDIC) and the Chilean Observation Network De meteOr Radars (CONDOR). The new retrieval is called 3DVAR+DIV and includes additional diagnostics such as the horizontal divergence and relative vorticity to ensure a physically consistent solution for all 3D winds in spatially resolved domains. Based on this new algorithm we obtained vertical velocities in the range of w = ± 1–2 m s−1 for most of the analyzed data during 2 years of collection, which is consistent with the values reported from general circulation models (GCMs) for this timescale and spatial resolution.
APA, Harvard, Vancouver, ISO, and other styles
14

Mottram, Ruth, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, et al. "What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates." Cryosphere 15, no. 8 (August 17, 2021): 3751–84. http://dx.doi.org/10.5194/tc-15-3751-2021.

Full text
Abstract:
Abstract. We compare the performance of five different regional climate models (RCMs) (COSMO-CLM2, HIRHAM5, MAR3.10, MetUM, and RACMO2.3p2), forced by ERA-Interim reanalysis, in simulating the near-surface climate and surface mass balance (SMB) of Antarctica. All models simulate Antarctic climate well when compared with daily observed temperature and pressure, with nudged models matching daily observations slightly better than free-running models. The ensemble mean annual SMB over the Antarctic ice sheet (AIS) including ice shelves is 2329±94 Gt yr−1 over the common 1987–2015 period covered by all models. There is large interannual variability, consistent between models due to variability in the driving ERA-Interim reanalysis. Mean annual SMB is sensitive to the chosen period; over our 30-year climatological mean period (1980 to 2010), the ensemble mean is 2483 Gt yr−1. However, individual model estimates vary from 1961±70 to 2519±118 Gt yr−1. The largest spatial differences between model SMB estimates are in West Antarctica, the Antarctic Peninsula, and around the Transantarctic Mountains. We find no significant trend in Antarctic SMB over either period. Antarctic ice sheet (AIS) mass loss is currently equivalent to around 0.5 mm yr−1 of global mean sea level rise (Shepherd et al., 2020), but our results indicate some uncertainty in the SMB contribution based on RCMs. We compare modelled SMB with a large dataset of observations, which, though biased by undersampling, indicates that many of the biases in SMB are common between models. A drifting-snow scheme improves modelled SMB on ice sheet surface slopes with an elevation between 1000 and 2000 m, where strong katabatic winds form. Different ice masks have a substantial impact on the integrated total SMB and along with model resolution are factored into our analysis. Targeting undersampled regions with high precipitation for observational campaigns will be key to improving future estimates of SMB in Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
15

Barral, H., C. Genthon, A. Trouvilliez, C. Brun, and C. Amory. "Blowing snow at D17, Adélie Land, Antarctica: atmospheric moisture issues." Cryosphere Discussions 8, no. 3 (June 2, 2014): 2759–98. http://dx.doi.org/10.5194/tcd-8-2759-2014.

Full text
Abstract:
Abstract. Three years of blowing snow and meteorological observations have been collected along a 7 m mast at site D17 in coastal Adélie Land, Antarctica. This is a region particularly exposed to katabatic winds. The atmospheric surface layer is often close to saturation because of the sublimation of the airborne snow particles. A systematic dry bias results in atmospheric models that ignore blowing snow and its moistening effects, and in meteorological analyses that use such model. The Crocus snow-pack model, including a parameterization for the erosion of surface snow by wind, reproduces the observed march of snow accumulation and ablation if the observed meteorology is used as input. Because of subsaturation, a 2.5 fold increase in surface sublimation is obtained if analyzed surface air meteorology is used. The sublimation obtained in the Crocus model poorly agrees with the moisture fluxes evaluated using the profile method along the mast. Moisture gradients are very weak, particularly when blowing snow saturates the air, to a point where measurement accuracy is an issue. Using the profile method, the measurement uncertainties are strongly amplified in case of strong wind. In such conditions, a single level bulk parameterization with surface energy balance closure as in the Crocus model is preferred. At D17, more than half of the total snow fall is removed by erosion and sublimation, both at the surface and, mainly, of airborne snow particles.
APA, Harvard, Vancouver, ISO, and other styles
16

Thompson, Andrew F. "The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1885 (September 25, 2008): 4529–41. http://dx.doi.org/10.1098/rsta.2008.0196.

Full text
Abstract:
Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing. The dynamics of energetic eddies and topographically steered jets may both temper and enhance the sensitivity of different aspects of the ACC's circulation to changes in climate.
APA, Harvard, Vancouver, ISO, and other styles
17

Nienow, James A., Christopher P. McKay, and E. Imre Friedmann. "The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Mathematical models of the thermal regime." Microbial Ecology 16, no. 3 (November 1988): 253–70. http://dx.doi.org/10.1007/bf02011699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Angot, Hélène, Ashu Dastoor, Francesco De Simone, Katarina Gårdfeldt, Christian N. Gencarelli, Ian M. Hedgecock, Sarka Langer, et al. "Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models." Atmospheric Chemistry and Physics 16, no. 16 (August 30, 2016): 10735–63. http://dx.doi.org/10.5194/acp-16-10735-2016.

Full text
Abstract:
Abstract. Mercury (Hg) is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission). Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011–2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes.
APA, Harvard, Vancouver, ISO, and other styles
19

Derkani, Marzieh H., Alberto Alberello, Filippo Nelli, Luke G. Bennetts, Katrin G. Hessner, Keith MacHutchon, Konny Reichert, Lotfi Aouf, Salman Khan, and Alessandro Toffoli. "Wind, waves, and surface currents in the Southern Ocean: observations from the Antarctic Circumnavigation Expedition." Earth System Science Data 13, no. 3 (March 22, 2021): 1189–209. http://dx.doi.org/10.5194/essd-13-1189-2021.

Full text
Abstract:
Abstract. The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air–sea interface and contribute to absorbing, storing, and releasing heat, moisture, gases, and momentum. Owing to its remoteness and harsh environment, this region is significantly undersampled, hampering the validation of prediction models and large-scale observations from satellite sensors. Here, an unprecedented data set of simultaneous observations of winds, surface currents, and ocean waves is presented, to address the scarcity of in situ observations in the region – https://doi.org/10.26179/5ed0a30aaf764 (Alberello et al., 2020c) and https://doi.org/10.26179/5e9d038c396f2 (Derkani et al., 2020). Records were acquired underway during the Antarctic Circumnavigation Expedition (ACE), which went around the Southern Ocean from December 2016 to March 2017 (Austral summer). Observations were obtained with the wave and surface current monitoring system WaMoS-II, which scanned the ocean surface around the vessel using marine radars. Measurements were assessed for quality control and compared against available satellite observations. The data set is the most extensive and comprehensive collection of observations of surface processes for the Southern Ocean and is intended to underpin improvements of wave prediction models around Antarctica and research of air–sea interaction processes, including gas exchange and dynamics of sea spray aerosol particles. The data set has further potentials to support theoretical and numerical research on lower atmosphere, air–sea interface, and upper-ocean processes.
APA, Harvard, Vancouver, ISO, and other styles
20

Newnham, David A., George P. Ford, Tracy Moffat-Griffin, and Hugh C. Pumphrey. "Simulation study for measurement of horizontal wind profiles in the polar stratosphere and mesosphere using ground-based observations of ozone and carbon monoxide lines in the 230–250 GHz region." Atmospheric Measurement Techniques 9, no. 7 (July 26, 2016): 3309–23. http://dx.doi.org/10.5194/amt-9-3309-2016.

Full text
Abstract:
Abstract. Meteorological and atmospheric models are being extended up to 80 km altitude but there are very few observing techniques that can measure stratospheric–mesospheric winds at altitudes between 20 and 80 km to verify model datasets. Here we demonstrate the feasibility of horizontal wind profile measurements using ground-based passive millimetre-wave spectroradiometric observations of ozone lines centred at 231.28, 249.79, and 249.96 GHz. Vertical profiles of horizontal winds are retrieved from forward and inverse modelling simulations of the line-of-sight Doppler-shifted atmospheric emission lines above Halley station (75°37′ S, 26°14′ W), Antarctica. For a radiometer with a system temperature of 1400 K and 30 kHz spectral resolution observing the ozone 231.28 GHz line we estimate that 12 h zonal and meridional wind profiles could be determined over the altitude range 25–74 km in winter, and 28–66 km in summer. Height-dependent measurement uncertainties are in the range 3–8 m s−1 and vertical resolution ∼ 8–16 km. Under optimum observing conditions at Halley a temporal resolution of 1.5 h for measuring either zonal or meridional winds is possible, reducing to 0.5 h for a radiometer with a 700 K system temperature. Combining observations of the 231.28 GHz ozone line and the 230.54 GHz carbon monoxide line gives additional altitude coverage at 85 ± 12 km. The effects of clear-sky seasonal mean winter/summer conditions, zenith angle of the received atmospheric emission, and spectrometer frequency resolution on the altitude coverage, measurement uncertainty, and height and time resolution of the retrieved wind profiles have been determined.
APA, Harvard, Vancouver, ISO, and other styles
21

Hogg, Andrew McC, and David R. Munday. "Does the sensitivity of Southern Ocean circulation depend upon bathymetric details?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2019 (July 13, 2014): 20130050. http://dx.doi.org/10.1098/rsta.2013.0050.

Full text
Abstract:
The response of the major ocean currents to changes in wind stress forcing is investigated with a series of idealized, but eddy-permitting, model simulations. Previously, ostensibly similar models have shown considerable variation in the oceanic response to changing wind stress forcing. Here, it is shown that a major reason for these differences in model sensitivity is subtle modification of the idealized bathymetry. The key bathymetric parameter is the extent to which the strong eddy field generated in the circumpolar current can interact with the bottom water formation process. The addition of an embayment, which insulates bottom water formation from meridional eddy fluxes, acts to stabilize the deep ocean density and enhances the sensitivity of the circumpolar current. The degree of interaction between Southern Ocean eddies and Antarctic shelf processes may thereby control the sensitivity of the Southern Ocean to change.
APA, Harvard, Vancouver, ISO, and other styles
22

Katurji, M., B. Khan, M. Sprenger, R. Datta, K. Joy, P. Zawar-Reza, and I. Hawes. "Meteorological Connectivity from Regions of High Biodiversity within the McMurdo Dry Valleys of Antarctica." Journal of Applied Meteorology and Climatology 58, no. 11 (November 2019): 2437–52. http://dx.doi.org/10.1175/jamc-d-18-0336.1.

Full text
Abstract:
AbstractMeteorological connectivity between biological hot spots of the McMurdo Dry Valleys (MDVs) of Antarctica is thought to play a role in species distribution and abundance through the aeolian transport of bioaerosols. Understanding the potential role of such meteorological connectivity requires an understanding of near-surface wind flow within and between valley airsheds. To address this, we applied Lagrangian wind trajectory modeling to mesoscale (spatial resolution of ~1 km) weather model output to predict connectivity pathways, focusing on regions of high biodiversity. Our models produce maps of a likelihood metric of wind connectivity that demonstrate the synoptic and mesoscale dependence of connections between local, near-local, and nonlocal areas on wind transport, modulated by synoptic weather and topographic forcing. These connectivity areas can have spatial trends modulated by the synoptic weather patterns and locally induced topographically forced winds. This method is transferrable to other regions of Antarctica for broader terrestrial, coastal, and offshore ecological connectivity research. Also, our analysis and methods can inform better placement of aeolian dust and bioaerosol samplers in the McMurdo Dry Valleys, provide preliminary guidelines behind the meteorological controls of sediment transport and smaller particle distribution, and present quantifiable knowledge informing new hypotheses around the potential of wind acting as a physical driver for biological connectivity in the MDVs.
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Yuchen, Yinke Dou, Jingxue Guo, and Dehong Huang. "Space Physical Sensor Protection and Control System Based on Neural Network Prediction: Application in Princess Elizabeth Area of Antarctica." Sensors 20, no. 17 (August 19, 2020): 4662. http://dx.doi.org/10.3390/s20174662.

Full text
Abstract:
In the inland areas of Antarctica, the establishment of an unmanned automatic observation support system is an urgent problem and challenge. This article introduces the development and application of an unmanned control system suitable for inland Antarctica. The system is called RIOD (Remote Control, Image Acquisition, Operation Maintenance, and Document Management System) for short. At the beginning of this research project, a mathematical model of heat conduction in the surface observation chamber was established, and the control strategy was determined through mathematical relationships and field experiments. Based on the analysis of local meteorological data, various neural network models are compared, and the training model with the smallest error is used to predict the future ambient temperature. Moreover, the future temperature is substituted into the mathematical model of thermal conductivity to obtain the input value of the next input power, to formulate the operation strategy for the system. This method maintains the regular operation of the sensor while reducing energy consumption. The RIOD system has been deployed in the Tai-Shan camp in China’s Antarctic inland inspection route. The application results 4.5 months after deployment show that the RIOD system can maintain stable operation at lower temperatures. This technology solves the demand for unmanned high-altitude physical observation or astronomical observation stations in inland areas.
APA, Harvard, Vancouver, ISO, and other styles
24

Meijers, A. J. S. "The Southern Ocean in the Coupled Model Intercomparison Project phase 5." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2019 (July 13, 2014): 20130296. http://dx.doi.org/10.1098/rsta.2013.0296.

Full text
Abstract:
The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear.
APA, Harvard, Vancouver, ISO, and other styles
25

Humbert, A., D. Gross, R. Müller, M. Braun, R. S. W. van de Wal, M. R. van den Broeke, D. G. Vaughan, and W. J. van de Berg. "Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica." Annals of Glaciology 51, no. 55 (2010): 49–55. http://dx.doi.org/10.3189/172756410791392709.

Full text
Abstract:
AbstractA narrow bridge of floating ice that connected the Wilkins Ice Shelf, Antarctica, to two confining islands eventually collapsed in early April 2009. In the month preceding the collapse, we observed deformation of the ice bridge by means of satellite imagery and from an in situ GPS station. TerraSAR-X images (acquired in stripmap mode) were used to compile a time series. The ice bridge bent most strongly in its narrowest part (westerly), while the northern end (near Charcot Island) shifted in a northeasterly direction. In the south, the ice bridge experienced compressive strain parallel to its long axis. GPS position data were acquired a little south of the narrowest part of the ice bridge from 19 January 2009. Analysis of these data showed both cyclic and monotonic components of motion. Meteorological data and re-analysis of the output of weather-prediction models indicated that easterly winds were responsible for the cyclic motion component. In particular, wind stress on the rough ice melange that occupied the area to the east exerted significant pressure on the ice bridge. The collapse of the ice bridge began with crack formation in the southern section parallel to the long axis of the ice bridge and led to shattering of the southern part. Ultimately, the narrowest part, only 900 m wide, ruptured. The formation of many small icebergs released energy of >125 ×106 J.
APA, Harvard, Vancouver, ISO, and other styles
26

Kizilova, N. M., and N. L. Rychak. "Mathematical modeling of influence of strong winds on technical and plant structures on urban areas." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 4 (2021): 39–45. http://dx.doi.org/10.17721/1812-5409.2021/4.5.

Full text
Abstract:
Stormy events in recent years have shown that the destructive effects of wind on urban technical structures and plants pose a special threat. The paper provides an overview of mathematical models and approaches to experimental and theoretical studies of the problems associated with the effects of wind gusts and tornadoes on urban areas. Computer simulations of wind action on standard multistorey buildings in Ukraine are given. The coefficients of normal and shear components of forces and moments of forces acting on the surface of buildings, as well as vortex tracks over the residential complex at different wind speeds from moderate to severe have been computed. The calculations were performed by the finite element method using the model of turbulent air flow in the package AnSys2020. It is shown how with the help of a slight change in shape (roofs, additional passages, shields) the destructive effects of wind on the buildings and plants, as well as the threat to human life can be reduced.
APA, Harvard, Vancouver, ISO, and other styles
27

Bose, S. K., P. Ray, and B. K. Dutta. "Mathematical Models for Mixing and Dispersion in Forecasting and Management of Estuarine Water Quality." Water Science and Technology 19, no. 9 (September 1, 1987): 183–93. http://dx.doi.org/10.2166/wst.1987.0079.

Full text
Abstract:
The dispersion or spread of a dissolved or suspended substance in an estuarine system occurs mainly due to the non-uniformity of velocity distribution, including turbulent fluctuations, shear stress at the boundary and surface stress caused by winds. The mixing and dispersion phenomena in rivers and estuaries are extremely important in water quality management and control. The development of a dispersion model in harmony with the nature of the flow field in a river or estuary is necessary in the estimation and correlation of dispersion parameters, called dispersion coefficients, which may, in general, be anisotropic in a multidimensional transport process. The earlier one-dimensional models have gradually given way to higher dimensional models for better description of the phenomena as well as for more accurate estimation of parameters. Field studies of dispersion of tracers have been the most important method of generating data for parameter estimation. A number of correlations for mixing and dispersion coefficients in terms of flow rates and other fundamental system parameters are available. The present study incorporates the analysis, assessment and applications of various dispersion and mixing models available. Also, a critical appraisal of the validity, inherent degree of uncertainty and the range of applications of different correlations has been incorporated.
APA, Harvard, Vancouver, ISO, and other styles
28

Ferreira, David, John Marshall, Cecilia M. Bitz, Susan Solomon, and Alan Plumb. "Antarctic Ocean and Sea Ice Response to Ozone Depletion: A Two-Time-Scale Problem." Journal of Climate 28, no. 3 (February 1, 2015): 1206–26. http://dx.doi.org/10.1175/jcli-d-14-00313.1.

Full text
Abstract:
Abstract The response of the Southern Ocean to a repeating seasonal cycle of ozone loss is studied in two coupled climate models and is found to comprise both fast and slow processes. The fast response is similar to the interannual signature of the southern annular mode (SAM) on sea surface temperature (SST), onto which the ozone hole forcing projects in the summer. It comprises enhanced northward Ekman drift, inducing negative summertime SST anomalies around Antarctica, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year-round. The enhanced northward Ekman drift, however, results in upwelling of warm waters from below the mixed layer in the region of seasonal sea ice. With sustained bursts of westerly winds induced by ozone hole depletion, this warming from below eventually dominates over the cooling from anomalous Ekman drift. The resulting slow time-scale response (years to decades) leads to warming of SSTs around Antarctica and ultimately a reduction in sea ice cover year-round. This two-time-scale behavior—rapid cooling followed by slow but persistent warming—is found in the two coupled models analyzed: one with an idealized geometry and the other with a complex global climate model with realistic geometry. Processes that control the time scale of the transition from cooling to warming and their uncertainties are described. Finally the implications of these results are discussed for rationalizing previous studies of the effect of the ozone hole on SST and sea ice extent.
APA, Harvard, Vancouver, ISO, and other styles
29

Sakhnenko, O. I. "Results of calculation of wave-wind water dynamics at the Tiligul Estuary." Ukrainian hydrometeorological journal, no. 18 (October 29, 2017): 140–49. http://dx.doi.org/10.31481/uhmj.18.2016.16.

Full text
Abstract:
Features of spatial distribution of the main parameters of wind waves, such as height, average orbital velocities of wave motions determining transportation of bottom material were specified. Maximum heights of significant waves were obtained in the central, most deep-water part of the estuary, as well as in the southern part and near the windward shores. At the time of storm winds maximum heights of significant waves, according to the simulation results, constitute up to 0,83 m. On the basis of calculations of wind waves with application of the SWAN numerical model (Simulating Waves Nearshore) made using wind observations during 2012, regime functions of wind waves’ heights for different parts of the estuary were built. Statistical estimates of wind waves’ heights at typical points of the estuary waters were analyzed. Spatial fields of wind-wave flows in the estuary under the influence of steady winds of the southern and western directions calculated using the complex of numerical mathematical models of wind wave generation and models of wind-wave water circulation based on Reynolds equations and supplemented with com-ponents of the wave radiation stresses were specified.
APA, Harvard, Vancouver, ISO, and other styles
30

Arthur, Jennifer F., Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson. "Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica." Cryosphere 14, no. 11 (November 18, 2020): 4103–20. http://dx.doi.org/10.5194/tc-14-4103-2020.

Full text
Abstract:
Abstract. Supraglacial lakes (SGLs) enhance surface melting and can flex and fracture ice shelves when they grow and subsequently drain, potentially leading to ice shelf disintegration. However, the seasonal evolution of SGLs and their influence on ice shelf stability in East Antarctica remains poorly understood, despite some potentially vulnerable ice shelves having high densities of SGLs. Using optical satellite imagery, air temperature data from climate reanalysis products and surface melt predicted by a regional climate model, we present the first long-term record (2000–2020) of seasonal SGL evolution on Shackleton Ice Shelf, which is Antarctica's northernmost remaining ice shelf and buttresses Denman Glacier, a major outlet of the East Antarctic Ice Sheet. In a typical melt season, we find hundreds of SGLs with a mean area of 0.02 km2, a mean depth of 0.96 m and a mean total meltwater volume of 7.45×106 m3. At their most extensive, SGLs cover a cumulative area of 50.7 km2 and are clustered near to the grounding line, where densities approach 0.27 km2 km−2. Here, SGL development is linked to an albedo-lowering feedback associated with katabatic winds, together with the presence of blue ice and exposed rock. Although below-average seasonal (December–January–February, DJF) temperatures are associated with below-average peaks in total SGL area and volume, warmer seasonal temperatures do not necessarily result in higher SGL areas and volumes. Rather, peaks in total SGL area and volume show a much closer correspondence with short-lived high-magnitude snowmelt events. We therefore suggest seasonal lake evolution on this ice shelf is instead more sensitive to snowmelt intensity associated with katabatic-wind-driven melting. Our analysis provides important constraints on the boundary conditions of supraglacial hydrology models and numerical simulations of ice shelf stability.
APA, Harvard, Vancouver, ISO, and other styles
31

Brogioni, Marco, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, et al. "Ice Sheet and Sea Ice Ultrawideband Microwave radiometric Airborne eXperiment (ISSIUMAX) in Antarctica: first results from Terra Nova Bay." Cryosphere 17, no. 1 (January 20, 2023): 255–78. http://dx.doi.org/10.5194/tc-17-255-2023.

Full text
Abstract:
Abstract. An airborne microwave wide-band radiometer (500–2000 MHz) was operated for the first time in Antarctica to better understand the emission properties of sea ice, outlet glaciers and the interior ice sheet from Terra Nova Bay to Dome C. The different glaciological regimes were revealed to exhibit unique spectral signatures in this portion of the microwave spectrum. Generally, the brightness temperatures over a vertically homogeneous ice sheet are warmest at the lowest frequencies, consistent with models that predict that those channels sensed the deeper, warmer parts of the ice sheet. Vertical heterogeneities in the ice property profiles can alter this basic interpretation of the signal. Spectra along the lengths of outlet glaciers were modulated by the deposition and erosion of snow, driven by strong katabatic winds. Similar to previous experiments in Greenland, the brightness temperatures across the frequency band were low in crevasse areas. Variations in brightness temperature were consistent with spatial changes in sea ice type identified in satellite imagery and in situ ground-penetrating radar data. The results contribute to a better understanding of the utility of microwave wide-band radiometry for cryospheric studies and also advance knowledge of the important physics underlying existing L-band radiometers operating in space.
APA, Harvard, Vancouver, ISO, and other styles
32

Santana, Juan J., Víctor Cano, Helena C. Vasconcelos, and Ricardo M. Souto. "The Influence of Test-Panel Orientation and Exposure Angle on the Corrosion Rate of Carbon Steel. Mathematical Modelling." Metals 10, no. 2 (January 29, 2020): 196. http://dx.doi.org/10.3390/met10020196.

Full text
Abstract:
The effects of both test-panel orientation and exposure angle on the atmospheric corrosion rates of carbon steel probes exposed to a marine atmosphere were investigated. Test samples were exposed in a tree-shape metallic frame with either three exposure angles of 30°, 45° and 60° and orientation north-northeast (N-NE), or eight different orientation angles around a circumference. It was found that the experimental corrosion rates of carbon steel decreased for the specimens exposed with greater exposure angles, whereas the highest corrosion rates were found for those oriented to N-NE due to the influence of the prevailing winds. The obtained data obtained were fitted using the bi-logarithmic law and its variations as to take in account the amounts of pollutants and the time of wetness (TOW) for each particular case with somewhat good agreement, although these models failed when all the effects were considered simultaneously. In this work, we propose a new mathematical model including qualitative variables to account for the effects of both exposure and orientation angles while producing the highest quality fits. The goodness of the fit was used to determine the performance of the mathematical models.
APA, Harvard, Vancouver, ISO, and other styles
33

Langlais, Clothilde E., Stephen R. Rintoul, and Jan D. Zika. "Sensitivity of Antarctic Circumpolar Current Transport and Eddy Activity to Wind Patterns in the Southern Ocean." Journal of Physical Oceanography 45, no. 4 (April 2015): 1051–67. http://dx.doi.org/10.1175/jpo-d-14-0053.1.

Full text
Abstract:
AbstractThe Southern Hemisphere westerly winds have intensified in recent decades associated with a positive trend in the southern annular mode (SAM). However, the response of the Antarctic Circumpolar Current (ACC) transport and eddy field to wind forcing remains a topic of debate. This study uses global eddy-permitting ocean circulation models driven with both idealized and realistic wind forcing to explore the response to interannual wind strengthening. The response of the barotropic and baroclinic transports and eddy field of the ACC is found to depend on the spatial pattern of the changes in wind forcing. In isolation, an enhancement of the westerlies over the ACC belt leads to an increase of both barotropic and baroclinic transport within the ACC envelope, with lagged enhancement of the eddy kinetic energy (EKE). In contrast, an increase in wind forcing near Antarctica drives a largely barotropic change in transport along closed f/H contours (“free mode”), with little change in eddy activity. Under realistic forcing, the interplay of the SAM and the El Niño–Southern Oscillation (ENSO) influences the spatial distribution of the wind anomalies, in particular the partition between changes in the wind stress over the ACC and along f/H contours. This study finds that the occurrence of a negative or positive ENSO during a positive SAM can cancel or double the wind anomalies near Antarctica, altering the response of the ACC and its eddy field. While a negative ENSO and positive SAM favors an increase in EKE, a positive ENSO and positive SAM lead to barotropic transport changes and no eddy response.
APA, Harvard, Vancouver, ISO, and other styles
34

Florinsky, Igor. "Unmanned aerial survey in the summer season of the 67th Russian antarctic expedition." InterCarto. InterGIS 28, no. 1 (2022): 284–304. http://dx.doi.org/10.35595/2414-9179-2022-1-28-284-304.

Full text
Abstract:
The use of unmanned aerial systems (UAS) in glaciology and cryology, as well as studying and monitoring of polar regions is one of the most rapidly developing areas of the unmanned aerial industry. An aerial photogeodetic team of the 67th Russian Antarctic Expedition (RAE) solved two main interrelated tasks: 1) field tests of the newest Russian UAS Geoscan 701 in Antarctic conditions and 2) carrying out unmanned aerial surveys of two Antarctic territories, characterized by fundamentally different natural conditions, in order to obtain their high-precision orthomosaics and digital elevation models (DEMs) of an ultra-high resolution. On 15 January 2022, we carried out an unmanned aerial survey of two adjacent Antarctic maritime oases Molodezhny and Vecherny and surrounding areas of the glacier (Enderby Land, East Antarctica). From 26 January to 16 February 2022, we performed an unmanned aerial survey of the Fildes Peninsula (the southwestern, free of ice cover portion of the King George Island, South Shetland Islands, West Antarctica). The survey was complicated by severe meteorological conditions (low clouds, fog, strong winds, and precipitation). Field tests of UAS Geoscan 701 have shown that the system can be successfully used for unmanned aerial survey in polar regions. After in-office photogrammetric processing of the obtained materials, orthomosaics and DEMs of the indicated territories will be obtained with a resolution of 10 and 25 cm, respectively. These will be used for creation of modern large-scale topographic maps, photographic maps, three-dimensional and geomorphometric modeling of these territories, as well as operational and scientific activities of the RAE.
APA, Harvard, Vancouver, ISO, and other styles
35

Bello, Ana Belén, Francisco Navarro, Javier Raposo, Mónica Miranda, Arturo Zazo, and Marina Álvarez. "Fixed-Wing UAV Flight Operation under Harsh Weather Conditions: A Case Study in Livingston Island Glaciers, Antarctica." Drones 6, no. 12 (November 28, 2022): 384. http://dx.doi.org/10.3390/drones6120384.

Full text
Abstract:
How do the weather conditions typical of the polar maritime glaciers in the western Antarctic Peninsula region affect flight operations of fixed-wing drones and how should these be adapted for a successful flight? We tried to answer this research question through a case study for Johnsons and Hurd glaciers, Livingston Island, using a fixed-wing RPAS, in particular, a Trimble UX5 UAV with electric pusher propeller by brushless 700 W motor, chosen for its ability to fly long distances and reach inaccessible areas. We also evaluated the accuracy of the point clouds and digital surface models (DSM) generated by aerial photogrammetry in our case study. The results were validated against ground control points taken by differential GNSS techniques, showing an accuracy of 0.16 ± 0.12 m in the vertical coordinate. Various hypotheses were proposed and flight-tested, based on variables affecting the flight operation and the data collection, namely, gusty winds, low temperatures, battery life, camera configuration, and snow reflectivity. We aim to provide some practical guidelines that can help other researchers using fixed-wing drones under climatic conditions similar to those of the South Shetland Islands. Performance of the drone under harsh weather conditions, the logistical considerations, and the amount of snow at the time of data collection are factors driving the necessary modifications from those of conventional flight operations. We make suggestions concerning wind speed and temperature limitations, and avoidance of sudden fog banks, aimed to improve the planning of flight operations. Finally, we make some suggestions for further research.
APA, Harvard, Vancouver, ISO, and other styles
36

Squire, Vernon A. "Ocean Wave Interactions with Sea Ice: A Reappraisal." Annual Review of Fluid Mechanics 52, no. 1 (January 5, 2020): 37–60. http://dx.doi.org/10.1146/annurev-fluid-010719-060301.

Full text
Abstract:
A spectacular resurgence of interest in the topic of ocean wave/sea ice interactions has unfolded over the last two decades, fueled primarily by the deleterious ramifications of global climate change on the polar seas. The Arctic is particularly affected, with a widespread reduction of the extent, thickness, and compactness of its sea ice during the summer, creating an ice cover that is analogous to that in the Southern Ocean surrounding Antarctica. With the additional fetches over which waves can form and mature within more open ice fields, there has also been a documented global uptrend of winds and wave height, which is most severe at high latitudes. Bigger ocean waves affect the way sea ice forms, contribute to how the ice edge moves, penetrate farther into the sea ice, have more destructive power to break up the ice and to change the distribution of floe sizes because the ice is weaker, and assist in lateral melting. These feedbacks collectively identify a parametrization currently absent from Earth system models, as well as shortcomings in wave forecasts arising from limited understanding of the impact of sea ice on ocean waves.
APA, Harvard, Vancouver, ISO, and other styles
37

Beaumet, Julien, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier. "Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run." Cryosphere 15, no. 8 (August 6, 2021): 3615–35. http://dx.doi.org/10.5194/tc-15-3615-2021.

Full text
Abstract:
Abstract. In this study, we use run-time bias correction to correct for the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) atmospheric model systematic errors on large-scale atmospheric circulation. The bias-correction terms are built using the climatological mean of the adjustment terms on tendency errors in an ARPEGE simulation relaxed towards ERA-Interim reanalyses. The bias reduction with respect to the Atmospheric Model Intercomparison Project (AMIP)-style uncorrected control run for the general atmospheric circulation in the Southern Hemisphere is significant for mean state and daily variability. Comparisons for the Antarctic Ice Sheet with the polar-oriented regional atmospheric models MAR and RACMO2 and in situ observations also suggest substantial bias reduction for near-surface temperature and precipitation in coastal areas. Applying the method to climate projections for the late 21st century (2071–2100) leads to large differences in the projected changes of the atmospheric circulation in the southern high latitudes and of the Antarctic surface climate. The projected poleward shift and strengthening of the southern westerly winds are greatly reduced. These changes result in a significant 0.7 to 0.9 K additional warming and a 6 % to 9 % additional increase in precipitation over the grounded ice sheet. The sensitivity of precipitation increase to temperature increase (+7.7 % K−1 and +9 % K−1) found is also higher than previous estimates. The highest additional warming rates are found over East Antarctica in summer. In winter, there is a dipole of weaker warming and weaker precipitation increase over West Antarctica, contrasted by a stronger warming and a concomitant stronger precipitation increase from Victoria to Adélie Land, associated with a weaker intensification of the Amundsen Sea Low.
APA, Harvard, Vancouver, ISO, and other styles
38

Vargas, Manuel, Guillermo Fuertes, Miguel Alfaro, Gustavo Gatica, Sebastian Gutierrez, and María Peralta. "The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series." Complexity 2018 (August 6, 2018): 1–13. http://dx.doi.org/10.1155/2018/4392036.

Full text
Abstract:
The dynamic complexity of time series of natural phenomena allowed to improve the performance of the genetic algorithm to optimize the test mathematical functions. The initial populations of stochastic origin of the genetic algorithm were replaced using the series of time of winds and earthquakes. The determinism of the time series brings in more information in the search of the global optimum of the functions, achieving reductions of time and an improvement of the results. The information of the initial populations was measured using the entropy of Shannon and allowed to establish the importance of the entropy in the initial populations and its relation with getting better results. This research establishes a new methodology for using determinism time series to search the best performance of the models of optimization of genetic algorithms (GA).
APA, Harvard, Vancouver, ISO, and other styles
39

Parish, Thomas R., and David H. Bromwich. "Reexamination of the Near-Surface Airflow over the Antarctic Continent and Implications on Atmospheric Circulations at High Southern Latitudes*." Monthly Weather Review 135, no. 5 (May 1, 2007): 1961–73. http://dx.doi.org/10.1175/mwr3374.1.

Full text
Abstract:
Abstract Previous work has shown that winds in the lower atmosphere over the Antarctic continent are among the most persistent on earth with directions coupled to the underlying ice topography. In 1987, Parish and Bromwich used a diagnostic model to depict details of the Antarctic near-surface airflow. A radially outward drainage pattern off the highest elevations of the ice sheets was displayed with wind speeds that generally increase from the high interior to the coast. These winds are often referred to as “katabatic,” with the implication that they are driven by radiational cooling of near-surface air over the sloping ice terrain. It has been shown that the Antarctic orography constrains the low-level wind regime through other forcing mechanisms as well. Dynamics of the lower atmosphere have been investigated increasingly by the use of numerical models since the observational network over the Antarctic remains quite sparse. Real-time numerical weather prediction for the U.S. Antarctic Program has been ongoing since the 2000–01 austral summer season via the Antarctic Mesoscale Prediction System (AMPS). AMPS output, which is based on a polar optimized version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, is used for a 1-yr period from June 2003 to May 2004 to investigate the mean annual and seasonal airflow patterns over the Antarctic continent to compare with previous streamline depictions. Divergent outflow from atop the continental interior implies that subsidence must exist over the continent and a direct thermal circulation over the high southern latitudes results. Estimates of the north–south mass fluxes are obtained from the mean airflow patterns to infer the influence of the elevated ice sheets on the mean meridional circulation over Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
40

Durán-Alarcón, Claudio, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne. "The vertical structure of precipitation at two stations in East Antarctica derived from micro rain radars." Cryosphere 13, no. 1 (January 28, 2019): 247–64. http://dx.doi.org/10.5194/tc-13-247-2019.

Full text
Abstract:
Abstract. Precipitation over Antarctica is the main term in the surface mass balance of the Antarctic ice sheet, which is crucial for the future evolution of the sea level worldwide. Precipitation, however, remains poorly documented and understood mainly because of a lack of observations in this extreme environment. Two observatories dedicated to precipitation have been set up at the Belgian station Princess Elisabeth (PE) and at the French station Dumont d'Urville (DDU) in East Antarctica. Among other instruments, both sites have a vertically pointing micro rain radar (MRR) working at the K band. Measurements have been continuously collected at DDU since the austral summer of 2015–2016, while they have been collected mostly during summer seasons at PE since 2010, with a full year of observation during 2012. In this study, the statistics of the vertical profiles of reflectivity, vertical velocity, and spectral width are analyzed for all seasons. Vertical profiles were separated into surface precipitation and virga to evaluate the impact of virga on the structure of the vertical profiles. The climatology of the study area plays an important role in the structure of the precipitation: warmer and moister atmospheric conditions at DDU favor the occurrence of more intense precipitation compared with PE, with a difference of 8 dBZ between both stations. The strong katabatic winds blowing at DDU induce a decrease in reflectivity close to the ground due to the sublimation of the snowfall particles. The vertical profiles of precipitation velocity show significant differences between the two stations. In general, at DDU the vertical velocity increases as the height decreases, while at PE the vertical velocity decreases as the height decreases. These features of the vertical profiles of reflectivity and vertical velocity could be explained by the more frequent occurrence of aggregation and riming at DDU compared to PE because of the lower temperature and relative humidity at the latter, located further in the interior. Robust and reliable statistics about the vertical profile of precipitation in Antarctica, as derived from MRRs for instance, are necessary and valuable for the evaluation of precipitation estimates derived from satellite measurements and from numerical atmospheric models.
APA, Harvard, Vancouver, ISO, and other styles
41

Monahan, Adam Hugh. "The Probability Distribution of Sea Surface Wind Speeds: Effects of Variable Surface Stratification and Boundary Layer Thickness." Journal of Climate 23, no. 19 (October 1, 2010): 5151–62. http://dx.doi.org/10.1175/2010jcli3184.1.

Full text
Abstract:
Abstract Air–sea exchanges of momentum, energy, and material substances of fundamental importance to the variability of the climate system are mediated by the character of the turbulence in the atmospheric and oceanic boundary layers. Sea surface winds influence, and are influenced by, these fluxes. The probability density function (pdf) of sea surface wind speeds p(w) is a mathematical object describing the variability of surface winds that arises from the physics of the turbulent atmospheric planetary boundary layer. Previous mechanistic models of the pdf of sea surface wind speeds have considered the momentum budget of an atmospheric layer of fixed thickness and neutral stratification. The present study extends this analysis, using an idealized model to consider the influence of boundary layer thickness variations and nonneutral surface stratification on p(w). It is found that surface stratification has little direct influence on p(w), while variations in boundary layer thickness bring the predictions of the model into closer agreement with the observations. Boundary layer thickness variability influences the shape of p(w) in two ways: through episodic downward mixing of momentum into the boundary layer from the free atmosphere and through modulation of the importance (relative to other tendencies) of turbulent momentum fluxes at the surface and the boundary layer top. It is shown that the second of these influences dominates over the first.
APA, Harvard, Vancouver, ISO, and other styles
42

Hertzog, Albert, Gillian Boccara, Robert A. Vincent, François Vial, and Philippe Cocquerez. "Estimation of Gravity Wave Momentum Flux and Phase Speeds from Quasi-Lagrangian Stratospheric Balloon Flights. Part II: Results from the Vorcore Campaign in Antarctica." Journal of the Atmospheric Sciences 65, no. 10 (October 2008): 3056–70. http://dx.doi.org/10.1175/2008jas2710.1.

Full text
Abstract:
The stratospheric gravity wave field in the Southern Hemisphere is investigated by analyzing observations collected by 27 long-duration balloons that flew between September 2005 and February 2006 over Antarctica and the Southern Ocean. The analysis is based on the methods introduced by Boccara et al. in a companion paper. Special attention is given to deriving information useful to gravity wave drag parameterizations employed in atmospheric general circulation models. The balloon dataset is used to map the geographic variability of gravity wave momentum fluxes in the lower stratosphere. This flux distribution is found to be very heterogeneous with the largest time-averaged value (28 mPa) observed above the Antarctic Peninsula. This value exceeds by a factor of ∼10 the overall mean momentum flux measured during the balloon campaign. Zonal momentum fluxes were predominantly westward, whereas meridional momentum fluxes were equally northward and southward. A local enhancement of southward flux is nevertheless observed above Adélie Land and is attributed to waves generated by katabatic winds, for which the signature is otherwise rather small in the balloon observations. When zonal averages are performed, oceanic momentum fluxes are found to be of similar magnitude to continental values (2.5–3 mPa), stressing the importance of nonorographic gravity waves over oceans. Last, gravity wave intermittency is investigated. Mountain waves appear to be significantly more sporadic than waves observed above the ocean.
APA, Harvard, Vancouver, ISO, and other styles
43

Rodehacke, Christian B., Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner. "Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz." Earth System Dynamics 11, no. 4 (December 16, 2020): 1153–94. http://dx.doi.org/10.5194/esd-11-1153-2020.

Full text
Abstract:
Abstract. Various observational estimates indicate growing mass loss at Antarctica's margins as well as heavier precipitation across the continent. Simulated future projections reveal that heavier precipitation, falling on Antarctica, may counteract amplified iceberg discharge and increased basal melting of floating ice shelves driven by a warming ocean. Here, we test how the ansatz (implementation in a mathematical framework) of the precipitation boundary condition shapes Antarctica's sea level contribution in an ensemble of ice sheet simulations. We test two precipitation conditions: we either apply the precipitation anomalies from CMIP5 models directly or scale the precipitation by the air temperature anomalies from the CMIP5 models. In the scaling approach, it is common to use a relative precipitation increment per degree warming as an invariant scaling constant. We use future climate projections from nine CMIP5 models, ranging from strong mitigation efforts to business-as-usual scenarios, to perform simulations from 1850 to 5000. We take advantage of individual climate projections by exploiting their full temporal and spatial structure. The CMIP5 projections beyond 2100 are prolonged with reiterated forcing that includes decadal variability; hence, our study may underestimate ice loss after 2100. In contrast to various former studies that apply an evolving temporal forcing that is spatially averaged across the entire Antarctic Ice Sheet, our simulations consider the spatial structure in the forcing stemming from various climate patterns. This fundamental difference reproduces regions of decreasing precipitation despite general warming. Regardless of the boundary and forcing conditions applied, our ensemble study suggests that some areas, such as the glaciers from the West Antarctic Ice Sheet draining into the Amundsen Sea, will lose ice in the future. In general, the simulated ice sheet thickness grows along the coast, where incoming storms deliver topographically controlled precipitation. In this region, the ice thickness differences are largest between the applied precipitation methods. On average, Antarctica shrinks for all future scenarios if the air temperature anomalies scale the precipitation. In contrast, Antarctica gains mass in our simulations if we apply the simulated precipitation anomalies directly. The analysis reveals that the mean scaling inferred from climate models is larger than the commonly used values deduced from ice cores; moreover, it varies spatially: the highest scaling is across the East Antarctic Ice Sheet, and the lowest scaling is around the Siple Coast, east of the Ross Ice Shelf. The discrepancies in response to both precipitation ansatzes illustrate the principal uncertainty in projections of Antarctica's sea level contribution.
APA, Harvard, Vancouver, ISO, and other styles
44

Rodriguez, MS, Jose M., Julius Codjoe, Osama Osman, Sherif Ishak, PhD, and Brian Wolshon, PhD. "Experimental modeling of the effect of hurricane wind forces on driving behavior and vehicle performance." Journal of Emergency Management 13, no. 2 (March 1, 2015): 159. http://dx.doi.org/10.5055/jem.2015.0228.

Full text
Abstract:
While traffic planning is important for developing a hurricane evacuation plan, vehicle performance on the roads during extreme weather conditions is critical to the success of the planning process. This novel study investigates the effect of gusty hurricane wind forces on the driving behavior and vehicle performance. The study explores how the parameters of a driving simulator could be modified to reproduce wind loadings experienced by three vehicle types (passenger car, ambulance, and bus) during gusty hurricane winds, through manipulation of appropriate software. Thirty participants were then tested on the modified driving simulator under five wind conditions (ranging from normal to hurricane category 4). The driving performance measures used were heading error and lateral displacement. The results showed that higher wind forces resulted in more varied and greater heading error and lateral displacement. The ambulance had the greatest heading errors and lateral displacements, which were attributed to its large lateral surface area and light weight. Two mathematical models were developed to estimate the heading error and lateral displacements for each of the vehicle types for a given change in lateral wind force. Through a questionnaire, participants felt the different characteristics while driving each vehicle type. The findings of this study demonstrate the valuable use of a driving simulator to model the behavior of different vehicle types and to develop mathematical models to estimate and quantify driving behavior and vehicle performance under hurricane wind conditions.
APA, Harvard, Vancouver, ISO, and other styles
45

Wolska, Lidia, Marek Kowalewski, Marta Potrykus, Vladyslav Redko, and Bartosz Rybak. "Difficulties in the Modeling of E. coli Spreading from Various Sources in a Coastal Marine Area." Molecules 27, no. 14 (July 7, 2022): 4353. http://dx.doi.org/10.3390/molecules27144353.

Full text
Abstract:
Coastal and transitional waters are often used as bathing waters. In many regions, such activities play an important economic role. According to the European Union Bathing Water Directive (2006/7/EC) (BWD) the concentration of Escherichia coli in bathing water exceeding 500 CFU·100 mL−1 poses a high risk for bathers’ health. In order to safeguard public health, microbiological environmental monitoring is carried out, which has recently been supported or replaced by mathematical models detailing the spread of sanitary contamination. This study focuses on the problems and limitations that can be encountered in the process of constructing a mathematical model describing the spread of biological contamination by E. coli bacteria in coastal seawater. This and other studies point to the following problems occurring during the process of building and validating a model: the lack of data on loads of sanitary contamination (often connected with multiple sources of biological contamination inflow) makes the model more complex; E. coli concentrations higher than 250 CFU·100 mL−1 (low hazard for health) are observed very rarely, and are associated with great uncertainty; the impossibility of predicting the time and intensity of precipitation as well as stronger winds and rougher sea, which may be a significant source of E. coli. However, there is universal agreement that such models will be useful in managing bathing water quality and protecting public health, especially during big failures of the wastewater network.
APA, Harvard, Vancouver, ISO, and other styles
46

Mao, Yiwen, and Adam Monahan. "Comparison of Linear Predictability of Surface Wind Components from Observations with Simulations from RCMs and Reanalysis." Journal of Applied Meteorology and Climatology 57, no. 4 (April 2018): 889–906. http://dx.doi.org/10.1175/jamc-d-17-0283.1.

Full text
Abstract:
AbstractThis study compares the predictability of surface wind components by linear statistical downscaling using data from both observations and comprehensive models [regional climate models (RCM) and NCEP-2 reanalysis] in three domains: North America (NAM), Europe–Mediterranean Basin (EMB), and East Asia (EAS). A particular emphasis is placed on predictive anisotropy, a phenomenon referring to unequal predictability of surface wind components in different directions. Simulated predictability by comprehensive models is generally close to that found in observations in flat regions of NAM and EMB, but it is overestimated relative to observations in mountainous terrain. Simulated predictability in EAS shows different structures. In particular, there are regions in EAS where predictability simulated by RCMs is lower than that in observations. Overestimation of predictability by comprehensive models tends to occur in regions of low predictability in observations and can be attributed to small-scale physical processes not resolved by comprehensive models. An idealized mathematical model is used to characterize the predictability of wind components. It is found that the signal strength along the direction of minimum predictability is the dominant control on the strength of predictive anisotropy. The biases in the model representation of the statistical relationship between free-tropospheric circulation and surface winds are interpreted in terms of inadequate simulation of small-scale processes in regional and global models, and the primary cause of predictive anisotropy is attributed to such small-scale processes.
APA, Harvard, Vancouver, ISO, and other styles
47

Yoshimura, Kei, and Masao Kanamitsu. "Dynamical Global Downscaling of Global Reanalysis." Monthly Weather Review 136, no. 8 (August 1, 2008): 2983–98. http://dx.doi.org/10.1175/2008mwr2281.1.

Full text
Abstract:
Abstract With the aim of producing higher-resolution global reanalysis datasets from coarse-resolution reanalysis, a global version of the dynamical downscaling using a global spectral model is developed. A variant of spectral nudging, the modified form of scale-selective bias correction developed for regional models is adopted. The method includes 1) nudging of temperature in addition to the zonal and meridional components of winds, 2) nudging to the perturbation field rather than to the perturbation tendency, and 3) no nudging and correction of the humidity. The downscaling experiment was performed using a T248L28 (about 50-km resolution) global model, driven by the so-called R-2 reanalysis (T62L28 resolution, or about 200-km resolution) during 2001. Evaluation with high-resolution observations showed that the monthly averaged global surface temperature and daily variation of precipitation were much improved. Over North America, surface wind speed and temperature are much better, and over Japan, the diurnal pattern of surface temperature is much improved, as are wind speed and precipitation, but not humidity. Three well-known synoptic/subsynoptic-scale weather patterns over the United States, Europe, and Antarctica were shown to become more realistic. This study suggests that the global downscaling is a viable and economical method for obtaining high-resolution reanalysis without rerunning a very expensive high-resolution full data assimilation.
APA, Harvard, Vancouver, ISO, and other styles
48

Haid, Verena, Ralph Timmermann, Lars Ebner, and Günther Heinemann. "Atmospheric forcing of coastal polynyas in the south-western Weddell Sea." Antarctic Science 27, no. 4 (January 29, 2015): 388–402. http://dx.doi.org/10.1017/s0954102014000893.

Full text
Abstract:
AbstractThe development of coastal polynyas, areas of enhanced heat flux and sea ice production strongly depend on atmospheric conditions. In Antarctica, measurements are scarce and models are essential for the investigation of polynyas. A robust quantification of polynya exchange processes in simulations relies on a realistic representation of atmospheric conditions in the forcing dataset. The sensitivity of simulated coastal polynyas in the south-western Weddell Sea to the atmospheric forcing is investigated with the Finite-Element Sea ice-Ocean Model (FESOM) using daily NCEP/NCAR reanalysis data (NCEP), 6 hourly Global Model Europe (GME) data and two different hourly datasets from the high-resolution Consortium for Small-Scale Modelling (COSMO) model. Results are compared for April to August in 2007–09. The two coarse-scale datasets often produce the extremes of the data range, while the finer-scale forcings yield results closer to the median. The GME experiment features the strongest winds and, therefore, the greatest polynya activity, especially over the eastern continental shelf. This results in higher volume and export of High Salinity Shelf Water than in the NCEP and COSMO runs. The largest discrepancies between simulations occur for 2008, probably due to differing representations of the ENSO pattern at high southern latitudes. The results suggest that the large-scale wind field is of primary importance for polynya development.
APA, Harvard, Vancouver, ISO, and other styles
49

Milani, L., F. Porcù, D. Casella, S. Dietrich, G. Panegrossi, M. Petracca, and P. Sanò. "Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar." Cryosphere Discussions 9, no. 1 (January 8, 2015): 141–82. http://dx.doi.org/10.5194/tcd-9-141-2015.

Full text
Abstract:
Abstract. Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR) on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles) providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of instantaneous values. The derived snowfall maps are compared with ERA-Interim reanalysis and with in situ measurements, showing overall agreement. The effects of coastlines in enhancing precipitation rates and cloud precipitation efficiency are recognized. A significant seasonal signal also affects the averaged spatial extent of snowfall patterns. A comparison with snow accumulation ground measurements of single snowfall events shows consistency with the CPR retrievals: all the retrieved snowfall episodes correspond to an increase of snow accumulation at the ground, while several episodes of increase of snow stack height are not related to significant retrieved snowfall rate, likely indicating the local contribution of blowing snow. The results show that CPR can be a valuable source of snowfall rate data in Antarctica that can be used at different temporal scales, providing support to the sparse network of ground-based instruments both for numerical model validation and climatological studies.
APA, Harvard, Vancouver, ISO, and other styles
50

Strickland, Christopher, Nadiah P. Kristensen, and Laura Miller. "Inferring stratified parasitoid dispersal mechanisms and parameters from coarse data using mathematical and Bayesian methods." Journal of The Royal Society Interface 14, no. 130 (May 2017): 20170005. http://dx.doi.org/10.1098/rsif.2017.0005.

Full text
Abstract:
Biological invasions have movement at the core of their success. However, due to difficulties in collecting data, medium- and long-distance dispersal of small insects has long been poorly understood and likely to be underestimated. The agricultural release of parasitic hymenoptera, a group of wasps that are critical for biological pest control, represents a rare opportunity to study the spread of insects on multiple spatial scales. As these insects are typically less than 1 mm in size and are challenging to track individually, a first-time biocontrol release will provide a known spatial position and time of initial release for all individuals that are subsequently collected. In this paper, we develop and validate a new mathematical model for parasitoid wasp dispersal from point release, as in the case of biocontrol. The model is derived from underlying stochastic processes but is fully deterministic and admits an analytical solution. Using a Bayesian framework, we then fit the model to an Australian dataset describing the multi-scale wind-borne dispersal pattern of Eretmocerus hayati Zolnerowich & Rose (Hymenoptera: Aphelinidae). Our results confirm that both local movements and long-distance wind dispersal are significant to the movement of parasitoids. The model results also suggest that low velocity winds are the primary indicator of dispersal direction on the field scale shortly after release, and that average wind data may be insufficient to resolve long-distance movement given inherent nonlinearities and heterogeneities in atmospheric flows. The results highlight the importance of collecting wind data when developing models to predict the spread of parasitoids and other tiny organisms.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography