Journal articles on the topic 'WhiB6'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'WhiB6.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alhadlaq, Meshari Ahmed, Jeffrey Green, and Bassam K. Kudhair. "Analysis of Kytococcus sedentarius Strain Isolated from a Dehumidifier Operating in a University Lecture Theatre: Systems for Aerobic Respiration, Resisting Osmotic Stress, and Sensing Nitric Oxide." Microbial Physiology 31, no. 2 (2021): 135–45. http://dx.doi.org/10.1159/000512751.
Full textGeiman, Deborah E., Tirumalai R. Raghunand, Nisheeth Agarwal, and William R. Bishai. "Differential Gene Expression in Response to Exposure to Antimycobacterial Agents and Other Stress Conditions among Seven Mycobacterium tuberculosis whiB-Like Genes." Antimicrobial Agents and Chemotherapy 50, no. 8 (August 2006): 2836–41. http://dx.doi.org/10.1128/aac.00295-06.
Full textBosserman, Rachel E., Tiffany T. Nguyen, Kevin G. Sanchez, Alexandra E. Chirakos, Micah J. Ferrell, Cristal R. Thompson, Matthew M. Champion, Robert B. Abramovitch, and Patricia A. Champion. "WhiB6 regulation of ESX-1 gene expression is controlled by a negative feedback loop inMycobacterium marinum." Proceedings of the National Academy of Sciences 114, no. 50 (November 27, 2017): E10772—E10781. http://dx.doi.org/10.1073/pnas.1710167114.
Full textMurarka, Pooja, Aditi Keshav, Bintu Kumar Meena, and Preeti Srivastava. "Functional characterization of the transcription regulator WhiB1 from Gordonia sp. IITR100." Microbiology 166, no. 12 (December 1, 2020): 1181–90. http://dx.doi.org/10.1099/mic.0.000985.
Full textRaghunand, Tirumalai R., and William R. Bishai. "Mapping Essential Domains of Mycobacterium smegmatis WhmD: Insights into WhiB Structure and Function." Journal of Bacteriology 188, no. 19 (October 1, 2006): 6966–76. http://dx.doi.org/10.1128/jb.00384-06.
Full textVijayaraj, Mahalakshmi. "Virtual screening of a MDR-TB WhiB6 target identified by gene expression profiling." Bioinformation 15, no. 8 (August 31, 2019): 557–67. http://dx.doi.org/10.6026/97320630015557.
Full textAgarwal, Nisheeth, Tirumalai R. Raghunand, and William R. Bishai. "Regulation of the expression of whiB1 in Mycobacterium tuberculosis: role of cAMP receptor protein." Microbiology 152, no. 9 (September 1, 2006): 2749–56. http://dx.doi.org/10.1099/mic.0.28924-0.
Full textWan, Tao, Shanren Li, Daisy Guiza Beltran, Andrew Schacht, Lu Zhang, Donald F. Becker, and LiMei Zhang. "Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis." Nucleic Acids Research 48, no. 2 (December 6, 2019): 501–16. http://dx.doi.org/10.1093/nar/gkz1133.
Full textChen, Zhenkang, Yangbo Hu, Bridgette M. Cumming, Pei Lu, Lipeng Feng, Jiaoyu Deng, Adrie J. C. Steyn, and Shiyun Chen. "Mycobacterial WhiB6 Differentially Regulates ESX-1 and the Dos Regulon to Modulate Granuloma Formation and Virulence in Zebrafish." Cell Reports 16, no. 9 (August 2016): 2512–24. http://dx.doi.org/10.1016/j.celrep.2016.07.080.
Full textCasonato, Stefano, Axel Cervantes Sánchez, Hirohito Haruki, Monica Rengifo González, Roberta Provvedi, Elisa Dainese, Thomas Jaouen, et al. "WhiB5, a Transcriptional Regulator That Contributes to Mycobacterium tuberculosis Virulence and Reactivation." Infection and Immunity 80, no. 9 (June 25, 2012): 3132–44. http://dx.doi.org/10.1128/iai.06328-11.
Full textSolans, Luis, Nacho Aguiló, Sofía Samper, Alexandre Pawlik, Wafa Frigui, Carlos Martín, Roland Brosch, and Jesús Gonzalo-Asensio. "A Specific Polymorphism in Mycobacterium tuberculosis H37Rv Causes Differential ESAT-6 Expression and Identifies WhiB6 as a Novel ESX-1 Component." Infection and Immunity 82, no. 8 (June 2, 2014): 3446–56. http://dx.doi.org/10.1128/iai.01824-14.
Full textAbdallah, Abdallah M., Eveline M. Weerdenburg, Qingtian Guan, Roy Ummels, Stephanie Borggreve, Sabir A. Adroub, Tareq B. Malas, et al. "Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator." PLOS ONE 14, no. 1 (January 23, 2019): e0211003. http://dx.doi.org/10.1371/journal.pone.0211003.
Full textRybniker, Jan, Angela Nowag, Edeltraud Van Gumpel, Nicole Nissen, Nirmal Robinson, Georg Plum, and Pia Hartmann. "Insights into the function of the WhiB-like protein of mycobacteriophage TM4 - a transcriptional inhibitor of WhiB2." Molecular Microbiology 77, no. 3 (June 11, 2010): 642–57. http://dx.doi.org/10.1111/j.1365-2958.2010.07235.x.
Full textSmith, Laura J., Melanie R. Stapleton, Gavin J. M. Fullstone, Jason C. Crack, Andrew J. Thomson, Nick E. Le Brun, Debbie M. Hunt, et al. "Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron–sulfur cluster." Biochemical Journal 432, no. 3 (November 25, 2010): 417–27. http://dx.doi.org/10.1042/bj20101440.
Full textHurst-Hess, Kelley, Charity McManaman, Yong Yang, Shamba Gupta, and Pallavi Ghosh. "Hierarchy and interconnected networks in the WhiB7 mediated transcriptional response to antibiotic stress in Mycobacterium abscessus." PLOS Genetics 19, no. 12 (December 6, 2023): e1011060. http://dx.doi.org/10.1371/journal.pgen.1011060.
Full textAziz, Dinah Binte, Mei Lin Go, and Thomas Dick. "Rifabutin Suppresses Inducible Clarithromycin Resistance in Mycobacterium abscessus by Blocking Induction of whiB7 and erm41." Antibiotics 9, no. 2 (February 10, 2020): 72. http://dx.doi.org/10.3390/antibiotics9020072.
Full textBanaiee, N., W. R. Jacobs, and J. D. Ernst. "Regulation of Mycobacterium tuberculosis whiB3 in the Mouse Lung and Macrophages." Infection and Immunity 74, no. 11 (August 21, 2006): 6449–57. http://dx.doi.org/10.1128/iai.00190-06.
Full textHümpel, Anja, Susanne Gebhard, Gregory M. Cook, and Michael Berney. "The SigF Regulon in Mycobacterium smegmatis Reveals Roles in Adaptation to Stationary Phase, Heat, and Oxidative Stress." Journal of Bacteriology 192, no. 10 (March 16, 2010): 2491–502. http://dx.doi.org/10.1128/jb.00035-10.
Full textBarrientos, Omar M., Elizabeth Langley, Yolanda González, Carlos Cabello, Martha Torres, and Silvia Guzmán-Beltrán. "Mycobacterium tuberculosis whiB3 and Lipid Metabolism Genes Are Regulated by Host Induced Oxidative Stress." Microorganisms 10, no. 9 (September 11, 2022): 1821. http://dx.doi.org/10.3390/microorganisms10091821.
Full textRaghunand, Tirumalai R., and William R. Bishai. "Mycobacterium smegmatis whmD and its homologue Mycobacterium tuberculosis whiB2 are functionally equivalent." Microbiology 152, no. 9 (September 1, 2006): 2735–47. http://dx.doi.org/10.1099/mic.0.28911-0.
Full textSchrader, Sarah M., Hélène Botella, Robert Jansen, Sabine Ehrt, Kyu Rhee, Carl Nathan, and Julien Vaubourgeix. "Multiform antimicrobial resistance from a metabolic mutation." Science Advances 7, no. 35 (August 2021): eabh2037. http://dx.doi.org/10.1126/sciadv.abh2037.
Full textZheng, Fei, Quanxin Long, and Jianping Xie. "The Function and Regulatory Network of WhiB and WhiB-Like Protein from Comparative Genomics and Systems Biology Perspectives." Cell Biochemistry and Biophysics 63, no. 2 (March 3, 2012): 103–8. http://dx.doi.org/10.1007/s12013-012-9348-z.
Full textChawla, Manbeena, Saurabh Mishra, Kushi Anand, Pankti Parikh, Mansi Mehta, Manika Vij, Taru Verma, et al. "Redox-dependent condensation of the mycobacterial nucleoid by WhiB4." Redox Biology 19 (October 2018): 116–33. http://dx.doi.org/10.1016/j.redox.2018.08.006.
Full textJakimowicz, Dagmara, Sebastien Mouz, Jolanta Zakrzewska-Czerwińska, and Keith F. Chater. "Developmental Control of a parAB Promoter Leads to Formation of Sporulation-Associated ParB Complexes in Streptomyces coelicolor." Journal of Bacteriology 188, no. 5 (March 1, 2006): 1710–20. http://dx.doi.org/10.1128/jb.188.5.1710-1720.2006.
Full textSmith, Laura J., Melanie R. Stapleton, Roger S. Buxton, and Jeffrey Green. "Structure-Function Relationships of the Mycobacterium tuberculosis Transcription Factor WhiB1." PLoS ONE 7, no. 7 (July 5, 2012): e40407. http://dx.doi.org/10.1371/journal.pone.0040407.
Full textStapleton, Melanie R., Laura J. Smith, Debbie M. Hunt, Roger S. Buxton, and Jeffrey Green. "Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2." Tuberculosis 92, no. 4 (July 2012): 328–32. http://dx.doi.org/10.1016/j.tube.2012.03.001.
Full textParikh, Pankti, Manbeena Chawla, Kyle Minch, Tige Rustad, David Sherman, and Amit Singh. "Mycobacterium Tuberculosis WhiB4 is a Redox – Dependent Nucleoid Associated Protein." Free Radical Biology and Medicine 53 (November 2012): S34—S35. http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.088.
Full textFowler-Goldsworthy, Kay, Bertolt Gust, Sébastien Mouz, Govind Chandra, Kim C. Findlay, and Keith F. Chater. "The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2)." Microbiology 157, no. 5 (May 1, 2011): 1312–28. http://dx.doi.org/10.1099/mic.0.047555-0.
Full textBush, Matthew J. "The actinobacterial WhiB-like (Wbl) family of transcription factors." Molecular Microbiology 110, no. 5 (October 25, 2018): 663–76. http://dx.doi.org/10.1111/mmi.14117.
Full textGarg, Saurabh K., Md Suhail Alam, Vishal Soni, K. V. Radha Kishan, and Pushpa Agrawal. "Characterization of Mycobacterium tuberculosis WhiB1/Rv3219 as a protein disulfide reductase." Protein Expression and Purification 52, no. 2 (April 2007): 422–32. http://dx.doi.org/10.1016/j.pep.2006.10.015.
Full textBOISSIN, Jean-Pierre, Jean-Claude CASTAGNOS, and Gilles GUIEU. "L'influence de la pensée de James March sur la recherche francophone en management stratégique : une analyse bibliométrique." Management international 9, no. 4 (2005): 65–76. http://dx.doi.org/10.59876/a-k515-whb6.
Full textMolloy, Sally, Jaycee Cushman, Emma Freeman, and Keith Hutchison. "Prophage BPs Alters Mycobacterial Gene Expression and Antibiotic Resistance." Proceedings 50, no. 1 (June 16, 2020): 67. http://dx.doi.org/10.3390/proceedings2020050067.
Full textDuan, Wei, Xue Li, Yan Ge, Zhaoxiao Yu, Ping Li, Jiang Li, Lianhua Qin, and Jianping Xie. "Mycobacterium tuberculosisRv1473 is a novel macrolides ABC Efflux Pump regulated by WhiB7." Future Microbiology 14, no. 1 (January 2019): 47–59. http://dx.doi.org/10.2217/fmb-2018-0207.
Full textWarit, Saradee, Saranya Phunpruch, Chaitas Jityam, Sarinya Jaitrong, Pamaree Billamas, Angkana Chaiprasert, Prasit Palittapongarnpim, and Therdsak Prammananan. "Genetic characterisation of a whiB7 mutant of a Mycobacterium tuberculosis clinical strain." Journal of Global Antimicrobial Resistance 3, no. 4 (December 2015): 262–66. http://dx.doi.org/10.1016/j.jgar.2015.07.004.
Full textKang, Seung-Hoon, Jianqiang Huang, Han-Na Lee, Yoon-Ah Hur, Stanley N. Cohen, and Eung-Soo Kim. "Interspecies DNA Microarray Analysis Identifies WblA as a Pleiotropic Down-Regulator of Antibiotic Biosynthesis in Streptomyces." Journal of Bacteriology 189, no. 11 (April 6, 2007): 4315–19. http://dx.doi.org/10.1128/jb.01789-06.
Full textLee, Ju‐Hyung, Eun‐Jin Lee, and Jung‐Hye Roe. "uORF‐mediated riboregulation controls transcription of whiB7/wblC antibiotic resistance gene." Molecular Microbiology 117, no. 1 (November 2, 2021): 179–92. http://dx.doi.org/10.1111/mmi.14834.
Full textLarsson, Christer, Brian Luna, Nicole C. Ammerman, Mamoudou Maiga, Nisheeth Agarwal, and William R. Bishai. "Gene Expression of Mycobacterium tuberculosis Putative Transcription Factors whiB1-7 in Redox Environments." PLoS ONE 7, no. 7 (July 19, 2012): e37516. http://dx.doi.org/10.1371/journal.pone.0037516.
Full textSuhail Alam, Md, and Pushpa Agrawal. "Matrix-assisted refolding and redox properties of WhiB3/Rv3416 of Mycobacterium tuberculosis H37Rv." Protein Expression and Purification 61, no. 1 (September 2008): 83–91. http://dx.doi.org/10.1016/j.pep.2008.04.010.
Full textHutter, Bernd, and Thomas Dick. "Molecular genetic characterisation of whiB3, a mycobacterial homologue of a Streptomyces sporulation factor." Research in Microbiology 150, no. 5 (June 1999): 295–301. http://dx.doi.org/10.1016/s0923-2508(99)80055-2.
Full textBurian, Ján, Santiago Ramón-García, Charles G. Howes, and Charles J. Thompson. "WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance inMycobacterium tuberculosis." Expert Review of Anti-infective Therapy 10, no. 9 (September 2012): 1037–47. http://dx.doi.org/10.1586/eri.12.90.
Full textMulder, N. J., H. Zappe, and L. M. Steyn. "Characterization of a Mycobacterium tuberculosis homologue of the Streptomyces coelicolor whiB gene." Tubercle and Lung Disease 79, no. 5 (September 1999): 299–308. http://dx.doi.org/10.1054/tuld.1999.0217.
Full textAverina, Olga V., Natalia V. Zakharevich, and Valery N. Danilenko. "Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus." Anaerobe 18, no. 4 (August 2012): 421–29. http://dx.doi.org/10.1016/j.anaerobe.2012.04.011.
Full textChawla, Manbeena, Pankti Parikh, Alka Saxena, MohamedHusen Munshi, Mansi Mehta, Deborah Mai, Anup K. Srivastava, et al. "Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo." Molecular Microbiology 85, no. 6 (July 26, 2012): 1148–65. http://dx.doi.org/10.1111/j.1365-2958.2012.08165.x.
Full textVatlin, Aleksey A., Olga B. Bekker, Kirill V. Shur, Rustem A. Ilyasov, Petr A. Shatrov, Dmitry A. Maslov, and Valery N. Danilenko. "Kanamycin and Ofloxacin Activate the Intrinsic Resistance to Multiple Antibiotics in Mycobacterium smegmatis." Biology 12, no. 4 (March 27, 2023): 506. http://dx.doi.org/10.3390/biology12040506.
Full textLilic, Mirjana, Seth A. Darst, and Elizabeth A. Campbell. "Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7." Molecular Cell 81, no. 14 (July 2021): 2875–86. http://dx.doi.org/10.1016/j.molcel.2021.05.017.
Full textSaini, Vikram, Aisha Farhana, and Adrie J. C. Steyn. "Mycobacterium tuberculosis WhiB3: A Novel Iron–Sulfur Cluster Protein That Regulates Redox Homeostasis and Virulence." Antioxidants & Redox Signaling 16, no. 7 (April 2012): 687–97. http://dx.doi.org/10.1089/ars.2011.4341.
Full textSingh, Amit, David K. Crossman, Deborah Mai, Loni Guidry, Martin I. Voskuil, Matthew B. Renfrow, and Adrie J. C. Steyn. "Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response." PLoS Pathogens 5, no. 8 (August 14, 2009): e1000545. http://dx.doi.org/10.1371/journal.ppat.1000545.
Full textWan, Tao, Magdaléna Horová, Daisy Guiza Beltran, Shanren Li, Huey-Xian Wong, and Li-Mei Zhang. "Structural insights into the functional divergence of WhiB-like proteins in Mycobacterium tuberculosis." Molecular Cell 81, no. 14 (July 2021): 2887–900. http://dx.doi.org/10.1016/j.molcel.2021.06.002.
Full textRyding, N. Jamie, Maureen J. Bibb, Virginie Molle, Kim C. Findlay, Keith F. Chater, and Mark J. Buttner. "New Sporulation Loci in Streptomyces coelicolor A3(2)." Journal of Bacteriology 181, no. 17 (September 1, 1999): 5419–25. http://dx.doi.org/10.1128/jb.181.17.5419-5425.1999.
Full textMolle, Virginie, Wendy J. Palframan, Kim C. Findlay, and Mark J. Buttner. "WhiD and WhiB, Homologous Proteins Required for Different Stages of Sporulation in Streptomyces coelicolor A3(2)." Journal of Bacteriology 182, no. 5 (March 1, 2000): 1286–95. http://dx.doi.org/10.1128/jb.182.5.1286-1295.2000.
Full text