Journal articles on the topic 'Wide-band Input Matching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Wide-band Input Matching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Zhe-Yang, Chun-Chieh Chen, and Chung-Chih Hung. "Low-noise amplifier with narrow-band and wide-band input impedance matching design." Journal of the Chinese Institute of Engineers 38, no. 5 (February 25, 2015): 603–9. http://dx.doi.org/10.1080/02533839.2015.1010452.
Full textGalante-Sempere, David, Javier del Pino, Sunil Lalchand Khemchandani, and Hugo García-Vázquez. "Miniature Wide-Band Noise-Canceling CMOS LNA." Sensors 22, no. 14 (July 13, 2022): 5246. http://dx.doi.org/10.3390/s22145246.
Full textBEN AMOR, MERIAM, MOURAD LOULOU, SEBASTIEN QUINTANEL, and DANIEL PASQUET. "A FULLY INTEGRATED MULTIBAND CMOS 0.35 μM LNA FOR IEEE802.16 STANDARD." Journal of Circuits, Systems and Computers 22, no. 02 (February 2013): 1250088. http://dx.doi.org/10.1142/s0218126612500880.
Full textHu, Robert, and Mark S. C. Yang. "Investigation of Different Input-Matching Mechanisms Used in Wide-Band LNA Design." International Journal of Infrared and Millimeter Waves 26, no. 2 (February 2005): 221–45. http://dx.doi.org/10.1007/s10762-005-3002-4.
Full textSeethur, Rashmi, Siva Yellampalli, and Shreedhar H. K. "Design of Common Gate Current-Reuse Noise Cancellation UWB Low Noise Amplifier in 90nm CMOS." International Journal of Electronics, Communications, and Measurement Engineering 11, no. 1 (January 1, 2022): 1–14. http://dx.doi.org/10.4018/ijecme.312257.
Full textALAVI-RAD, HOSEIN, SOHEYL ZIABAKHSH, and MUSTAPHA C. E. YAGOUB. "A 1.2 V CMOS COMMON-GATE LOW NOISE AMPLIFIER FOR UWB WIRELESS COMMUNICATIONS." Journal of Circuits, Systems and Computers 22, no. 07 (August 2013): 1350052. http://dx.doi.org/10.1142/s0218126613500527.
Full textHeo, Bo-Ram, and Ickjin Kwon. "A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting." Sensors 21, no. 22 (November 10, 2021): 7483. http://dx.doi.org/10.3390/s21227483.
Full textPINO, J. DEL, SUNIL L. KHEMCHANDANI, ROBERTO DÍAZ-ORTEGA, R. PULIDO, and H. GARCÍA-VÁZQUEZ. "ON-CHIP INDUCTORS OPTIMIZATION FOR ULTRA WIDE BAND LOW NOISE AMPLIFIERS." Journal of Circuits, Systems and Computers 20, no. 07 (November 2011): 1231–42. http://dx.doi.org/10.1142/s0218126611007852.
Full textBonenberger, Christopher M. A., and Klaus W. Kark. "A Broadband Impedance-Matching Method for Microstrip Patch Antennas Based on the Bode-Fano Theory." Frequenz 72, no. 7-8 (June 26, 2018): 373–80. http://dx.doi.org/10.1515/freq-2018-0037.
Full textHu, Shan Wen, Tao Chen, Huai Gao, Long Xing Shi, and G. P. Li. "An Advanced Traveling Wave Matching Network for DC-12GHz Variable Gain Amplifier Design." Applied Mechanics and Materials 321-324 (June 2013): 331–35. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.331.
Full textElmeligy, Karim, and Hesham Omran. "Fast Design Space Exploration and Multi-Objective Optimization of Wide-Band Noise-Canceling LNAs." Electronics 11, no. 5 (March 5, 2022): 816. http://dx.doi.org/10.3390/electronics11050816.
Full textLee, J. Y., J. H. Ham, Y. S. Lee, and T. Y. Yun. "CMOS LNA for full-band ultra-wideband systems using a simple wide input matching network." IET Microwaves, Antennas & Propagation 4, no. 12 (2010): 2155. http://dx.doi.org/10.1049/iet-map.2010.0096.
Full textRibate, Mohamed, Rachid Mandry, Jamal Zbitou, Larbi El Abdellaoui, Ahmed Errkik, Mohamed Latrach, and Ahmed Lakhssassi. "Design of L-S band broadband power amplifier using microstip lines." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 5 (October 1, 2020): 5400. http://dx.doi.org/10.11591/ijece.v10i5.pp5400-5408.
Full textSung, Ha-Wuk, Seong-Hee Han, Seong-Il Kim, Ho-Kyun Ahn, Jong-Won Lim, and Dong-Wook Kim. "C-Band GaN Dual-Feedback Low-Noise Amplifier MMIC with High-Input Power Robustness." Journal of Electromagnetic Engineering and Science 22, no. 6 (November 30, 2022): 678–85. http://dx.doi.org/10.26866/jees.2022.6.r.137.
Full textAbbasizadeh, Hamed, Arash Hejazi, Behnam Samadpoor Rikan, Sang Yun Kim, Jongseok Bae, Jong Min Lee, Jong Ho Moon, et al. "A High-Efficiency and Wide-Input Range RF Energy Harvester Using Multiple Rectenna and Adaptive Matching." Energies 13, no. 5 (February 25, 2020): 1023. http://dx.doi.org/10.3390/en13051023.
Full textChang, Yi Cheng, Meng Ting Hsu, and Yu Chang Hsieh. "Design of 3.1-10.6GHz CMOS LNA Based on Input Matching Technique of Common-Gate Topology." Applied Mechanics and Materials 479-480 (December 2013): 1014–17. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.1014.
Full textLi, J. Y., W. J. Lin, M. P. Houng, and L. S. Chen. "A Low Power Consumption and Wide-Band Input Matching CMOS Active Balun for UWB System Applications." Journal of Electromagnetic Waves and Applications 24, no. 11-12 (January 1, 2010): 1449–57. http://dx.doi.org/10.1163/156939310792149641.
Full textHu, R. "An 8-20-GHz wide-band LNA design and the analysis of its input matching mechanism." IEEE Microwave and Wireless Components Letters 14, no. 11 (November 2004): 528–30. http://dx.doi.org/10.1109/lmwc.2004.837063.
Full textRamya, T. Rama Rao, and Revathi Venkataraman. "Concurrent Multi-Band Low-Noise Amplifier." Journal of Circuits, Systems and Computers 26, no. 06 (March 5, 2017): 1750104. http://dx.doi.org/10.1142/s0218126617501043.
Full textGao, Mingming, Gaoyang Xu, and Jingchang Nan. "Design of Concurrent Tri-Band High-Efficiency Power Amplifier Based on Wireless Applications." Electronics 11, no. 21 (October 30, 2022): 3544. http://dx.doi.org/10.3390/electronics11213544.
Full textNaumovich, N. M., A. P. Joubko, M. V. Davydov, and O. S. Maltsev. "WIDEBAND TRANSFORMER FOR MATCHING OF LOW-IMPEDANCE LOADS IN VERY HIGH FREQUENCY RANGE." Doklady BGUIR, no. 7-8 (December 29, 2019): 43–49. http://dx.doi.org/10.35596/1729-7648-2019-126-8-43-49.
Full textManjula, S., M. Malleshwari, and M. Suganthy. "Design of Low Power UWB CMOS Low Noise Amplifier using Active Inductor for WLAN Receiver." International Journal of Engineering & Technology 7, no. 2.24 (April 25, 2018): 448. http://dx.doi.org/10.14419/ijet.v7i2.24.12132.
Full textDoo, Jihoon, Jongyoun Kim, and Jinho Jeong. "D-Band Frequency Tripler Module Using Anti-Parallel Diode Pair and Waveguide Transitions." Electronics 9, no. 8 (July 27, 2020): 1201. http://dx.doi.org/10.3390/electronics9081201.
Full textKaya, Adnan. "Wide-band compact microwave transistor amplifier methodology and the analysis of its input-matching mechanism using negative impedance converter." Microwave and Optical Technology Letters 50, no. 1 (2007): 192–97. http://dx.doi.org/10.1002/mop.23046.
Full textNguyen Huu Tho. "A 1.8 to 4 GHz inductor-less highly linear CMOS LNA for wire-less receivers." Journal of Military Science and Technology, no. 76 (December 12, 2021): 11–20. http://dx.doi.org/10.54939/1859-1043.j.mst.76.2021.11-20.
Full textHoi, Tran Van, Ngo Thi Lanh, Nguyen Xuan Truong, Nguyen Huu Duc, and Bach Gia Duong. "Design of a Front-End for Satellite Receiver." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 5 (October 1, 2016): 2282. http://dx.doi.org/10.11591/ijece.v6i5.10480.
Full textHoi, Tran Van, Ngo Thi Lanh, Nguyen Xuan Truong, Nguyen Huu Duc, and Bach Gia Duong. "Design of a Front-End for Satellite Receiver." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 5 (October 1, 2016): 2282. http://dx.doi.org/10.11591/ijece.v6i5.pp2282-2290.
Full textMorshed, Khaled M., Debabrata K. Karmokar, and Karu P. Esselle. "Antennas for Licensed Shared Access in 5G Communications with LTE Mid- and High-Band Coverage." Sensors 23, no. 4 (February 13, 2023): 2095. http://dx.doi.org/10.3390/s23042095.
Full textZhao, Jinxiang, Feng Wang, Hanchao Yu, Shengli Zhang, Kuisong Wang, Chang Liu, Jing Wan, Xiaoxin Liang, and Yuepeng Yan. "Analysis and Design of a Wideband Low-Noise Amplifier with Bias and Parasitic Parameters Derived Wide Bandpass Matching Networks." Electronics 11, no. 4 (February 18, 2022): 633. http://dx.doi.org/10.3390/electronics11040633.
Full textBalani, Warsha, Mrinal Sarvagya, Tanweer Ali, Ajit Samasgikar, Pradeep Kumar, Sameena Pathan, and Manohara Pai M. Pai M M. "A 20–44 GHz Wideband LNA Design Using the SiGe Technology for 5G Millimeter-Wave Applications." Micromachines 12, no. 12 (December 7, 2021): 1520. http://dx.doi.org/10.3390/mi12121520.
Full textIslamov, I., and E. Humbataliyev. "General Approaches to Solving Problems of Analysis and Synthesis of Directional Properties of Antenna Arrays." Advanced Electromagnetics 11, no. 4 (October 27, 2022): 22–33. http://dx.doi.org/10.7716/aem.v11i4.2060.
Full textLee, Chieh-Sen, Chi-Lin Tsai, and Chin-Lung Yang. "Novel Cross-Type Network for Wide-Tuning-Range Reconfigurable Multiband Antennas." International Journal of Antennas and Propagation 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/741960.
Full textKim, Byungwook, and Sanggeun Jeon. "A Full Ka-Band CMOS Amplifier Using Inductive Neutralization with a Flat Gain of 13 ± 0.2 dB." Applied Sciences 12, no. 9 (May 9, 2022): 4782. http://dx.doi.org/10.3390/app12094782.
Full textWu, Chang-Ju, I.-Fong Chen, Chia-Mei Peng, Wen-Yi Tsai, and Jwo-Shiun Sun. "A Compact Fractal-Shaped O-Ring Monopole Antenna for Modern Broadband Wireless Applications." WSEAS TRANSACTIONS ON ELECTRONICS 12 (August 24, 2021): 93–99. http://dx.doi.org/10.37394/232017.2021.12.13.
Full textRuslan Hadi, Noor Syakirah, Zubaida Yusoff, Md Golam Sadeque, Shaiful Jahari Hashim, and Muhammad Akmal Chaudhary. "High gain over an octave bandwidth class-F RF power amplifier design using 10W GaN HEM." Bulletin of Electrical Engineering and Informatics 9, no. 5 (October 1, 2020): 1899–906. http://dx.doi.org/10.11591/eei.v9i5.2226.
Full textKouhalvandi, Lida. "Directly Matching an MMIC Amplifier Integrated with MIMO Antenna through DNNs for Future Networks." Sensors 22, no. 18 (September 19, 2022): 7068. http://dx.doi.org/10.3390/s22187068.
Full textWang, Qiang, and Yan Zhang. "Design of a Compact UWB Antenna with Triple Band-Notched Characteristics." International Journal of Antennas and Propagation 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/892765.
Full textSatyanarayana, EVV, Vivek Kumar, D. Mallikarjun Reddy, T. Siva Paravathi, and J. Chandrasekhar Rao. "A compact disc loaded curved elliptical shaped ultra-wideband MIMO antenna." International Journal of Engineering & Technology 7, no. 2.7 (March 18, 2018): 597. http://dx.doi.org/10.14419/ijet.v7i2.7.10888.
Full textJiang, Jun-Yi, and Hsin-Lung Su. "A Wideband Eight-Element MIMO Antenna Array in 5G NR n77/78/79 and WLAN-5GHz Bands for 5G Smartphone Applications." International Journal of Antennas and Propagation 2022 (November 16, 2022): 1–11. http://dx.doi.org/10.1155/2022/8456936.
Full textSong, Ickhyun, Gyungtae Ryu, Seung Hwan Jung, John D. Cressler, and Moon-Kyu Cho. "Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking." Sensors 23, no. 15 (July 28, 2023): 6745. http://dx.doi.org/10.3390/s23156745.
Full textBenyetho, Taoufik, Jamal Zbitou, Larbi El Abdellaoui, Hamid Bennis, and Abdelwahed Tribak. "A New Fractal Multiband Antenna for Wireless Power Transmission Applications." Active and Passive Electronic Components 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2084747.
Full textNguyen, Thuy-Linh, Yasuo Sato, and Koichiro Ishibashi. "A 2.77 μW Ambient RF Energy Harvesting Using DTMOS Cross-Coupled Rectifier on 65 nm SOTB and Wide Bandwidth System Design." Electronics 8, no. 10 (October 16, 2019): 1173. http://dx.doi.org/10.3390/electronics8101173.
Full textYoon, Min, and Jee-Youl Ryu. "Development of Low-Noise Small-Area 24 GHz CMOS Radar Sensor." Journal of Sensors 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/8534198.
Full textFomin, Dmitriy G., Stanislav N. Darovskikh, Nikolay V. Dudarev, Igor I. Prokopov, and Svyatoslav V. Dudarev. "Simulation of band pass filters based on multilayer technology." Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics 22, no. 1 (January 2022): 77–87. http://dx.doi.org/10.14529/ctcr220106.
Full textQasim Hadi Kareem and Rana Ahmed Shihab. "Reconfigurable Compact Quad-port MIMO Antennas for sub-6 GHz Applications." Journal of AL-Farabi for Engineering Sciences 2, no. 1 (July 31, 2023): 10. http://dx.doi.org/10.59746/jfes.v2i1.58.
Full textJalali, Mahdi, Mohammad Naser-Moghadasi, and Ramezan Ali Sadeghzadeh. "Dual circularly polarized multilayer MIMO antenna array with an enhanced SR-feeding network for C-band application." International Journal of Microwave and Wireless Technologies 9, no. 8 (May 3, 2017): 1741–48. http://dx.doi.org/10.1017/s1759078717000435.
Full textJeong, Jinho, Yeongmin Jang, Jongyoun Kim, Sosu Kim, and Wansik Kim. "Design of W-Band GaN-on-Silicon Power Amplifier Using Low Impedance Lines." Applied Sciences 11, no. 19 (September 28, 2021): 9017. http://dx.doi.org/10.3390/app11199017.
Full textRoy, Sunanda, Jun Jiat Tiang, Mardeni Bin Roslee, Md Tanvir Ahmed, Abbas Z. Kouzani, and M. A. Parvez Mahmud. "Quad-Band Rectenna for Ambient Radio Frequency (RF) Energy Harvesting." Sensors 21, no. 23 (November 25, 2021): 7838. http://dx.doi.org/10.3390/s21237838.
Full textPalanisamy, Satheeshkumar, Balakumaran Thangaraju, Osamah Ibrahim Khalaf, Youseef Alotaibi, Saleh Alghamdi, and Fawaz Alassery. "A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication." Energies 14, no. 19 (September 28, 2021): 6204. http://dx.doi.org/10.3390/en14196204.
Full textDanani, S., Sheetal Punia, Ravinder Kumar, Hitesh Kumar B. Pandya, and Vinay Kumar. "Design of Stray Radiation Sensor for ITER ECE Diagnostic." EPJ Web of Conferences 277 (2023): 03010. http://dx.doi.org/10.1051/epjconf/202327703010.
Full text