Journal articles on the topic 'Whole brain imaging'

To see the other types of publications on this topic, follow the link: Whole brain imaging.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Whole brain imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jiang Tao, 江涛, 龚辉 Gong Hui, 骆清铭 Luo Qingming, and 袁菁 Yuan Jing. "全脑显微光学成像." Chinese Journal of Lasers 50, no. 3 (2023): 0307101. http://dx.doi.org/10.3788/cjl221247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Strack, Rita. "Whole-brain imaging with ExLLSM." Nature Methods 16, no. 3 (February 27, 2019): 217. http://dx.doi.org/10.1038/s41592-019-0336-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Taranda, Julian, and Sevin Turcan. "3D Whole-Brain Imaging Approaches to Study Brain Tumors." Cancers 13, no. 8 (April 15, 2021): 1897. http://dx.doi.org/10.3390/cancers13081897.

Full text
Abstract:
Although our understanding of the two-dimensional state of brain tumors has greatly expanded, relatively little is known about their spatial structures. The interactions between tumor cells and the tumor microenvironment (TME) occur in a three-dimensional (3D) space. This volumetric distribution is important for elucidating tumor biology and predicting and monitoring response to therapy. While static 2D imaging modalities have been critical to our understanding of these tumors, studies using 3D imaging modalities are needed to understand how malignant cells co-opt the host brain. Here we summarize the preclinical utility of in vivo imaging using two-photon microscopy in brain tumors and present ex vivo approaches (light-sheet fluorescence microscopy and serial two-photon tomography) and highlight their current and potential utility in neuro-oncology using data from solid tumors or pathological brain as examples.
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Raymond Y., and Alexander Lin. "Whole-Brain MR Spectroscopy Imaging of Brain Tumor Metabolites." Radiology 294, no. 3 (March 2020): 598–99. http://dx.doi.org/10.1148/radiol.2020192607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cherry, Simon R. "Functional whole-brain imaging in behaving rodents." Nature Methods 8, no. 4 (March 30, 2011): 301–3. http://dx.doi.org/10.1038/nmeth0411-301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vogt, Nina. "Unbiased, whole-brain imaging of neural circuits." Nature Methods 16, no. 2 (January 30, 2019): 142. http://dx.doi.org/10.1038/s41592-019-0313-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vogt, Nina. "Chromatic multiphoton imaging of the whole brain." Nature Methods 16, no. 6 (May 30, 2019): 459. http://dx.doi.org/10.1038/s41592-019-0444-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sempeles, Susan. "Whole-Brain Mapping Enhanced by Automated Imaging." Journal of Clinical Engineering 37, no. 2 (2012): 36–37. http://dx.doi.org/10.1097/jce.0b013e31824d8e8d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Offner, Thomas, Daniela Daume, Lukas Weiss, Thomas Hassenklöver, and Ivan Manzini. "Whole-Brain Calcium Imaging in Larval Xenopus." Cold Spring Harbor Protocols 2020, no. 12 (October 9, 2020): pdb.prot106815. http://dx.doi.org/10.1101/pdb.prot106815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hall, Håkan, Yasmin Hurd, Stefan Pauli, Christer Halldin, and Göran Sedvall. "Human brain imaging post-mortem - whole hemisphere technologies." International Review of Psychiatry 13, no. 1 (February 1, 2001): 12–17. http://dx.doi.org/10.1080/09540260020024141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hall, Håkan, Yasmin Hurd, Stefan Pauli, Christer Halldin, and Göran Sedvall. "Human brain imaging post-mortem - whole hemisphere technologies." International Review of Psychiatry 13, no. 1 (January 2001): 12–17. http://dx.doi.org/10.1080/09540260124940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Offner, Thomas, Daniela Daume, Lukas Weiss, Thomas Hassenklöver, and Ivan Manzini. "Erratum: Whole-Brain Calcium Imaging in Larval Xenopus." Cold Spring Harbor Protocols 2020, no. 11 (November 2020): pdb.err107425. http://dx.doi.org/10.1101/pdb.err107425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mattay, V. S., J. A. Frank, A. K. Santha, J. J. Pekar, J. H. Duyn, A. C. McLaughlin, and D. R. Weinberger. "Whole-brain functional mapping with isotropic MR imaging." Radiology 201, no. 2 (November 1996): 399–404. http://dx.doi.org/10.1148/radiology.201.2.8888231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Orrison, W. W., K. V. Snyder, L. N. Hopkins, C. J. Roach, E. N. Ringdahl, R. Nazir, and E. H. Hanson. "Whole-brain dynamic CT angiography and perfusion imaging." Clinical Radiology 66, no. 6 (June 2011): 566–74. http://dx.doi.org/10.1016/j.crad.2010.12.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Macé, Émilie, Gabriel Montaldo, Stuart Trenholm, Cameron Cowan, Alexandra Brignall, Alan Urban, and Botond Roska. "Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration." Neuron 100, no. 5 (December 2018): 1241–51. http://dx.doi.org/10.1016/j.neuron.2018.11.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Susaki, Etsuo A., Kazuki Tainaka, Dimitri Perrin, Hiroko Yukinaga, Akihiro Kuno, and Hiroki R. Ueda. "Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging." Nature Protocols 10, no. 11 (October 8, 2015): 1709–27. http://dx.doi.org/10.1038/nprot.2015.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

HAYWORTH, KENNETH J. "ELECTRON IMAGING TECHNOLOGY FOR WHOLE BRAIN NEURAL CIRCUIT MAPPING." International Journal of Machine Consciousness 04, no. 01 (June 2012): 87–108. http://dx.doi.org/10.1142/s1793843012400057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Nguyen, David, Paul J. Marchand, Arielle L. Planchette, Julia Nilsson, Miguel Sison, Jérôme Extermann, Antonio Lopez, et al. "Optical projection tomography for rapid whole mouse brain imaging." Biomedical Optics Express 8, no. 12 (November 15, 2017): 5637. http://dx.doi.org/10.1364/boe.8.005637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Levin, Bonnie E., Heather L. Katzen, Andrew Maudsley, Judith Post, Connie Myerson, Varan Govind, Fatta Nahab, Blake Scanlon, and Aaron Mittel. "Whole-Brain Proton MR Spectroscopic Imaging in Parkinson's Disease." Journal of Neuroimaging 24, no. 1 (December 10, 2012): 39–44. http://dx.doi.org/10.1111/j.1552-6569.2012.00733.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ezzeddine, Mustapha A., Michael H. Lev, Colin T. McDonald, Guy Rordorf, Jamary Oliveira-Filho, Fatma Gul Aksoy, Jeffrey Farkas, et al. "CT Angiography With Whole Brain Perfused Blood Volume Imaging." Stroke 33, no. 4 (April 2002): 959–66. http://dx.doi.org/10.1161/hs0402.105388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Scott, Ethan. "Whole-brain imaging of sensory processing in larval zebrafish." IBRO Reports 6 (September 2019): S47. http://dx.doi.org/10.1016/j.ibror.2019.07.144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rades, Dirk, Susanne Kieckebusch, Tiina Haatanen, Radka Lohynska, Juergen Dunst, and Steven E. Schild. "Surgical Resection Followed by Whole Brain Radiotherapy Versus Whole Brain Radiotherapy Alone for Single Brain Metastasis." International Journal of Radiation Oncology*Biology*Physics 70, no. 5 (April 2008): 1319–24. http://dx.doi.org/10.1016/j.ijrobp.2007.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kocher, Martin, Mohammad Maarouf, Mark Bendel, Juergen Voges, Rolf-Peter Müller, and Volker Sturm. "Linac Radiosurgery Versus Whole Brain Radiotherapy for Brain Metastases." Strahlentherapie und Onkologie 180, no. 5 (May 2004): 263–67. http://dx.doi.org/10.1007/s00066-004-1180-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fleckenstein**, Katharina, Holger Hof**, Frank Lohr, Frederik Wenz, and Michael Wannenmacher. "Prognostic Factors for Brain Metastases after Whole Brain Radiotherapy." Strahlentherapie und Onkologie 180, no. 5 (May 2004): 268–73. http://dx.doi.org/10.1007/s00066-004-1234-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wittkamp, Gunnar, Boris Buerke, Rainer Dziewas, Hendrik Ditt, Peter Seidensticker, Walter Heindel, and Stephan P. Kloska. "Whole Brain Perfused Blood Volume CT." Academic Radiology 17, no. 4 (April 2010): 427–32. http://dx.doi.org/10.1016/j.acra.2009.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sze, Sheila, Muoi N. Tran, and Matthew Follwell. "Volumetric Whole Brain Irradiation Evaluation." Journal of Medical Imaging and Radiation Sciences 47, no. 1 (March 2016): S22—S23. http://dx.doi.org/10.1016/j.jmir.2015.12.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lefebvre, Joël, Patrick Delafontaine-Martel, and Frédéric Lesage. "A Review of Intrinsic Optical Imaging Serial Blockface Histology (ICI-SBH) for Whole Rodent Brain Imaging." Photonics 6, no. 2 (June 11, 2019): 66. http://dx.doi.org/10.3390/photonics6020066.

Full text
Abstract:
In recent years, multiple serial histology techniques were developed to enable whole rodent brain imaging in 3-D. The main driving forces behind the emergence of these imaging techniques were the genome-wide atlas of gene expression in the mouse brain, the pursuit of the mouse brain connectome, and the BigBrain project. These projects rely on the use of optical imaging to target neuronal structures with histological stains or fluorescent dyes that are either expressed by transgenic mice or injected at specific locations in the brain. Efforts to adapt the serial histology acquisition scheme to use intrinsic contrast imaging (ICI) were also put forward, thus leveraging the natural contrast of neuronal tissue. This review focuses on these efforts. First, the origin of optical contrast in brain tissue is discussed with emphasis on the various imaging modalities exploiting these contrast mechanisms. Serial blockface histology (SBH) systems using ICI modalities are then reported, followed by a review of some of their applications. These include validation studies and the creation of multimodal brain atlases at a micrometer resolution. The paper concludes with a perspective of future developments, calling for a consolidation of the SBH research and development efforts around the world. The goal would be to offer the neuroscience community a single standardized open-source SBH solution, including optical design, acquisition automation, reconstruction algorithms, and analysis pipelines.
APA, Harvard, Vancouver, ISO, and other styles
28

Chen, Han, Tianyi Huang, Yuexin Yang, Xiao Yao, Yan Huo, Yu Wang, Wenyu Zhao, Runan Ji, Hongjiang Yang, and Zengcai V. Guo. "Sparse imaging and reconstruction tomography for high-speed high-resolution whole-brain imaging." Cell Reports Methods 1, no. 6 (October 2021): 100089. http://dx.doi.org/10.1016/j.crmeth.2021.100089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kim, Min-Oh, Joonsung Lee, Sang-Young Zho, and Dong-Hyun Kim. "Accelerated MR whole brain imaging with sheared voxel imaging using aliasing separation gradients." Medical Physics 40, no. 6Part1 (May 8, 2013): 062301. http://dx.doi.org/10.1118/1.4803501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Oskan, F., U. Ganswindt, S. B. Schwarz, F. Manapov, C. Belka, and M. Niyazi. "Hippocampus sparing in whole-brain radiotherapy." Strahlentherapie und Onkologie 190, no. 4 (March 9, 2014): 337–41. http://dx.doi.org/10.1007/s00066-013-0518-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ode, K. L., and H. R. Ueda. "Seeing the forest and trees: whole-body and whole-brain imaging for circadian biology." Diabetes, Obesity and Metabolism 17 (September 2015): 47–54. http://dx.doi.org/10.1111/dom.12511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Brunner, Clément, Micheline Grillet, Alan Urban, Botond Roska, Gabriel Montaldo, and Emilie Macé. "Whole-brain functional ultrasound imaging in awake head-fixed mice." Nature Protocols 16, no. 7 (June 4, 2021): 3547–71. http://dx.doi.org/10.1038/s41596-021-00548-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wolf, Sébastien, Willy Supatto, Georges Debrégeas, Pierre Mahou, Sergei G. Kruglik, Jean-Marc Sintes, Emmanuel Beaurepaire, and Raphaël Candelier. "Whole-brain functional imaging with two-photon light-sheet microscopy." Nature Methods 12, no. 5 (April 29, 2015): 379–80. http://dx.doi.org/10.1038/nmeth.3371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Thouvenin, Olivier, and Claire Wyart. "Tracking microscopy enables whole-brain imaging in freely moving zebrafish." Nature Methods 14, no. 11 (November 2017): 1041–42. http://dx.doi.org/10.1038/nmeth.4474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Rabut, Claire, Mafalda Correia, Victor Finel, Sophie Pezet, Mathieu Pernot, Thomas Deffieux, and Mickael Tanter. "4D functional ultrasound imaging of whole-brain activity in rodents." Nature Methods 16, no. 10 (September 23, 2019): 994–97. http://dx.doi.org/10.1038/s41592-019-0572-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lake, Evelyn M. R., Xinxin Ge, Xilin Shen, Peter Herman, Fahmeed Hyder, Jessica A. Cardin, Michael J. Higley, et al. "Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI." Nature Methods 17, no. 12 (November 2, 2020): 1262–71. http://dx.doi.org/10.1038/s41592-020-00984-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Manniesing, Rashindra, Marcel T. H. Oei, Bram van Ginneken, and Mathias Prokop. "Quantitative Dose Dependency Analysis of Whole-Brain CT Perfusion Imaging." Radiology 278, no. 1 (January 2016): 190–97. http://dx.doi.org/10.1148/radiol.2015142230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ning, Kefu, Xiaoyu Zhang, Xuefei Gao, Tao Jiang, He Wang, Siqi Chen, Anan Li, and Jing Yuan. "Deep-learning-based whole-brain imaging at single-neuron resolution." Biomedical Optics Express 11, no. 7 (June 8, 2020): 3567. http://dx.doi.org/10.1364/boe.393081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Falkovskiy, Pavel, Daniel Brenner, Thorsten Feiweier, Stephan Kannengiesser, Bénédicte Maréchal, Tobias Kober, Alexis Roche, et al. "Comparison of accelerated T1-weighted whole-brain structural-imaging protocols." NeuroImage 124 (January 2016): 157–67. http://dx.doi.org/10.1016/j.neuroimage.2015.08.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gauderon, P., M. Salluzzi, M. Lauzon, C. McCreary, M. Smith, and R. Frayne. "SU-E-I-132: Whole-Brain DCE Quantitative Perfusion Imaging." Medical Physics 38, no. 6Part6 (June 2011): 3426. http://dx.doi.org/10.1118/1.3611706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Makabe, Takeshi, Manami Nakamura, and Ryo Moriyama. "Applicability of the 3D-VIBE Sequence to Whole Brain Imaging." Japanese Journal of Radiological Technology 65, no. 7 (2009): 945–51. http://dx.doi.org/10.6009/jjrt.65.945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Scouten, A., and R. T. Constable. "Applications and limitations of whole-brain MAGIC VASO functional imaging." Magnetic Resonance in Medicine 58, no. 2 (2007): 306–15. http://dx.doi.org/10.1002/mrm.21273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mishra, Kanuj, Mariia Stankevych, Juan Pablo Fuenzalida-Werner, Simon Grassmann, Vipul Gujrati, Yuanhui Huang, Uwe Klemm, Veit R. Buchholz, Vasilis Ntziachristos, and Andre C. Stiel. "Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins." Science Advances 6, no. 24 (June 2020): eaaz6293. http://dx.doi.org/10.1126/sciadv.aaz6293.

Full text
Abstract:
We introduce two photochromic proteins for cell-specific in vivo optoacoustic (OA) imaging with signal unmixing in the temporal domain. We show highly sensitive, multiplexed visualization of T lymphocytes, bacteria, and tumors in the mouse body and brain. We developed machine learning–based software for commercial imaging systems for temporal unmixed OA imaging, enabling its routine use in life sciences.
APA, Harvard, Vancouver, ISO, and other styles
44

Sneed, Penny K., Kathleen R. Lamborn, Julie M. Forstner, Michael W. McDermott, Susan Chang, Elaine Park, Philip H. Gutin, Theodore L. Phillips, William M. Wara, and David A. Larson. "Radiosurgery for brain metastases: is whole brain radiotherapy necessary?" International Journal of Radiation Oncology*Biology*Physics 43, no. 3 (February 1999): 549–58. http://dx.doi.org/10.1016/s0360-3016(98)00447-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hashimoto, Hitoshi. "Unbiased whole-brain imaging to uncover molecular mechanisms and therapeutic targets for brain disorders." Proceedings for Annual Meeting of The Japanese Pharmacological Society 92 (2019): 1—SL01. http://dx.doi.org/10.1254/jpssuppl.92.0_1-sl01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fujii, Osamu, Kayoko Tsujino, Toshinori Soejima, Eisaku Yoden, Yukako Ichimiya, and Kazuro Sugimura. "White matter changes on magnetic resonance imaging following whole-brain radiotherapy for brain metastases." Radiation Medicine 24, no. 5 (July 18, 2006): 345–50. http://dx.doi.org/10.1007/s11604-006-0039-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ding, X. Q., A. A. Maudsley, S. Sheriff, B. Schmitz, and P. Bronzlik. "Neurometabolic changes in aging human brain observed with whole brain magnetic resonance spectroscopic imaging." New Biotechnology 44 (October 2018): S13. http://dx.doi.org/10.1016/j.nbt.2018.05.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Park, Jaeseok, and Eung Yeop Kim. "Contrast-enhanced, three-dimensional, whole-brain, black-blood imaging: Application to small brain metastases." Magnetic Resonance in Medicine 63, no. 3 (February 25, 2010): 553–61. http://dx.doi.org/10.1002/mrm.22261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sadikov, E., A. Bezjak, Q. L. Yi, W. Wells, L. Dawson, and N. Laperriere. "48 Value of Whole Brain Re-Irradiation for Brain Metastases." Radiotherapy and Oncology 76 (September 2005): S15. http://dx.doi.org/10.1016/s0167-8140(05)80209-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kringelbach, Morten L., Josephine Cruzat, Joana Cabral, Gitte Moos Knudsen, Robin Carhart-Harris, Peter C. Whybrow, Nikos K. Logothetis, and Gustavo Deco. "Dynamic coupling of whole-brain neuronal and neurotransmitter systems." Proceedings of the National Academy of Sciences 117, no. 17 (April 13, 2020): 9566–76. http://dx.doi.org/10.1073/pnas.1921475117.

Full text
Abstract:
Remarkable progress has come from whole-brain models linking anatomy and function. Paradoxically, it is not clear how a neuronal dynamical system running in the fixed human anatomical connectome can give rise to the rich changes in the functional repertoire associated with human brain function, which is impossible to explain through long-term plasticity. Neuromodulation evolved to allow for such flexibility by dynamically updating the effectivity of the fixed anatomical connectivity. Here, we introduce a theoretical framework modeling the dynamical mutual coupling between the neuronal and neurotransmitter systems. We demonstrate that this framework is crucial to advance our understanding of whole-brain dynamics by bidirectional coupling of the two systems through combining multimodal neuroimaging data (diffusion magnetic resonance imaging [dMRI], functional magnetic resonance imaging [fMRI], and positron electron tomography [PET]) to explain the functional effects of specific serotoninergic receptor (5-HT2AR) stimulation with psilocybin in healthy humans. This advance provides an understanding of why psilocybin is showing considerable promise as a therapeutic intervention for neuropsychiatric disorders including depression, anxiety, and addiction. Overall, these insights demonstrate that the whole-brain mutual coupling between the neuronal and the neurotransmission systems is essential for understanding the remarkable flexibility of human brain function despite having to rely on fixed anatomical connectivity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography