Academic literature on the topic 'Wildfire simulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wildfire simulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Wildfire simulation"

1

Dunn, Adam. "A model of wildfire propagation using the interacting spatial automata formalism." University of Western Australia. School of Computer Science and Software Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0071.

Full text
Abstract:
[Truncated abstract] In this thesis, I address the modelling and computer simulation of spatial, eventdriven systems from a computer science perspective. Spatially explicit models of wildland fire (wildfire) behaviour are addressed as the specific application domain. Wildfire behaviour is expressed as a formal model and the associated simulations are compared to existing models and implementations. It is shown that the in- teracting spatial automata formalism provides a general framework for modelling spatial event-driven systems and is appropriate to wildfire systems. The challenge adressed is that of physically realistic modelling of wildfire behaviour in heterogeneous environments . . . Many current models do not incorporate the influence of a neighbourhood (the geometry of the fire front local to an unburnt volume of fuel, for example), but rather determine the propagation of fire using only point information. Whilst neighbourhood-based influence of behaviour is common to cellular automata theory, its use is very rare in existing models of wildfire models. In this thesis, I present the modelling technique and demonstrate its applicability to wildfire systems via a series of simulation experiments, where I reproduce known spatial wildfire dynamics. I conclude that the interacting spatial automata formalism is appropriate as a basis for constructing new computer simulations of wildfire spread behaviour. Simulation results are compared to existing implementations, highlighting the limitations of current models and demonstrating that the new models are capable of greater physical realism.
APA, Harvard, Vancouver, ISO, and other styles
2

Hoang, Roger Viet. "Wildfire simulation on the GPU." abstract and full text PDF (UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1460762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, Feng. "Dynamic Data Driven Application System for Wildfire Spread Simulation." Digital Archive @ GSU, 2010. http://digitalarchive.gsu.edu/cs_diss/57.

Full text
Abstract:
Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it is impractical to obtain all these data with no error. Therefore, predictions from the simulation model will be different from what it is in a real wildfire. Without assimilating data from the real wildfire and dynamically adjusting the simulation, the difference between the simulation and the real wildfire is very likely to continuously grow. With the development of sensor technologies and the advance of computer infrastructure, dynamic data driven application systems (DDDAS) have become an active research area in recent years. In a DDDAS, data obtained from wireless sensors is fed into the simulation model to make predictions of the real system. This dynamic input is treated as the measurement to evaluate the output and adjust the states of the model, thus to improve simulation results. To improve the accuracy of wildfire spread simulations, we apply the concept of DDDAS to wildfire spread simulation by dynamically assimilating sensor data from real wildfires into the simulation model. The assimilation system relates the system model and the observation data of the true state, and uses analysis approaches to obtain state estimations. We employ Sequential Monte Carlo (SMC) methods (also called particle filters) to carry out data assimilation in this work. Based on the structure of DDDAS, this dissertation presents the data assimilation system and data assimilation results in wildfire spread simulations. We carry out sensitivity analysis for different densities, frequencies, and qualities of sensor data, and quantify the effectiveness of SMC methods based on different measurement metrics. Furthermore, to improve simulation results, the image-morphing technique is introduced into the DDDAS for wildfire spread simulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Tasel, Erdinc. "Gis-based Spatial Model For Wildfire Simulation: Marmaris &amp." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/3/1017821/index.pdf.

Full text
Abstract:
Each year many forest fires have occurred and huge amount of forest areas in each country have been lost. Turkey like many world countries have forest fire problem. 27 % of Turkey&amp<br>#65533<br>s lands are covered by forest and 48 % of these forest areas are productive, however 52 % of them must be protected. There occurred 21000 forest fires due to several reasons between 1993 and 2002. It is estimated that 23477 ha area has been destroyed annually due to wildfires. The fire management strategies can be built on the scenarios derived from the simulation processes. In this study a GIS &amp<br>#65533<br>based fire simulating model is used to simulate a past fire occurred in Marmaris &amp<br>#65533<br>&Ccedil<br>etibeli, Turkey, in August 2002. This model uses Rothermel&amp<br>#65533<br>s surface fire model, Rothermel&amp<br>#65533<br>s and Van Wagner&amp<br>#65533<br>s crown fire model and Albini&amp<br>#65533<br>s torching tree model. The input variables required by the model can be divided into four groups: fuel type, fuel moisture, topography and wind. The suitable fuel type classification of the vegetation of the study area has been performed according to the Northern Forest Fire Laboratory (NFFL) Fuel Model. The fuel moisture data were obtained from the experts working in the General Directorate of Forestry. The fire spread pattern was derived using two IKONOS images representing the pre- and post-fire situations by visual interpretation. Time of arrival, the rate of spread and the spread direction of the fire were obtained as the output and 70 % of the burned area was estimated correctly from the fire simulating model.
APA, Harvard, Vancouver, ISO, and other styles
5

Song, Fei. "An Interactive Wildfire Spread and Suppression Simulation Environment Based on Devs-Fire." Digital Archive @ GSU, 2008. http://digitalarchive.gsu.edu/cs_theses/59.

Full text
Abstract:
Wildfires pose serious threats to the society and environment. Simulation of wildfire spread and fire suppression remains a challenging task due to the complexity of wildfire behavior and fire suppression tactics. In previous work, a wildfire spread and suppression simulation model called DEVS-FIRE has been developed. Based on that model, this thesis develops a graphic user interface to support an interactive simulation environment for surface wildfire spread and suppression simulation. The developed environment allows users to dynamically set up fire spread simulations, and to interacticaly deploy firefighting agents to experiment different fire suppression tactics. This graphic user interface is implemented using the Java Swing framework, and is intergrated with the DEVS-FIRE model in a well-designed manner. The software architecture is described and the simulation environment and experiment results with different fuel, terrain and weather data are presented.
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Song. "Simulation Software as a Service and Service-Oriented Simulation Experiment." Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/cs_diss/69.

Full text
Abstract:
Simulation software is being increasingly used in various domains for system analysis and/or behavior prediction. Traditionally, researchers and field experts need to have access to the computers that host the simulation software to do simulation experiments. With recent advances in cloud computing and Software as a Service (SaaS), a new paradigm is emerging where simulation software is used as services that are composed with others and dynamically influence each other for service-oriented simulation experiment on the Internet. The new service-oriented paradigm brings new research challenges in composing multiple simulation services in a meaningful and correct way for simulation experiments. To systematically support simulation software as a service (SimSaaS) and service-oriented simulation experiment, we propose a layered framework that includes five layers: an infrastructure layer, a simulation execution engine layer, a simulation service layer, a simulation experiment layer and finally a graphical user interface layer. Within this layered framework, we provide a specification for both simulation experiment and the involved individual simulation services. Such a formal specification is useful in order to support systematic compositions of simulation services as well as automatic deployment of composed services for carrying out simulation experiments. Built on this specification, we identify the issue of mismatch of time granularity and event granularity in composing simulation services at the pragmatic level, and develop four types of granularity handling agents to be associated with the couplings between services. The ultimate goal is to achieve standard and automated approaches for simulation service composition in the emerging service-oriented computing environment. Finally, to achieve more efficient service-oriented simulation, we develop a profile-based partitioning method that exploits a system’s dynamic behavior and uses it as a profile to guide the spatial partitioning for more efficient parallel simulation. We develop the work in this dissertation within the application context of wildfire spread simulation, and demonstrate the effectiveness of our work based on this application.
APA, Harvard, Vancouver, ISO, and other styles
7

Penick, Michael Alan. "VFIRE virtual fire in realistic environments : a framework for wildfire visualization in immersive environments /." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1442845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bailon-Ruiz, Rafael. "Design of a wildfire monitoring system using fleets of Unmanned Aerial Vehicles." Thesis, Toulouse, INSA, 2020. http://www.theses.fr/2020ISAT0011.

Full text
Abstract:
Les feux de forêt sont des incendies de végétation incontrôlés qui causent des dégâts importants à l’environnement, aux biens et aux personnes. Les actions de lutte contre de tels feux sont risqués et peuvent par conséquent bénéficier de techniques d'automatisation pour réduire l’exposition humaine. La télédétection aérienne est une technique qui permet d’obtenir des informations précises sur l’état d'un feu de forêt, afin que les équipes d’intervention puissent préparer des contre-mesures. Avec des véhicules aériens habités, elle expose les opérateurs à des risques élevés, qui peuvent être évités par l’utilisation de véhicules autonomes. Cette thèse présente un système de surveillance de feux de forêt basé sur des flottes de véhicules aériens sans pilote (UAV) afin de fournir aux pompiers des renseignements précis et à jour sur un feu de forêt. Nous présentons une approche pour planifier les trajectoires d’une flotte de drones à voilure fixe afin d’observer un feu de forêt évoluant au fil du temps. Des modèles réalistes du terrain, du processus de propagation du feu et des drones sont exploités, ainsi qu’un modèle du vent, pour prédire la propagation des feux de forêt et planifier le mouvement des drones. L’approche présentée adapte une méthode générique de recherche à voisinage variable (VNS) à ces modèles et les contraintes associées. L’exécution de la mission d’observation planifiée fournit des cartes des feux de forêt qui sont transmises à l’équipe d’intervention et exploitées par l’algorithme de planification pour déterminer de nouvelles trajectoires d’observation. Les algorithmes et les modèles sont intégrés dans une architecture logicielle permettant l’exécution dans des scénarios avec différents niveaux de réalisme, avec des drones réels et simulés survolant un feu de forêt réel ou synthétique. Les résultats de simulation mixte montrent la capacité de planifier les trajectoires d’observation d’une petite flotte de drones et de mettre à jour les plans lorsque de nouvelles informations sur l’incendie sont incorporées dans le modèle de propagation de feu<br>Wildfires, also known as forest or wildland fires, are uncontrolled vegetation fires occurring in rural areas that cause tremendous damage to the society, harming environment, property and people. The firefighting endeavor is a dull, dirty and dangerous job and as such, can greatly benefit from automation to reduce human exposure to hazards. Aerial remote sensing is a common technique to obtain precise information about a wildfire state so fire response teams can prepare countermeasures. This task, when performed with manned aerial vehicles, expose operators to high risks that can be eliminated by the use of autonomous vehicles. This thesis introduces a wildfire monitoring system based on fleets of unmanned aerial vehicles (UAVs) to provide firefighters with timely updated information about a wildland fire. We present an approach to plan trajectories for a fleet of fixed-wing UAVs to observe a wildfire evolving over time. Realistic models of the terrain, of the fire propagation process, and of the UAVs are exploited, together with a model of the wind, to predict wildfire spread and plan UAV motion. The approach tailors a generic Variable Neighborhood Search method to these models and the associated constraints. The execution of the planned monitoring mission provides wildfire maps that are transmitted to the fire response team and exploited by the planning algorithm to plan new observation trajectories. Algorithms and models are integrated within a software architecture allowing for execution under scenarios with different levels of realism, with real and simulated UAVs flying over a real or synthetic wildfire. Mixed-reality simulation results show the ability to plan observation trajectories for a small fleet of UAVs, and to update the plans when new information on the fire are incorporated in the fire model
APA, Harvard, Vancouver, ISO, and other styles
9

Kloninger, Paul. "MDO-Simulation eines Rutschreifens auf GFK-Wasserrutschen." Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-206945.

Full text
Abstract:
Die Option Mechanism Dynamics (MDO) von Creo Parametric ist ein Tool aus dem Bereich Starrkörperdynamik. Im Kern des Vortrags steht jedoch die MDO-Funktion 3D-Kontakt, die einzigartig mit elastischen Körpern arbeitet. Im Vortrag wird die Vorgehensweise bei der dynamischen Simulation eines Rutschreifens auf GFK-Wasserrutschen erläutert, abschließend werden Animationsbeispiele präsentiert.
APA, Harvard, Vancouver, ISO, and other styles
10

Kessels, Henricus. "Wildfire Management in the Southside Region of Canada’s Montane Cordillera - A Systems Modelling Application on Firebreak Strategies." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35107.

Full text
Abstract:
There is growing recognition of the importance of preserving Canada’s forests. Canada’s 348 million hectares of forest land cover 35% of its land area, representing 9% of the world’s forests and 24% of the world’s boreal forests. As a renewable resource, forests offer significant environmental, economic and recreational benefits and innumerable services contributing to the quality of life. Canada has recently entered an era of increased frequency and severity of natural disasters. Ecosystems and communities especially in western Canada have recently undergone a trend of increasing pressures from natural disturbances. These disturbances include wildfires associated with increased fuel load levels from past fire suppression regimes and a widely spread infestation of the mountain pine beetle in addition to changes in weather patterns. Wildfire activity has reached extreme levels in many of the recent years. This thesis profiles an area of western Canada within the Montane Cordillera covering the Nechako Lakes Electoral District in central British Columbia and assesses its vulnerability to the specific hazard of wildfires caused by natural and man-made sources. The objectives of this research are to review, simulate and assess the impact of various fuel management strategies in a sub-section of the Nechako Lakes Electoral District called the Southside. Values at risk include private property and old growth forest in respectively timber supply areas, provincial parks, woodlots and community forests. Simulation results show that firebreaks are effective in significantly reducing the area burned in different parts of the landscape. The performance of different strategies shows large variation. Although this has not been investigated further, such variation has likely been caused by topographic aspects and the positioning of firebreaks in the landscape in relation to climatic parameters. These results can therefore not be extrapolated beyond the simulated area, but do give an indication of the performance variation that may be expected when similar firebreaks are applied elsewhere. The results also show that model performance of all firebreak strategies is heavily and fairly consistently influenced by weather stream parameters. Sensitivity analyses of weather stream parameters show that although the reduction in total area burned varies, the ranking between strategies in their overall performance is consistent regardless of the weather pattern. Combined dry, warm and windy weather conditions lead to a 3.44-fold increase in total area burned as compared to the scenario with average weather conditions. In favourable weather conditions represented by wet, cold and nearly windless conditions, the model shows an 85% reduction in total burned area as compared to the average scenario. These results illustrate the significant impact of uncontrollable variables on the overall result.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!