Szewczyk, Janusz. Rola zaburzeń w kształtowaniu struktury i dynamiki naturalnych lasów bukowo-jodłowo-świerkowych w Karpatach Zachodnich. Publishing House of the University of Agriculture in Krakow, 2018. http://dx.doi.org/10.15576/978-83-66602-35-9.
Abstract:
The aim of the study was to determine the influence of different disturbances (both natural and anthropogenic) on species composition and stand structure of old-growth mixed mountain forests in the Western Carpathians. These stands are usually dominated by beech, fir and spruce, mixed in different proportions. The tree main species represent different growth strategies, and they compete against each other. The longevity of trees makes the factors influencing the stand structure difficult to identify, even during longitudinal studies conducted on permanent research plots. That is why dendroecological techniques, based upon the annual variability of tree rings, are commonly used to analyze the disturbance histories of old-growth stands. Dendroecological methods make it possible to reconstruct the stand history over several centuries in the past by analyzing the frequency, intensity, duration and spatial scale of disturbances causing the death of trees. Combining the dendroecological techniques with the detailed measurements of stand structure, snag volume, CWD volume, and the analyses of regeneration species composition and structure allows us to identify the factors responsible for the changes in dynamics of mixed mountain forests. Various disturbance agents affect some species selectively, while some disturbances promote the establishment of tree seedlings of specific species by modifying environmental conditions. Describing the disturbance regime requires a broad scope of data on stand structure, on dead wood and tree regeneration, while various factors affecting all the stages of tree growth should be taken into consideration. On the basis of the already published data from permanent sample plots, combined with the available disturbance history analyses from the Western Carpathians, three research hypotheses were formulated. 1. The species composition of mixed mountain forests has been changing for at least several decades. These directional changes are the consequence of simultaneous conifer species decline and expansion of beech. 2. The observed changes in species composition of mixed mountain forests are the effect of indirect anthropogenic influences, significantly changing tree growth conditions also in the forests that are usually considered natural or near-natural. Cumulative impact of these indirect influences leads to the decrease of fir share in the tree layer (spruce decline has also been observed recently),and it limits the representation of this species among seedlings and saplings. The final effect is the decrease of fir and spruce share in the forest stands. 3. Small disturbances, killing single trees or small groups of trees, and infrequent disturbances of medium size and intensity dominate the disturbance regime in mixed mountain forests. The present structure of beech-fir-spruce forests is shaped both by complex disturbance regime and indirect anthropogenic influences. The data were gathered in permanent sample plots in strictly protected areas of Babia Góra, Gorce, and Tatra National Parks, situated in the Western Carpathians. All plots were located in the old-growth forest stands representing Carpathian beech forest community. The results of the measurements of trees, snags, coarse woody debris (CWD) and tree regeneration were used for detailed description of changes in the species composition and structure of tree stands. Tree ring widths derived from increment cores were used to reconstruct the historical changes in tree growth trends of all main tree species, as well as the stand disturbance history within the past two to three hundred years. The analyses revealed complex disturbance history in all of the three forest stands. Intermediate disturbances of variable intensity occurred, frequently separated by the periods of low tree mortality lasting from several decades up to over one hundred years. The intervals between the disturbances were significantly shorter than the expected length of forest developmental cycle, in commonly used theories describing the dynamics of old-growth stands. During intermediate disturbances up to several dozen percent of canopy trees were killed. There were no signs of stand-replacing disturbances, killing all or nearly all of canopy trees. The periods of intense tree mortality were followed by subsequent periods of increased sapling recruitment. Variability in disturbance intensity is one of the mechanisms promoting the coexistence of beech and conifer species in mixed forests. The recruitment of conifer saplings depended on the presence of larger gaps, resulting from intermediate disturbances, while beech was more successful in the periods of low mortality. However, in the last few decades, beech seems to benefit from the period of intense fir mortality. This change results from the influence of long-term anthropogenic disturbances, affecting natural mechanisms that maintain the coexistence of different tree species and change natural disturbance regimes. Indirect anthropogenic influence on tree growth was clearly visible in the gradual decrease of fir increments in the twentieth century, resulting from the high level of air pollution in Europe. Synchronous decreases of fir tree rings’ widths were observed in all three of the sample plots, but the final outcomes depended on the fir age. In most cases, the damage to the foliage limited the competitive abilities of fir, but it did not cause a widespread increase in tree mortality, except for the oldest firs in the BGNP (Babia Góra National Park) plot. BGNP is located in the proximity of industrial agglomeration of Upper Silesia, and it could be exposed to higher level of air pollution than the other two plots. High level of fir regeneration browsing due to the deer overabundance and insufficient number of predators is the second clear indication of the indirect anthropogenic influence on mixed mountain forests. Game impact on fir regeneration is the most pronounced in Babia Góra forests, where fir was almost completely eliminated from the saplings. Deer browsing seems to be the main factor responsible for limiting the number of fir saplings and young fir trees, while the representation of fir among seedlings is high. The experiments conducted in fenced plots located in the mixed forests in BGNP proved that fir and sycamore were the most preferred by deer species among seedlings and saplings. In GNP (Gorce National Park) and TNP (Tatra National Park), the changes in species composition of tree regeneration are similar, but single firs or even small groups of firs are present among saplings. It seems that all of the analysed mixed beech-fir-spruce forests undergo directional changes, causing a systematic decrease in fir representation, and the expansion of beech. This tendency results from the indirect anthropogenic impact, past and present. Fir regeneration decline, alongside with the high level of spruce trees’ mortality in recent years, may lead to a significant decrease in conifers representation in the near future, and to the expansion of beech forests at the cost of mixed ones.