Academic literature on the topic 'Wind tunnel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wind tunnel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wind tunnel"
Andreas, Edgar L., and Larry Mahrt. "On the Prospects for Observing Spray-Mediated Air–Sea Transfer in Wind–Water Tunnels." Journal of the Atmospheric Sciences 73, no. 1 (December 21, 2015): 185–98. http://dx.doi.org/10.1175/jas-d-15-0083.1.
Full textTabatabaei, Narges, Ramis Örlü, Ricardo Vinuesa, and Philipp Schlatter. "Aerodynamic Free-Flight Conditions in Wind Tunnel Modelling through Reduced-Order Wall Inserts." Fluids 6, no. 8 (July 27, 2021): 265. http://dx.doi.org/10.3390/fluids6080265.
Full textLiu, Jie, Yimeng Wu, Zhanyou Sa, Bingke Wang, Haijun Wang, Hao Wang, and Shouqing Lu. "Study on the influence of cross-section shape on the characteristics of wind flow field in heavy-daty railway tunnel." E3S Web of Conferences 536 (2024): 01024. http://dx.doi.org/10.1051/e3sconf/202453601024.
Full textYao, Yahu. "Numerical Simulation Analysis of the Influence of Entrance Wind Speed on the Wind Speed Distribution of Coal Mine Tunnel Sections." Academic Journal of Science and Technology 7, no. 3 (October 29, 2023): 208–12. http://dx.doi.org/10.54097/ajst.v7i3.13399.
Full textHasan, Mohammed Munif, and Shabudin Mat. "Data Reduction Analysis on UTM-LST External Balance." International Journal for Research in Applied Science and Engineering Technology 10, no. 10 (October 31, 2022): 952–59. http://dx.doi.org/10.22214/ijraset.2022.47097.
Full textAllan, M. R., K. J. Badcock, G. N. Barakos, and B. E. Richards. "Wind-tunnel interference effects on a 70° delta wing." Aeronautical Journal 108, no. 1088 (October 2004): 505–13. http://dx.doi.org/10.1017/s0001924000000336.
Full textMa, Xiaojun, Yu Zhao, Xueying Wen, and Jiujiu Chen. "Accessibility Study of a Compact Wind Tunnel with an Unequal Spacing Grid for the Outdoor Wind Environment." Buildings 12, no. 12 (December 9, 2022): 2188. http://dx.doi.org/10.3390/buildings12122188.
Full textNISHIMURA, Hiroaki. "Wind Tunnel Experiment and Wind Tunnel Test." Wind Engineers, JAWE 39, no. 4 (2014): 333–34. http://dx.doi.org/10.5359/jawe.39.333.
Full textFlamand, Olivier, Philippe Delpech, Pierre Palier, and Jean-Paul Bouchet. "Benefit of Wind Tunnels with Large Test Sections for Wind Engineering Applications." Mathematical Modelling in Civil Engineering 15, no. 2 (June 1, 2019): 14–19. http://dx.doi.org/10.2478/mmce-2019-0005.
Full textZhang, Ying Chao, Wei Ding, Zhe Zhang, and Jie Li. "Comparison Research on Aerodynamic Drags and Pressure Coefficients of Reference Car Models in Automotive Wind Tunnel." Advanced Materials Research 989-994 (July 2014): 2834–38. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.2834.
Full textDissertations / Theses on the topic "Wind tunnel"
Premnath, S. M. Jason. "A tolerant axisymmetric wind tunnel." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28511.
Full textApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Mujica, Fernández Fernando R. (Fernando René). "Lattice gas wind tunnel." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13444.
Full textHickle, Curtis. "Wind Tunnel renovation, flow verification and flapping wing analysis." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FHickle.pdf.
Full textThesis Advisor(s):Dr. Kevin Jones and Dr. Garth Hobson. "June 2006." Includes bibliographical references (p.79-81). Also available in print.
Paul, Matthew G. "Wing Deflection Analysis of 3D Printed Wind Tunnel Models." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1751.
Full textDanis, Reed. "Investigating Forward Flight Multirotor Wind Tunnel Testing in a 3-by 4-foot Wind Tunnel." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1909.
Full textEngel, Mark A. "A wind tunnel investigation of a wing-tip trailing vortex." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-01102009-063459/.
Full textFitzgerald, Ryan Elizabeth. "Wind tunnel blockage corrections for propellers." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7363.
Full textThesis research directed by: Dept. of Aerospace Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Lubitz, William David. "Near real time wind energy forecasting incorporating wind tunnel modeling /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Full textConan, Boris. "Wind resource accessment in complex terrain by wind tunnel modelling." Phd thesis, Université d'Orléans, 2012. http://tel.archives-ouvertes.fr/tel-00843645.
Full textOliveira, Henrique Balona de Sá. "Wind erosion of biochar-amended soil: a wind tunnel experiment." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14312.
Full textBiochar application to soils has been reported in the scientific community as a possible means of improving agricultural productivity and, at the same time, as a powerful tool for carbon sequestration and climate change mitigation. However, current knowledge of biochar effects on soil functions and possible environmental threats is still not enough for a full-scale implementation. Erosion is one of the most serious and irreversible threats to soil and there is still no information if biochar may increase or decrease soil erosion rates. Soil erosion by wind is of particular interest for biochar, because of the low particle density and potential human exposure. The purpose of this study was to fill this knowledge gap by investigating the wind erosion potential of biochar-amended soil with a focus on the effect of soil moisture content, using a laboratory wind tunnel. Firstly, experimental tests were implemented in the DAO wind tunnel to define a robust wind erosion methodology in a facility only used for smoke studies. Sediment collecting methods, dust fraction analysis and wind velocity range were the main factors that required investigation. The erosion of biochar-amended soil (10% m m-1) and control soil (sandy soil) was simulated by positioning a tray divided in a sample area and an area for creeping particles, inside the test section of the wind tunnel. To determine the effect of soil moisture content on the erosion potential, four moisture contents were used: 0.2%, 1.7%, 4% and 8% (gravimetric). The wind tunnel simulations were performed with the duration of 15 minutes at a wind velocity of 7 m s-1. The samples of collected sediment were oven-dried and weighed to give the sediment loss as consequence of the erosion event. Results on the erosion simulations for control and biochar-amended soil with the wind flow velocity of 7 m s-1 (small erosion event) indicated that only biochar particles were displaced. Erosion of biochar-amended soil was similar for 0.2%, 1.7% and 4.0% and despite a sediment loss reduction of 50% from 4% MC to the higher MC, 8%, this latter was not identified as the threshold MC for the moment when erosion ceases to exist. As for mineral particles, after 4% MC there was no sediment collected indicating this MC as the threshold, even though a reduced mass of particles eroded for the smaller MCs. Further future tests are needed to build a more comprehensive understanding of wind erosion of biochar-amended soils. Relevant factors to include are: higher wind velocities representative of medium and high erosion events, as well as higher MCs to identify when erosion of biochar particles will stop completely. Secondly, based on the results found in the present study, other soil types and biochar types warrant further investigation. Studies like this contribute for the understanding of the effects of biochar application to soil functions, as well as the behaviour and fate of this material, which are indispensable for the development of adequate biochar regulations and policies.
A aplicação de biochar no solo tem sido referida na comunidade científica como um possível meio para melhorar a produtividade agrícola e, ao mesmo tempo, como um instrumento para sequestro de carbono e mitigação de alterações climáticas. Contudo, o conhecimento actual sobre os efeitos do biochar nas funções do solo e possíveis ameaças ambientais não é, ainda, suficiente para uma implementação em larga escala. A erosão é uma das mais sérias e irreversíveis ameaças ao solo e não existe, ainda, informação se o biochar pode aumentar ou reduzir os níveis de erosão. A erosão do solo pelo vento é de particular interesse para o biochar, devido à reduzida densidade das partículas e à potencial exposição humana. O objectivo deste trabalho foi preencher esta falha ao investigar o potencial de erosão do solo melhorado com biochar com enfoque no efeito do teor de humidade, usando um túnel de vento. Primeiramente, testes experimentais foram implementados no túnel de vento do DAO para definir uma metodologia robusta de erosão eólica numa estrutura, até então, apenas usada para estudos de dispersão de poluentes. A colecta do sedimento, análise de fracção de poeiras e a gama de velocidades foram os factores principais que necessitaram de investigação. A erosão de solo com biochar (10% m m-1) e de solo de controle (solo arenoso) foi simulada posicionando um tabuleiro dividido em área de amostra e área para partículas de rolamento, dentro da secção de teste do túnel de vento. Para determinar o efeito do teor de humidade do solo no potencial de erosão, quatro teores de humidade foram usados: 0.2%, 1.7%, 4% and 8% (gravimétricos). As simulações no túnel de vento foram realizadas com a duração de 15 minutos a uma velocidade do vento de 7 m s-1. As amostras de sedimento colectado foram secas e pesadas para fornecerem a perda de sedimento como consequência do evento de erosão. Os resultados das simulações de erosão para o controle e o solo melhorado com biochar, com a velocidade de 7 m s-1 (reduzido evento de erosão) indicaram que apenas partículas de biochar foram movidas. Erosão de solo com biochar foi semelhante para 0.2%, 1.7% and 4.0% e, apesar da redução da perda de sedimento em 50% do teor de 4% para para o teor mais alto, 8%, este último não foi identificado como sendo o limiar para o momento em que a erosão deixa de existir. Relativamente às partículas minerais, após o teor de 4% não houve sedimento colectado indicando este teor de humidade como o limiar, ainda que uma massa reduzida de partículas tenha sofrido erosão para teores mais reduzidos. Testes futuros são necessários para gerar um melhor conhecimento acerca de erosão de solo com biochar pelo vento. Factores relevantes a incluir são: maiores velocidades do vento, representativas de eventos de erosão médios e elevados, tal como maiores teores de humidade para identificar quando a erosão de partículas de biochar pára por completo. Em segundo lugar, com base nos resultados observados neste estudo, outro tipos de solo e biochar impõe mais investigação.Estudos como este contribuem para perceber os efeitos da aplicação de biochar nos solos, bem como o comportamento e destino deste material, que são indispensáveis para o desenvolvimento de regulamentos e políticas adequadas sobre biochar.
Books on the topic "Wind tunnel"
Ajay, Kumar, Kegelman Jerome T, and United States. National Aeronautics and Space Administration., eds. The Langley wind tunnel enterprise. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textAjay, Kumar, Kegelman Jerome T, and United States. National Aeronautics and Space Administration., eds. The Langley wind tunnel enterprise. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Quality assessment for wind tunnel testing. Neuilly-sur-Seine, France: AGARD, 1994.
Find full textNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Quality assessment for wind tunnel testing. Neuilly-sur-Seine: AGARD, 1994.
Find full textHufnagel, Klaus. Wind Tunnel Balances. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97766-5.
Full textEverhart, Joel L. Slotted-wall flow-field measurements in a transonic wind tunnel. Hampton, Va: Langley Research Center, 1991.
Find full textB, Igoe William, Flechner Stuart G, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program, eds. Slotted-wall flow-field measurements in a transonic wind tunnel. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Find full textB, Igoe William, Flechner Stuart G, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Slotted-wall flow-field measurements in a transonic wind tunnel. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Find full textE, Mineck Raymond, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Adaptive wind tunnel walls: A selected, annotated bibliograpy. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Find full textA, Kilgore Robert, Moore Deborah L, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Cryogenic wind tunnels: A comprehensive, annotated bibliography. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
Find full textBook chapters on the topic "Wind tunnel"
Fujino, Yozo, Kichiro Kimura, and Hiroshi Tanaka. "Wind Tunnel Tests." In Wind Resistant Design of Bridges in Japan, 89–118. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54046-5_6.
Full textSchatzmann, Michael, Stylianos Rafailidis, and Nijs Jan Duijm. "Wind Tunnel Experiments." In Urban Air Pollution — European Aspects, 261–76. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9080-8_14.
Full textGao, Lei. "Wind Tunnel Test." In Encyclopedia of Ocean Engineering, 1–4. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6963-5_265-1.
Full textGao, Lei. "Wind Tunnel Test." In Encyclopedia of Ocean Engineering, 2169–72. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6946-8_265.
Full textBruno, Roberto, and Vincenzo Carbone. "A Natural Wind Tunnel." In Turbulence in the Solar Wind, 169–93. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43440-7_6.
Full textMatthews, R. K. "Hypersonic Wind Tunnel Testing." In Advances in Hypersonics, 72–108. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0379-7_3.
Full textFischer, Oliver. "Wind Tunnel Interference Effects." In Investigation of Correction Methods for Interference Effects in Open-Jet Wind Tunnels, 19–24. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21379-4_3.
Full textZasso, Alberto, Alessandro Fontanella, and Marco Belloli. "3D Wind Tunnel Experiments." In Handbook of Wind Energy Aerodynamics, 687–703. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-31307-4_31.
Full textBoorsma, Koen. "Wind Tunnel Rotor Measurements." In Handbook of Wind Energy Aerodynamics, 659–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-31307-4_30.
Full textBoorsma, Koen. "Wind Tunnel Rotor Measurements." In Handbook of Wind Energy Aerodynamics, 1–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-05455-7_30-2.
Full textConference papers on the topic "Wind tunnel"
Gungor, Osman, Muhammed Kilic, Ayberk Caglar, and Ahmet Ezertas. "Wind Tunnel Testing of Heavy Class Attack Helicopter in a Pressurized Wind Tunnel." In Vertical Flight Society 80th Annual Forum & Technology Display, 1–14. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1344.
Full textScott, Robert C., Timothy Allen, Mark Castelluccio, Bradley Sexton, Scott Claggett, John R. Dykman, Christie Funk, David Coulson, and Robert E. Bartels. "Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model." In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1172.
Full textMartin, Christopher A., Larry Jasmin, John S. Flanagan, Kari Appa, and Jayanth N. Kudva. "Smart wing wind tunnel model design." In Smart Structures and Materials '97, edited by Janet M. Sater. SPIE, 1997. http://dx.doi.org/10.1117/12.274675.
Full textScherer, Lewis B., Christopher A. Martin, Kari Appa, Jayanth N. Kudva, and Mark N. West. "Smart wing wind tunnel test results." In Smart Structures and Materials '97, edited by Janet M. Sater. SPIE, 1997. http://dx.doi.org/10.1117/12.274694.
Full textAlves, Leonardo Boa Sorte, Marco Gabaldo, Luiz Severiano Dutra, and Jose Eduardo Mautone Barros. "Wind Tunnel Balance." In 26th SAE BRASIL Inernational Congress and Display. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-36-0237.
Full textDekterev, Ar A., A. A. Dekterev, and D. A. Dekterev. "PIXEL WIND TUNNEL." In XXXVIII Сибирский теплофизический семинар, посвященный 65-летию Института теплофизики им. С.С.Кутателадзе СО РАН. Новосибирск: Сибирское отделение РАН, 2022. http://dx.doi.org/10.53954/9785604859551_73.
Full text"Wind Tunnel Methods." In SP-240: Performance-Based Design of Concrete Building for Wind Loads. American Concrete Institute, 2006. http://dx.doi.org/10.14359/18294.
Full textBurdett, Timothy A., and Kenneth W. Van Treuren. "Scaling Small-Scale Wind Turbines for Wind Tunnel Testing." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68359.
Full textMarks, Christopher R., Lauren Zientarski, Adam J. Culler, Benjamin Hagen, Brian M. Smyers, and James J. Joo. "Variable Camber Compliant Wing - Wind Tunnel Testing." In 23rd AIAA/AHS Adaptive Structures Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1051.
Full textOzkan, Ender, Emanuele Mattiello, Francesco Dorigatti, Zachary Taylor, Erik Marble, Mark Istvan, Yildiray Yildizhan, and Onur Kantar. "Sazlidere Bridge Wind Tunnel Testing Assisted Design." In IABSE Symposium, Istanbul 2023: Long Span Bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/istanbul.2023.0936.
Full textReports on the topic "Wind tunnel"
Slone, Scott, Marissa Torres, Alexander Stott, Ethan Thomas, and Robert Ibey. CRREL Environmental Wind Tunnel upgrades and the Snowstorm Library. Engineer Research and Development Center (U.S.), January 2024. http://dx.doi.org/10.21079/11681/48077.
Full textMiles, Richard B., and Garry L. Brown. Radiatively Driven Hypersonic Wind Tunnel. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada403037.
Full textMayda, Edward A., C. P. van Dam, David D. Chao, and Dale E. Berg. Flatback airfoil wind tunnel experiment. Office of Scientific and Technical Information (OSTI), April 2008. http://dx.doi.org/10.2172/933221.
Full textAlexander, Michael G. Subsonic Wind Tunnel Testing Handbook. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada240263.
Full textGrossir, Guillaume. On the design of quiet hypersonic wind tunnels. Von Karman Institute for Fluid Dynamics, December 2020. http://dx.doi.org/10.35294/tm57.
Full textManiet, Edward R., and Jr. Wind Tunnel Measurements of Windscreen Performance. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada409180.
Full textWillard, Richard S., and Stan K. Kranzler. Improved Wind Tunnel Data Reduction Procedure. Fort Belvoir, VA: Defense Technical Information Center, December 1996. http://dx.doi.org/10.21236/ada345019.
Full textHeim, E. R. CFD Wing/Pylon/Finned Store Mutual Interference Wind Tunnel Experiment. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/adb152669.
Full textArunajatesan, Srinivasan, and Katya Casper. Trisonic Wind Tunnel (TWT )Complex Cavity Geometry. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1177759.
Full textTorres, Marissa, Alexander Stott, Sandra LeGrand, and Marina Reilly-Collette. CRREL Environmental Wind Tunnel : characteristics and capabilities. Engineer Research and Development Center (U.S.), May 2019. http://dx.doi.org/10.21079/11681/32733.
Full text