Academic literature on the topic 'Wind energy conversion systems – Canada'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wind energy conversion systems – Canada.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wind energy conversion systems – Canada"

1

Papadopoulos, M. "Book Review: Wind Energy Conversion Systems." International Journal of Electrical Engineering & Education 29, no. 3 (July 1992): 264. http://dx.doi.org/10.1177/002072099202900309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yates, D. A. "Book Review: Wind Energy Conversion Systems." International Journal of Mechanical Engineering Education 22, no. 1 (January 1994): 76–77. http://dx.doi.org/10.1177/030641909402200112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wagner, Hermann-Josef. "Introduction to wind energy systems(*)." EPJ Web of Conferences 246 (2020): 00004. http://dx.doi.org/10.1051/epjconf/202024600004.

Full text
Abstract:
This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.
APA, Harvard, Vancouver, ISO, and other styles
4

Wagner, Hermann-Josef. "Introduction to wind energy systems." EPJ Web of Conferences 189 (2018): 00005. http://dx.doi.org/10.1051/epjconf/201818900005.

Full text
Abstract:
This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into the rotation of a turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of the various parts and component of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.
APA, Harvard, Vancouver, ISO, and other styles
5

Alhmoud, Lina, and Hussein Al-Zoubi. "IoT Applications in Wind Energy Conversion Systems." Open Engineering 9, no. 1 (November 2, 2019): 490–99. http://dx.doi.org/10.1515/eng-2019-0061.

Full text
Abstract:
AbstractRenewable energy reliability has been the main agenda nowadays, where the internet of things (IoT) is a crucial research direction with a lot of opportunities for improvement and challenging work. Data obtained from IoT is converted into actionable information to improve wind turbine performance, driving wind energy cost down and reducing risk. However, the implementation in IoT is a challenging task because the wind turbine system level and component level need real-time control. So, this paper is dedicated to investigating wind resource assessment and lifetime estimation of wind power modules using IoT. To illustrate this issue, a model is built with sub-models of an aerodynamic rotor connected directly to a multi-pole variable speed permanent magnet synchronous generator (PMSG) with variable speed control, pitch angle control and full-scale converter connected to the grid. Besides, a large number of various sensors for measurement of wind parameters are integrated with IoT. Simulations are constructed with Matlab/Simulink and IoT ’Thingspeak’ Mathworks web service. IoT has proved to increase the reliability of measurement strategies, monitoring accuracy, and quality assurance.
APA, Harvard, Vancouver, ISO, and other styles
6

Freitas, Walmir, Ahmed Faheem Zobaa, Jose C. M. Vieira, and James S. McConnach. "Issues related to wind energy conversion systems." International Journal of Energy Technology and Policy 3, no. 4 (2005): 313. http://dx.doi.org/10.1504/ijetp.2005.008397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Ying Hua. "Grid Integration of Wind Energy Conversion Systems." Renewable Energy 21, no. 3-4 (November 2000): 607–8. http://dx.doi.org/10.1016/s0960-1481(00)00042-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Zhe. "Special Issue on “Wind Energy Conversion Systems”." Applied Sciences 9, no. 16 (August 9, 2019): 3258. http://dx.doi.org/10.3390/app9163258.

Full text
Abstract:
A single paragraph of about 200 words maximum. For research articles, abstracts should give a pertinent overview of the work. We strongly encourage authors to use the following style of structured abstracts, but without headings: (1) Background: place the question addressed in a broad context and highlight the purpose of the study; (2) Methods: describe briefly the main methods or treatments applied; (3) Results: summarize the article’s main findings; and (4) Conclusions: indicate the main conclusions or interpretations. The abstract should be an objective representation of the article; it must not contain results that are not presented and substantiated in the main text and should not exaggerate the main conclusions.
APA, Harvard, Vancouver, ISO, and other styles
9

Xie, Kaigui, and Roy Billinton. "Energy and reliability benefits of wind energy conversion systems." Renewable Energy 36, no. 7 (July 2011): 1983–88. http://dx.doi.org/10.1016/j.renene.2010.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perera, Sinhara M. H. D., Ghanim Putrus, Michael Conlon, Mahinsasa Narayana, and Keith Sunderland. "Wind Energy Harvesting and Conversion Systems: A Technical Review." Energies 15, no. 24 (December 8, 2022): 9299. http://dx.doi.org/10.3390/en15249299.

Full text
Abstract:
Wind energy harvesting for electricity generation has a significant role in overcoming the challenges involved with climate change and the energy resource implications involved with population growth and political unrest. Indeed, there has been significant growth in wind energy capacity worldwide with turbine capacity growing significantly over the last two decades. This confidence is echoed in the wind power market and global wind energy statistics. However, wind energy capture and utilisation has always been challenging. Appreciation of the wind as a resource makes for difficulties in modelling and the sensitivities of how the wind resource maps to energy production results in an energy harvesting opportunity. An opportunity that is dependent on different system parameters, namely the wind as a resource, technology and system synergies in realizing an optimal wind energy harvest. This paper presents a thorough review of the state of the art concerning the realization of optimal wind energy harvesting and utilisation. The wind energy resource and, more specifically, the influence of wind speed and wind energy resource forecasting are considered in conjunction with technological considerations and how system optimization can realise more effective operational efficiencies. Moreover, non-technological issues affecting wind energy harvesting are also considered. These include standards and regulatory implications with higher levels of grid integration and higher system non-synchronous penetration (SNSP). The review concludes that hybrid forecasting techniques enable a more accurate and predictable resource appreciation and that a hybrid power system that employs a multi-objective optimization approach is most suitable in achieving an optimal configuration for maximum energy harvesting.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Wind energy conversion systems – Canada"

1

Buehrle, Bridget Erin. "Modeling of Small-Scale Wind Energy Conversion Systems." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/50920.

Full text
Abstract:
As wind turbines are increasingly being adopted for meeting growing energy needs, their implementation for personal home use in the near future is imminent. There are very few studies conducted on small-scale turbines in the one to two meter diameter range because the power generated at this scale is currently not sufficient to justify the cost of installation and maintenance. The problem is further complicated by the fact that these turbines are normally mounted at low altitudes and thus there is necessity to have the optimum operating regime in the wind speed range of 3-10 mph (1.34 -- 4.47 m/s). This thesis discusses two methods for increasing the efficiency of horizontal axis small-scale wind energy conversion systems, 1) adding a diffuser to increase the wind speed at the rotor and 2) designing tubercles to enhance the flow characteristics over blades. Further, it was identified during the course of thesis that for simple installation and maintenance in the residential areas vertical axis turbines are advantageous. Thus, the second chapter of this thesis addresses the design of vertical axis turbines with power generation capability suitable for that of a typical US household.
    The study of the diffuser augmented wind turbine provides optimum dimensions for achieving high power density that can address the challenges associated with small scale wind energy systems; these challenges are to achieve a lower start-up speed and low wind speed operation. The diffuser design was modeled using commercial computational fluid dynamics code. Two-dimensional modeling using actuator disk theory was used to optimize the diffuser design. A statistical study was then conducted to reduce the computational time by selecting a descriptive set of models to simulate and characterize relevant parameters\' effects instead of checking all the possible combinations of input parameters. Individual dimensions were incorporated into JMP® software and randomized to design the experiment. The results of the JMP® analysis are discussed in this paper. Consistent with the literature, a long outlet section with length one to three times the diameter coupled with a sharp angled inlet was found to provide the highest amplification for a wind turbine diffuser.
    The second study consisted of analyzing the capabilities of a small-scale vertical axis wind turbine. The turbine consisted of six blades of extruded aluminum NACA 0018 airfoils of 0.08732 m (3.44 in) in chord length. Small-scale wind turbines often operate at Reynolds numbers less than 200,000, and issues in modeling their flow characteristics are discussed throughout this thesis. After finding an appropriate modeling technique, it was found that the vertical axis wind turbine requires more accurate turbulence models to appropriately discover its performance capabilities.
    The use of tubercles on aerodynamic blades has been found to delay stall angle and increase the aerodynamic efficiency. Models of 440 mm (17.33 in) blades with and without tubercles were fabricated in Virginia Tech\'s Center for Energy Harvesting Materials and Systems (CEHMS) laboratory. Comparative analysis using three dimensional models of the blades with and without the tubercles will be required to determine whether the tubercle technology does, in fact, delays the stall. Further computational and experimental testing is necessary, but preliminary results indicate a 2% increase in power coefficient when tubercles are present on the blades.

Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Trilla, Romero Lluís. "Power converter optimal control for wind energy conversion systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134602.

Full text
Abstract:
L'energia eòlica ha incrementat la seva presència a molts països i s'espera que tingui encara un pes més gran en la generació elèctrica amb la implantació de la tecnologia eòlica marina. En aquest context el desenvolupament de models dels Sistemes de Generació per Turbina de Vent (SGTV) precisos és important pels operadors de xarxa per tal d'avaluar-ne el comportament. Els codis de xarxa ofereixen un seguit de normes per validar models amb dades obtingudes de proves de camp. A la primera part d'aquesta tesi un model de SGTV amb màquina d'inducció doblement alimentada (DFIG) és validat d'acord amb les normatives espanyola i alemanya. Avui dia molts parc eòlics utilitzen DFIG i, en conseqüència, les dades de camp disponibles son per aquesta tecnologia. Per a la indústria eòlica marina un avanç prometedor son els SGTV amb generadors síncrons d'imants permanents (PMSG). Per aquesta raó la segona part d'aquesta tesi es centra en SGTV basats en PMSG amb convertidor back-to-back de plena potència. Aquest convertidor es pot dividir en dues parts: el costat de xarxa (GSC) que interactua amb la xarxa elèctrica i el costat de màquina (MSC) que controla el generador. En general, el sistema de control del convertidor recau en els tradicionals controladors PI i, en ocasions, incorpora desacoblaments per reduir les influencies creuades entre les variables. Aquest controlador pot ser sintonitzat i implementat fàcilment donat que la seva estructura és simple, però, no presenta una resposta ideal donat que no aprofita tots els graus de llibertat disponibles en el sistema. És important desenvolupar controladors fiables que puguin oferir una resposta previsible del sistema i proveir robustesa i estabilitat. En especial per zones on la presència eòlica és gran i per parcs eòlics connectats a xarxes dèbils. En aquest treball es proposa un sistema de control pel convertidor basat en teoria de control H-infinit i en controladors Lineals amb Paràmetres Variants (LPV). La teoria de control òptim proveeix un marc de treball on més opcions es poden tenir en consideració a l'hora de dissenyar el controlador. En concret la teoria de control H-inifinit permet crear controladors multivariables per tal d'obtenir una òptima resposta del sistema, proveir certa robustesa i assegurar l'estabilitat. Amb aquesta tècnica durant la síntesi del controlador el pitjor cas de senyals de pertorbació és contemplat, d'aquesta manera el controlador resultant robustifica l'operació del sistema. Es proposa aquest control per al GSC posant especial èmfasi en obtenir un control de baixa complexitat que mantingui els beneficis d'aplicar la teoria de control òptim i faciliti la seva implementació en computadors industrials. Pel MSC es proposa una estratègia diferent basada en control LPV donat que el punt d'operació del generador canvia constantment. El sistema de control basat en LPV és capaç d'adaptar-se dinàmicament al punt d'operació del sistema, així s'obté en tot moment la resposta definida durant el procés de disseny. Amb aquesta tècnica l'estabilitat del sistema sobre tot el rang d'operació queda garantida i, a més, s'obté una resposta predictible i uniforme. El controlador està dissenyat per tenir una estructura simple, com a resultat s'obté un control que no és computacionalment exigent i es proveeix una solució que pot ser utilitzada amb equips industrials. S'utilitza una bancada de proves que inclou el PMSG i el convertidor back-to-back per tal d'avaluar experimentalment l'estratègia de control dissenyada al llarg d'aquest treball. L'enfoc orientat a la implementació dels controls proposats facilita el seu ús amb el processador de senyals digitals inclòs a la placa de control de la bancada. Els experiments realitzats verifiquen en un ambient realista els beneficis teòrics i els resultats de simulació obtinguts prèviament. Aquestes proves han ajudat a valorar el funcionament dels controls en un sistema discret i la seva tolerància al soroll de senyals i mesures
Wind energy has increased its presence in many countries and it is expected to have even a higher weight in the electrical generation share with the implantation of offshore wind farms. Consequently, the wind energy industry has to take greater responsibility towards the integration and stability of the power grid. In this sense, there are proposed in the present work control systems that aim to improve the response and robustness of the wind energy conversion systems without increasing their complexity in order to facilitate their applicability. In the grid-side converter it is proposed to implement an optimal controller with its design based on H-infinity control theory in order to ensure the stability, obtain an optimal response of the system and also provide robustness. In the machine-side converter the use of a Linear Parameter-Varying controller is selected, this choice provides a controller that dynamically adapts itself to the operating point of the system, in this way the response obtained is always the desired one, the one defined during the design process. Preliminary analysis of the controllers are performed using models validated with field test data obtained from operational wind turbines, the validation process followed the set of rules included in the official regulations of the electric sector or grid codes. In the last stage an experimental test bench has been developed in order to test and evaluate the proposed controllers and verify its correct performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Mendonca, Jose Manuel de Araujo Baptista. "Microcomputer on-line control of wind energy conversion systems." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Feng. "Modelling and control of wind and wave energy conversion systems." Thesis, University of Birmingham, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525483.

Full text
Abstract:
The modelling and control of wind and wave energy conversion systems is carried out in this thesis. The thesis comprises two parts. The first part is focused on the modelling and control of wind conversion system while the second part is on the modelling and control of wave energy conversion system (WEe). In the first part, the small signal stability of the \\lind turbine (\VT) with doubly fed induction generator (DFIG) and the WT with direct-drive permanent magnet generator (DDPMG) an: analysed using detailed models. A parameter tuning algorithm and a nonlinear controller are proposed, respectively, to improve dynamic performance of WT with DFIG. The impacts of WT with DFIG, WT with DDPMG and WT the induction generator (lG) on power system transient stability are compared. In the second part, a new coordinate transformation is proposed for the model of Archimedes wave swing (A WS) based WEe system, the transformed model is compatible with the power system dynamic analysis. The controllers for A WS based WEe are designed so as to extract maximum power from the wave, output constant power and maintain the terminal voltage. The application of battery energy storage in smoothing the output power of WEe system is studied.
APA, Harvard, Vancouver, ISO, and other styles
5

MacRae, Angus Neil. "Economic and cost engineering aspects of wind energy conversion systems." Thesis, Robert Gordon University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Macmillan, Susan. "An appraisal of wind energy conversion systems for agricultural enterprises." Thesis, Robert Gordon University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zoric, I. "Multiple three-phase induction generators for wind energy conversion systems." Thesis, Liverpool John Moores University, 2018. http://researchonline.ljmu.ac.uk/8387/.

Full text
Abstract:
During the past decade, there has been a considerable increase in the number of published works on multiphase machines and drives. This increased interest has been largely driven by a need for the so-called green energy, i.e. energy generated from renewable sources such as wind, and also an increased emphasis on greener means for transportation. Some of the advantages multiphase machines offer over three-phase counterparts are better fault tolerance, smaller current and power per phase, and higher frequency torque ripple. This thesis examines use of a multiphase induction generator in wind energy conversion systems (WECS). In particular, multiphase generators that comprise multiple 3-phase winding sets, where each winding set is supplied using an independent 3-phase voltage source inverter (VSI), are studied. It is claimed that these topologies offer advantages in cases where a WECS is connected to a multitude of independent ac or dc microgrids, systems where a single high-voltage dc link is needed or where a simple fault tolerance is achieved when a complete winding set is switched off. All of these examples require an arbitrary power or current sharing between winding sets. In order to achieve arbitrary current and power sharing, the control can be implemented using multi stator (MS) variables, so that the flux and torque producing currents of each winding set can be arbitrarily set. As an alternative, this thesis uses vector space decomposition (VSD) to implement the control, while individual winding set flux/torque producing currents are governed by finding the relationships between MS and VSD variables. This approach has all the advantages of both MS and VSD, i.e. access to individual winding set variables of MS and the ability to implement control in the multiple decoupled two dimensional subspaces of VSD, while heavy cross coupling between winding set variables, a weakness of MS, is avoided. Since the goal of the thesis is to present use of multiphase machines in WECS, modelling and simulation of a simple multiphase WECS in back-to-back configuration has been performed at first. All systems relevant to machine control where considered, such as grid and machine side VSIs, grid filter, indirect rotor field oriented control, current control in both flux/torque producing and non-producing subspaces, low order harmonic elimination, maximum power point tracking control, and voltage oriented control of the grid side VSI. Moreover, various WECS supply topologies were considered where developed current and power sharing would be a necessary requirement. Development of the proposed current sharing control commences with an analysis of multiple 3-phase machine modelling in terms of both MS and VSD variables. Since the actual control is implemented using decoupled VSD variables, VSD modelling has been studied in detail, resulting in an algorithm for creation of the VSD matrix applicable to any symmetrical or asymmetrical multiphase machine with single or multiple neutral points. Developed algorithm always decouples the machine into orthogonal two-dimensional subspaces and zero sequence components while making sure that all odd-order harmonics are uniquely mapped. Harmonic mapping analysis is offered as well. Next, relationship between MS and VSD variables has been developed by mapping MS variables into VSD subspaces. Since VSD matrix creation algorithm is valid for any multiphase machine, relationship between MS and VSD variables is applicable to any multiple 3-phase machine regardless of the configuration (symmetrical/asymmetrical), number of neutral points or machine type (synchronous or induction). Established relationship between MS and VSD has been used to implement current sharing control in decoupled VSD subspaces of the machine. It is shown that in order to achieve arbitrary current sharing it is only necessary to impose currents in flux/torque non-producing subspaces. Hence, total machine’s flux and torque are not affected at all. Besides verification by Matlab simulations, two topologies are experimentally investigated, a parallel machine side converter configuration and the case when a single high voltage dc link is created by cascading dc-links of the machine side VSIs. In the first case the ability of arbitrary current sharing between winding sets is validated, while the second tested topology demonstrates use of the developed control for the purpose of voltage balancing of the cascaded dc links.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Wenyan Kusiak Andrew. "Predictive engineering in wind energy a data-mining approach /." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diaz, Matias. "Control of the modular multilevel matrix converter for wind energy conversion systems." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/47157/.

Full text
Abstract:
The nominal power of single Wind Energy Conversion Systems has been steadily growing, reaching power ratings close to 10 MW. In the power conversion stage, medium-voltage power converters are replacing the conventional low-voltage back-to-back topology. Modular Multilevel Converters have appeared as a promising solution for Multi-MW WECSs due to their characteristics such as modularity, reliability and the capability to reach high nominal voltages. Thereby, this thesis discusses the application of the Modular Multilevel Matrix Converter to drive Multi-MW Wind Energy Conversion Systems (WECSs). The modelling and control systems required for this application are extensively analysed and discussed in this document. The proposed control strategies enable decoupled operation of the converter, providing maximum power point tracking capability at the generator-side, grid-code compliance and Low Voltage Ride Through Control at the grid-side and good steady-state and dynamic performance for balancing the capacitor voltages of the converter. The effectiveness of the proposed control strategies is validated through simulations and experimental results. Simulation results are obtained with a 10MW, 6.6 kV Modular Multilevel Matrix Converter based WECS model developed in PLECS software. Additionally, a 5 kVA downscale prototype has been designed and constructed during this Ph.D. The downscale prototype is composed of 27 H-Bridges power cells. The system is controlled using a Digital Signal Processor connected to three Field Programmable Gate Array which are equipped with 50 analogue-digital channels and 108 gate drive signals. Two programmable AMETEK power supplies emulate the electrical grid and the generator. The wind turbine dynamics is programmed in the generator-side power supply to emulate a generator operating in variable speed/voltage mode. The output port of the Modular Multilevel Matrix Converter is connected to another power source which can generate programmable grid sag-swell conditions. Simulation and experimental results for variable-speed operation, grid-code compliance, and capacitor voltage regulation have confirmed the successful operation of the Modular Multilevel Matrix Converter based WECSs. In all the experiments, the proposed control systems ensure proper capacitor voltage balancing, keeping the flying capacitor voltages bounded and with low ripple. Additionally, the performance of the generator-side and grid-side control system have been validated for Maximum Power Point Tracking and Low-Voltage Ride Through, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Díaz, Díaz Matías David. "Control of the modular multilevel Matrix converter for wind energy conversion systems." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/147484.

Full text
Abstract:
Doctor en Ingeniería Eléctrica. Doctor of Philosophy in Electrical and Electronic Engineering
La potencia nominal de los Sistemas de Conversión de Energía Eólica se ha incrementado constantemente alcanzando niveles de potencia cercanos a los 10 MW. Por tanto, convertidores de potencia de media tensión están reemplazando a los convertidores Back-to-Back de baja tensión habitualmente empleados en la etapa de conversión de energía. Convertidores Modulares Multinivel se han posicionado como una solución atractiva para Sistemas de Conversión de Energía Eólica de alta potencia debido a sus buenas prestaciones. Algunas de estas prestaciones son la capacidad de alcanzar altos voltajes, modularidad y confiabilidad. En este contexto, esta tesis discute la aplicación del Convertidor Modular Matricial Multinivel para conectar Sistemas de Conversión de Energía Eólica de alta potencia. Los modelos matemáticos y estrategias de control requeridas para esta aplicación son descritos y discutidos en este documento. Las estrategias de control propuestas habilitan una operación desacoplada del convertidor, proporcionando seguimiento del máximo punto de potencia en el lado del generador eléctrico del sistema eólico, cumplimiento de normas de conexión en el lado de la red eléctrica y regulación de los condensadores flotantes del convertidor. La efectividad de las estrategias de control propuestas es validada a través de simulaciones y experimentos realizados con un prototipo de laboratorio. Las simulaciones se realizan con un Sistemas de Conversión de Energía Eólica de 10 MW operando a 6.6 kV. Dicho sistema se implementa en el software PLECS. Por otro, se ha desarrollado un prototipo de laboratorio de 6kVA durante el desarrollo de este proyecto. El prototipo de laboratorio considera un Convertidor Modular Matricial Multinivel de 27 módulos Puente-H . El sistema es controlado empleando una plataforma de control basada en una Digital Signal Processor conectada a tres tarjetas del tipo Field Programmable Gate Array que proveen de 50 mediciones análogo-digital y 108 señales de disparo. La entrada del convertidor es conectada a una fuente programable marca Ametek que emula el comportamiento de la turbina eólica. A su vez, la salida del convertidor es conectada a otra fuente programable con capacidad de producir fallas en la tensión. Los resultados obtenidos, tanto en el prototipo experimental como en simulación, confirman la operación exitosa del Convertidor Modular Matricial Multinivel en aplicaciones eólicas de alta potencia. En todos los casos, las estrategias de control propuestas aseguran regulación de la tensión en los condensadores flotantes, seguimiento del máximo punto de potencia en el lado del generador eléctrico del sistema eólico y cumplimiento de normas de conexión en el lado de la red eléctrica.
The nominal power of single Wind Energy Conversion Systems has been steadily growing, reaching power ratings close to 10MW. In the power conversion stage, medium-voltage power converters are replacing the conventional low-voltage back-to-back topology. Modular Multilevel Converters have appeared as a promising solution for Multi-MW WECSs due to their characteristics such as modularity, reliability and the capability to reach high nominal voltages. Thereby, this thesis discusses the application of the Modular Multilevel Matrix Converter (\mc) to drive Multi-MW Wind Energy Conversion Systems (WECSs). The modelling and control systems required for this application are extensively analysed and discussed in this document. The proposed control strategies enable decoupled operation of the converter, providing maximum power point tracking capability at the generator-side, grid-code compliance and Low Voltage Ride Through Control at the grid-side and good steady state and dynamic performance for balancing the capacitor voltages of the converter.\\ The effectiveness of the proposed control strategies is validated through simulations and experimental results. Simulation results are obtained with a 10MW, 6.6 kVM3C based WECS model developed in PLECS software. Additionally, a 5 kVA downscale prototype has been designed and constructed during this Ph.D. The downscale prototype is composed of 27 H-Bridges power cells. The system is controlled using a Digital Signal Processor connected to three Field Programmable Gate Array which are equipped with 50 analogue-digital channels and 108 gate drive signals. Two programmable AMETEK power supplies emulate the electrical grid and the generator. The wind turbine dynamics is programmed in the generator-side power supply to emulate a generator operating in variable speed/voltage mode. The output port of the M3C is connected to another power source which can generate programmable grid sag-swell conditions. Simulation and experimental results for variable-speed operation, grid-code compliance, and capacitor voltage regulation have confirmed the successful operation of the \mc{} based WECSs. In all the experiments, the proposed control systems ensure proper capacitor voltage balancing, keeping the flying capacitor voltages bounded and with low ripple. Additionally, the performance of the generator-side and grid-side control system have been validated for Maximum Power Point Tracking and Low-Voltage Ride Through, respectively.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Wind energy conversion systems – Canada"

1

Muyeen, S. M., ed. Wind Energy Conversion Systems. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

L, Freris L., ed. Wind energy conversion systems. New York: Prentice Hall, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heier, Siegfried. Grid integration of wind energy conversion systems. Chichester: Wiley, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Muyeen, S. M. Wind energy conversion systems: Technology and trends. London: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sumathi, S., L. Ashok Kumar, and P. Surekha. Solar PV and Wind Energy Conversion Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14941-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grid integration of wind energy conversion systems. 2nd ed. Chichester, West Sussex, England: Wiley, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khaligh, Alireza. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khaligh, Alireza. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: CRC Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

C, Onar Omer, ed. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

H, Houpis Constantine, ed. Wind energy systems: Control engineering design. Boca Raton, FL : CRC Press: Taylor & Francis, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Wind energy conversion systems – Canada"

1

Mathew, Sathyajith. "Wind energy conversion systems." In Wind Energy, 89–143. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30906-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mathew, Sathyajith. "Performance of wind energy conversion systems." In Wind Energy, 145–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30906-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sumathi, S., L. Ashok Kumar, and P. Surekha. "Wind Energy Conversion Systems." In Solar PV and Wind Energy Conversion Systems, 247–307. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14941-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Belu, Radian. "Wind Energy Conversion Systems." In Fundamentals and Source Characteristics of Renewable Energy Systems, 253–302. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2020. | Series: Nano and energy series |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429297281-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muyeen, S. M. "Introduction." In Wind Energy Conversion Systems, 1–22. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rachidi, F., M. Rubinstein, and A. Smorgonskiy. "Lightning Protection of Large Wind-Turbine Blades." In Wind Energy Conversion Systems, 227–41. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yasuda, Yoh. "Lightning Surge Analysis of a Wind Farm." In Wind Energy Conversion Systems, 243–65. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rajpurohit, Bharat Singh, Sri Niwas Singh, and Lingfeng Wang. "Electric Grid Connection and System Operational Aspect of Wind Power Generation." In Wind Energy Conversion Systems, 267–93. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Papaefthymiou, Stefanos V., Stavros A. Papathanassiou, and Eleni G. Karamanou. "Application of Pumped Storage to Increase Renewable Energy Penetration in Autonomous Island Systems." In Wind Energy Conversion Systems, 295–335. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sheikh, M. R. I., and J. Tamura. "Grid Frequency Mitigation Using SMES of Optimum Power and Energy Storage Capacity." In Wind Energy Conversion Systems, 337–63. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Wind energy conversion systems – Canada"

1

Merabet, Adel, Khandker Tawfique Ahmed, Hussein Ibrahim, Rachid Beguenane, and Karim Belmokhtar. "Sliding mode speed control for wind energy conversion systems." In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2015. http://dx.doi.org/10.1109/ccece.2015.7129433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khan, Shakil Ahamed, and Md Ismail Hossain. "Intelligent control based maximum power extraction strategy for wind energy conversion systems." In 2011 24th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2011. http://dx.doi.org/10.1109/ccece.2011.6030619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alnasir, Z., and M. Kazerani. "Performance comparison of standalone SCIG and PMSG-based wind energy conversion systems." In 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2014. http://dx.doi.org/10.1109/ccece.2014.6900923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abd Jamil, Roshamida, Jean-Christophe Gilloteaux, Philippe Lelong, and Aurélien Babarit. "Investigation of the Capacity Factor of Weather-Routed Energy Ships Deployed in the Near-Shore." In ASME 2021 3rd International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/iowtc2021-3545.

Full text
Abstract:
Abstract The energy ship concept has been proposed as an alternative wind power conversion system to harvest offshore wind energy. Energy ships are ships propelled by the wind and which generate electricity by means of water turbines attached underneath their hull, The generated electricity is stored on-board (batteries, hydrogen, etc.) It has been shown that energy ships deployed far-offshore in the North Atlantic Ocean may achieve capacity factors over 80% using weather-routing. The present paper complements this research by investigating the capacity factors of energy ships harvesting wind power in the near-shore. Two case studies are considered: the French islands of Saint-Pierre et-Miquelon, near Canada, and Ile de Sein, near metropolitan France. The methodology is as follows. First, the design of the energy ship considered in this study is presented. It was developed using an in-house Velocity, and Power Performance Program (VPPP) developed at LHEEA. The velocity and power production polar plots of the ship were used as input to a modified version of the weather-routing software QtVlm. This software was then used for capacity factor optimization using 10m altitude wind data analysis which was extracted from the ERA-Interim dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three years (2015, 2016, and 2017) data are considered. The results show that average capacity factors of approximately 40% and 40% can be achieved at Ile de Sein and Saint-Pierre-et-Miquelon with considered energy ship design.
APA, Harvard, Vancouver, ISO, and other styles
5

Tounsi, Asma, Hafedh Abid, and Khaled Elleuch. "On the Wind Energy Conversion Systems." In 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2018. http://dx.doi.org/10.1109/ssd.2018.8570704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shanker, Tulika, and Ravindra K. Singh. "Wind energy conversion system: A review." In 2012 Students Conference on Engineering and Systems (SCES). IEEE, 2012. http://dx.doi.org/10.1109/sces.2012.6199044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alexandrescu, Alexandru Constantin, Tecla Castelia Goras, Dimitrie Alexa, Irinel Valentin Pletea, and Petre-Daniel Matasaru. "RNSIC-1 based wind energy conversion." In 2013 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2013. http://dx.doi.org/10.1109/isscs.2013.6651216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alnasir, Z., and M. Kazerani. "Standalone SCIG-based wind energy conversion system using Z-source inverter with energy storage integration." In 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2014. http://dx.doi.org/10.1109/ccece.2014.6900924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kamal, Elkhatib, Mireille Bayart, and Abdel Aitouche. "Robust control of wind energy conversion systems." In 2011 International Conference on Communications, Computing and Control Applications (CCCA). IEEE, 2011. http://dx.doi.org/10.1109/ccca.2011.6031221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alkul, Oguz, Dabeeruddin Syed, and Sevki Demirbas. "A Review of Wind Energy Conversion Systems." In 2022 10th International Conference on Smart Grid (icSmartGrid). IEEE, 2022. http://dx.doi.org/10.1109/icsmartgrid55722.2022.9848755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography