Academic literature on the topic 'Whey ultrafiltration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Whey ultrafiltration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Whey ultrafiltration"

1

Babenyshev, S. P., V. E. Zhidkov, D. S. Mamay, V. P. Utkin, and N. A. Shapakov. "ULTRAFILTRATION OF MODIFIED MILK WHEY." Food and Raw Materials 4, no. 2 (December 30, 2016): 101–10. http://dx.doi.org/10.21179/2308-4057-2016-2-101-110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Evdokimov, I. A., S. A. Titov, K. K. Polyansky, and D. S. Saiko. "ULTRAFILTRATION CONCENTRATING OF CURD WHEY AFTER ELECTROFLOTATION TREATMENT." Foods and Raw materials 5, no. 1 (June 29, 2017): 131–36. http://dx.doi.org/10.21179/2308-4057-2017-1-131-136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tupasela, Tuomo, Heikki Koskinen, and Pirkko Antila. "Whey pretreatments before ultrafiltration." Agricultural and Food Science 3, no. 5 (September 1, 1994): 473–79. http://dx.doi.org/10.23986/afsci.72719.

Full text
Abstract:
Whey is a by-product of cheesemaking. Whey dry matter contains mainly lactose, but also valuable whey proteins. The aim of this study was to develop improvements to whey protein membrane isolation processes. In our trials CaCl2 -added, pH-adjusted and heat-treated wheys were found to have MF (microfiltration) permeate fluxes about 30% higher than in untreated MF whey. The total solids and protein content of the MF permeates decreased compared to the original wheys. UF (ultrafiltration) trials were conducted using MF whey to compare it with centrifugally separated whey. The MF whey consistently maintained an UF flux about 1.5 to 2.5 times higher than that of the separated whey. Differently treated MF whey UF permeate fluxes also showed a difference. With CaCl2 addition, pH adjustment and heat treatment, the UF permeate fluxes were about 20 to 40% higher than when only MF was used. The total solids content decreased in each trial. The protein content of the UF concentrate also decreased compared to the MF permeate. The (β-lg (β-lactoglobulin) and α-la (α-lactalbumin) content was almost the same in UF concentrates as in MF permeates.
APA, Harvard, Vancouver, ISO, and other styles
4

Ostroumov, L. A., I. A. Korotky, D. M. Borodulin, and E. K. Sazonova. "Ultrafiltration and cryoconcentration whey processing products." Dairy Industry 65, no. 9 (2020): 65–67. http://dx.doi.org/10.31515/1019-8946-2020-9-65-67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cancino, Beatriz, Valentina Espina, and Claudia Orellana. "Whey concentration using microfiltration and ultrafiltration." Desalination 200, no. 1-3 (November 2006): 557–58. http://dx.doi.org/10.1016/j.desal.2006.03.463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ábel, Marietta, Zsolt László Kiss, Sándor Beszédes, Cecilia Hodúr, Gábor Keszthelyi-Szabó, and Zsuzsanna László. "Ultrasonically Assisted Ultrafiltration of Whey Solution." Journal of Food Process Engineering 38, no. 5 (January 8, 2015): 467–73. http://dx.doi.org/10.1111/jfpe.12177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

El-Salam, Mohamed H. Abd, Safinaz El-Shibiny, Mohamed B. Mahfouz, Hala F. El-Dein, Hossein M. El-Atriby, and Veijo Antila. "Preparation of whey protein concentrate from salted whey and its use in yogurt." Journal of Dairy Research 58, no. 4 (November 1991): 503–10. http://dx.doi.org/10.1017/s0022029900030119.

Full text
Abstract:
SummarySalted whey (7–8% NaCl) was concentrated by ultrafiltration by a factor of 20. Sweet whey equal to the retentate volume was added and ultrafiltration was continued to a concentration factor of 20. Addition of sweet whey and ultrafiltration was repeated twice more for almost complete removal of salt from whey protein concentrate (WPC). The protein content of WPC was adjusted to 3·5% using sweet whey and the mixture was heated to 65°C for 30 min. This was mixed with buffalo milk at the rate of 0, 10, 20 or 30% and then heated at 80°C for 1, 5 or 20 min before use for yogurt manufacture. The chemical, rheological and organoleptic properties of the yogurt were investigated. WPC could be added to buffalo milk at up to 20% without affecting the quality of the yogurt produced. On the contrary, it improved the texture, mouthfeel and wheying-off of yogurt from buffalo milk. Yogurt with 30% WPC had an unacceptably weak body and texture for a set product. Heating at 80°C for 5 min was sufficient to produce good quality yogurt from buffalo milk containing WPC.
APA, Harvard, Vancouver, ISO, and other styles
8

Arunkumar, Abhiram, and Mark Etzel. "Fractionation of Glycomacropeptide from Whey Using Positively Charged Ultrafiltration Membranes." Foods 7, no. 10 (October 9, 2018): 166. http://dx.doi.org/10.3390/foods7100166.

Full text
Abstract:
Fractionation of the bovine glycomacropeptide (GMP) from the other proteins in cheese whey was examined using ultrafiltration membranes surface modified to contain positively charged polymer brushes made of polyhexamethylene biguanide. By placing a strong positive charge on a 1000 kDa ultrafiltration membrane and adjusting the pH of whey close to the isoelectric point of GMP, a 14-fold increase in selectivity was observed compared to unmodified membranes. A one stage membrane system gave 90% pure GMP and a three-stage rectification system gave 97% pure GMP. The charged membrane was salt-tolerant up to 40 mS cm−1 conductivity, allowing fractionation of GMP directly from cheese whey without first lowering the whey conductivity by water dilution. Thus, similarly sized proteins that differed somewhat in isoelectric points and were 50–100 fold smaller than the membrane molecular weight cut-off (MWCO), were cleanly fractionated using charged ultrafiltration membranes without water addition. This is the first study to report on the use of salt-tolerant charged ultrafiltration membranes to produce chromatographically pure protein fractions from whey, making ultrafiltration an attractive alternative to chromatography for dairy protein fractionation.
APA, Harvard, Vancouver, ISO, and other styles
9

Kiss, Zs, Sz Kertész, C. Hodúr, G. Keszthelyi-Szabó, and Zs László. "Whey separation using TiO2-modified ultrafiltration membrane." Acta Alimentaria 43, Supplement 1 (November 2014): 78–84. http://dx.doi.org/10.1556/aalim.43.2014.suppl.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rodionov, D. A., S. I. Lazarev, K. K. Polyanskii, and Ye V. Ekkert. "Ultrafiltration installation for concentration of milk whey." Сheesemaking and buttermaking 56 (2020): 40–41. http://dx.doi.org/10.31515/2073-4018-2020-1-40-41.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Whey ultrafiltration"

1

D???Souza, Nisha Maria School of Chemical Engineering &amp Industrial Chemistry UNSW. "Influence of operating conditions on lifetime performance of membrane systems in whey processing." Awarded by:University of New South Wales. School of Chemical Engineering and Industrial Chemistry, 2005. http://handle.unsw.edu.au/1959.4/23309.

Full text
Abstract:
Statistically designed experiments were conducted on a bench-scale ultrafiltration (UF) system using 10 kDa and 100 kDa polyethersulphone membranes to study the effect of operating conditions on membrane performance during whey processing. Experiments have underlined the importance of and provided a deeper understanding of factors influencing rejection. During filtration, a dynamic layer controlled protein fouling, reducing the effective molecular weight cut-off of the 100 kDa membrane and resulting in partial rejection. As pressure increases, the cake becomes denser allowing fewer and smaller passages for permeation, thereby increasing rejection of smaller solutes. Whey should be processed at high UF cross-flow velocities, relatively low transmembrane pressures, low feed concentrations and low temperatures. Low pressures help improve fractionation efficiency; high cross-flow velocities limit cake build-up and control cake thickness, thereby reducing specific cake resistance. Temperatures less than 10??C and pH values away from the protein iso-electric point inhibit bacterial growth and are compatible with protein, mineral and membrane stability. An existing model of dairy UF plants enabled determination of factors that affect membrane age and operational measures that minimise the effect of ageing. No significant effect of ageing was observed on performance at different volume concentration ratios (VCR). Operation at VCR 37 and 38 was capable of producing 80% whey protein concentrate (WPC). The effect of diafiltration water is improved when introduced over two loops with reallocation. Prevention of reallocation will dilute the total solids concentration in the retentate producing product that is out of specification. High protein rejections, lactose and ash rejection values between 5-15%, and non-protein nitrogen rejections below 50% are essential for producing 80% WPC. Fat rejection did not influence product quality although experimental studies show that fat concentration in liquid whey affects performance. Flux was the most influential measure of membrane life. Membrane elements in loops 11-12 did not require as frequent replacement compared to elements in loops 5-7 which are most susceptible to ageing. Emphasis should be placed on these elements for cleaning routines and operating conditions that minimise the effects of fouling in order to produce 80% WPC.
APA, Harvard, Vancouver, ISO, and other styles
2

Macedo, Antónia Teresa Zorro Nobre. "Fraccionamento de lactossoro de ovelha por tecnologias de membranas e estudo das possiveis utilizações dos concentrados obtidos." Doctoral thesis, ISA/UTL, 2011. http://hdl.handle.net/10400.5/3871.

Full text
Abstract:
Doutoramento em Engenharia Agro-Industrial - Instituto Superior de Agronomia
In this thesis we studied the efficiency of fractionation of ovine whey by ultrafiltration followed by nanofiltration, in terms of permeation fluxes and apparent rejections. The application possibilities of the concentrates produced were also investigated. Ultrafiltration tests were performed in total recirculation mode under different operating conditions of transmembrane pressure and feed recirculation velocity with membranes ETNA10PP, GR81PP and GR61PP. The membranes ETNA10PP turned out to be the most appropriate for the separation of the whey protein fraction because they allowed higher permeate flux (higher productivity) with apparent rejections coefficients of the protein above 90% and low apparent rejections of lactose, providing a better separation between the two fractions (protein and fraction rich in lactose). So, the membranes ETNA10PP were used in the trials of ultrafiltration, in concentration mode, till a volume concentration factor (VCF) of 4.0. Samples of concentrates were taken for the VCF´s of 1.8, 2.0, 3.0 and 4.0, which were used to manufacture cheese whey, following the traditional process of production. Compared to traditional whey cheese, the curd made from protein concentrates have dried residues, ash and fat contents significantly lower than those determined in traditional whey cheese, whereas concentrations of protein and lactose and the hardness are significantly higher. The nanofiltration of ultrafiltration permeates, performed with membranes NFT50, allowed almost total recovery of lactose and organic matter, measured by chemical oxygen demand. The diafiltration of the lactose concentrates can be used for purposes of purification, according to the intended end application.
APA, Harvard, Vancouver, ISO, and other styles
3

Hsu, Ching-Suei. "Integrated Rotating Fibrous Bed Bioreactor-Ultrafiltration Process for Xanthan Gum Production from Whey Lactose." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308303490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yee, Kevin Wing Kan Chemical Sciences &amp Engineering Faculty of Engineering UNSW. "Operability analysis of a multiple-stage membrane process." Publisher:University of New South Wales. Chemical Sciences & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41287.

Full text
Abstract:
Membrane processes have found increasing industrial applications worldwide. For membrane processes to deliver their desired performances and mitigate the effect of disturbances, automatic controllers must be installed. Before the installation of controllers, operability analysis is a crucial step to evaluate how well the processes can be controlled, and to determine how process design can be improved for better control. However, existing applications of operability analysis in membrane processes are limited. This thesis extends the application of operability analysis to a multiple-stage membrane process, exemplified by a detailed case study of a 12-stage industrial whey ultrafiltration (UF) process. Process dynamic models are determined to describe the transient behaviour of process performance caused by disturbances and long-term fouling. Steady-state nonlinear operability analysis is conducted to identify inherent limitations of the process. Using the process dynamic models, dynamic operability analysis is performed to determine the effects of dynamic behaviour on process and controller design. Steady-state operability analysis shows that the whey UF process is not able to mitigate the effects of high concentrations of true protein in the fresh whey feed. The ability of the process to mitigate the effects of disturbances is also adversely affected by long-term membrane fouling. Mid-run washing is therefore necessary to restore control performance after long periods of operation. Besides demonstrating the adverse effects of long-term membrane fouling on operability, dynamic operability analysis identifies the manipulated variables that can deliver the best control performance. It also indicates that control performance can be improved by installing equipment (e.g. buffer tanks) upstream of the process. Dynamic operability analysis shows that recycling of the retentate stream has a profound effect on the plant-wide dynamics and reduces significantly the achievable speed of process response under automatic control. However, retentate recycling is essential during operation to minimize membrane fouling. Although reducing the number of stages in the whey UF process can improve the achievable speed of process response under automatic control, process performance will fluctuate significantly from its desired level. A trade-off therefore exists between process performance and control performance that should be addressed during process and controller design.
APA, Harvard, Vancouver, ISO, and other styles
5

Araujo, Farro Patricia Cecilia Araujo. "Ultrafiltração do soro de queijo minas frescal pre-tratado e microfiltrado : efeitos da vazão volumetrica e da pressão transmembrana no fluxo de permeado." [s.n.], 2003. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254796.

Full text
Abstract:
Orientador : Luiz Antonio Viotto
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-03T14:31:30Z (GMT). No. of bitstreams: 1 AraujoFarro_PatriciaCeciliaAraujo_M.pdf: 10347874 bytes, checksum: 27da3e953a0c24aa4d8d9a820839adb0 (MD5) Previous issue date: 2003
Resumo: Estudos de pré-tratamentos do soro que melhorem a taxa de permeação em processos por membranas de ultrafiltração (UF) são importantes para a viabilização econômica da produção de concentrados protéicos de soro (CPS). Além disso, os pré-tratamentos também podem ser utilizados no melhoramento das propriedades funcionais das proteínas do soro. No entanto, este processo de concentração apresenta uma dificuldade natural durante a DF do soro conhecido como "fouling", ou entupimento das membranas, a qual constitui o ¿principal¿ problema do uso desta tecnología nas indústrias de laticínios; uma vez que causa uma alta redução no fluxo de permeado. O objetivo deste trabalho foi estudar o efeito de pré-tratamentos do soro; microfiltração, ajuste de pH e tratamento térmico, bem como a influência dos parâmetros operacionais de vazão volumétrica e pressão transmembrana no fluxo do permeado durante a ultrafiltração. Amostras de alimentação, do retentado e do permeado das etapas de microfiltração e ultrafiltração foram tomadas para análise de composição química (conteúdo protéico, gordura, nitrogênio total e cinzas). O soro, obtido da produção de queijo Minas Frescal, foi submetido a dois tipos de pré-tratamentos; ajuste do pH 7,3 antes do tratamento térmico a 55°C por 15 minutos, seguido de microfiltração numa membrana cerâmica (alumina), com diâmetro médio de poro de 1,4 f..lm e área de permeação de 0,24 m2, em condições operacionais fixas de 4,3 m3 fh de vazão volumétrica, pressão transmembrana de 0,5 bar e temperatura operacional constante de 50°C. O permeado da microfiltração foi ultrafiltrado em uma membrana de polisulfona, tipo Fibra Oca da Koch Membrane, com massa molecular de corte de 10000 Da, área de permeação de 1,3 m2. A temperatura desta etapa foi fixada em 50°C, variandose a pressão transmembrana de 0,5 a 2 bar e a vazão volumétrica de 1,8 a 3,6m3fh até fator de concentração (FC) 15, resultando em concentrados protéicos de soro (CPS) com cerca de 70% de proteína total, em base seca. Foi possível verificar, através da análise estatística, QS efeitos significativos da pressão transmembrana e da vazão volumétrica sobre o fluxo de permeado nas faixas estudadas. O fluxo médio máximo de 53,77 kg/m2.h foi 9btido a uma vazão de 3,6 m3fh a 2 bar de pressão. O efeito das variáveis independentes não foi significativo no rendimento protéico que assumiu valores de 0,98 e 0,99, demonstrando que este valor é característico da interação entre a membrana e produto, e não depende dos parâmetros do processo. Foi possível verificar ainda que, com o aumento da vazão volumétrica e da alta pressão transmembrana nas faixas estudadas, houve um aumento da relação entre proteína e lactose (Pt/Lact) a FC 15 em relação à alimentação; sendo que a 3,6m3fh e pressão transmembrana de 2 bar, a relação Pt/Lact assumiu o mais alto valor (3610,89). O modelo de Kuo & Cheryan (1983) para as condições de pressão transmembrana de 0,7-2 bar, vazão volumétrica de 1,8-3,6 m3fh e a temperatura de 50° C apresentou melhor concordância com os dados experimentais do que o modelo de Wu et aI. (1991)
Abstract: Pre-treatments of whey to improve the permeate flux in ultra filtration (UF) membrane processes are important for economic viability of whey protein concentrate (WPC) production. Moreover, pre-treatments can also be used to improve functional properties of whey proteins. Nevertheless, membrane fouling is the main technological problem concerned to dairy industries due to the permeate flux reduction during UF processo The goal of this work was to study the influence of pre-treatments like micro filtration (MF), pH adjustment and heat treatment, as well as operational parameters like volumetric flow and transmembrane pressure on ultra filtration permeate fluxo Samples of feed, retentate and permeate at CF 11,5 and 15 were analyzed for chemical composition (protein content, lipids, total nitrogen and ash), on MF and UF steeps, respectively. Sweet whey from Minas Frescal cheese was submitted at two pre-treatments: a combination of pH adjustment and heat treatment followed by micro filtration. Initially, pH was adjusted to 7,3 and heated at 55°C for 15 minutes. After it, the whey was micr filtrated in a ceramic membrane (Alumina), with an average diameter pore of 1,4 _ and permeation area of 0,24 m2. The volumetric flow was maintained constant at 4,3 m3fh, transmembrane pressure at 0,5 bar and temperature at 50°C. The permeate of MF step was then ultra filtered in a polissulfone membrane Hollow Fiber (Koch Membrane), MW lOkDa, with 1,3m2 of permeation effective area at constant temperature at 50°C. The transmembrane pressure varied between 0,5 and 2 bars and flow from 1,8 to 3,6m3fh until a concentration factor (CF) of 15. The WPC produced contain about 70% of total protein, in dry basis. It was observed, by statistical analysis, that transmembrane pressure and volumetric flow had a significant effect on permeate flux in the range value of parameters studied. Maximum flux (53,77 Kg/m2.h) was found with volumetric flow of3,6 m3fh and 2 bars of pressure. Protein yield (with values between 0,98 and 0,99) was not significantly affected by these parameters, which demonstrate that the interaction between the membrane and the product does not depend of there parameters. It was also observed that, with the increase of volumetric flow and the transmembrane pressure resulted, an increase in the percentage of variation of relation protein and lactose (PtlLact) at CF 15 relatively the feed. The maximum value (3610,89%) was obtained at the same condition of the best permate flux Kuo & Cheryan (1983) model showed better agreement to experimental data than Wu et aI. (1991) model, for all combinations of transmembrane pressure and volumetric flow at temperature of 50° C
Mestrado
Mestre em Engenharia de Alimentos
APA, Harvard, Vancouver, ISO, and other styles
6

Lubeck, Gert Marcos. "Estudo da fabricação de requeijão cremoso com diferentes concentrações de gordura no extrato seco, sal emulsificante e concentrado proteico de soro obtido por ultrafiltração." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/255611.

Full text
Abstract:
Orientador: Salvador Massaguer Roig
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-10T05:25:31Z (GMT). No. of bitstreams: 1 Lubeck_GertMarcos_D.pdf: 2387143 bytes, checksum: ebda37b30cff2d72ffbe5153c83f1e38 (MD5) Previous issue date: 2005
Resumo: Este trabalho constitui em desenvolver tecnologia de fabricação de requeijão cremoso utilizando concentrado oretéico de soro ultrafiltrado e estudar as caracteristicas fisico-quimicas, de textura instrumental e sensorial, capacidade de derretimento de queijo, propriedades reológicas e de caracterização sensorial dos produtos. A fabricação dos produtos foi realizada nas instalações da Indústria de Laticínios Bombardelli em condições de processo industrial. Na 1ª etapa foram realizados dois experimentos. O primeiro experimento avaliou a possibilidade do aproveitamento do concentrado protéicode soro (CPS), de massa coagulada com e sem lavagem da massa, e de utilização de diferentes fontes de gordura, como o creme de leite e a manteiga, na fabricação de requeijão cremoso. O segundo experimento avaliou pontos tecnológicos de processo de ovbtenção dos ingredientes de fabricação sos requeijões cremosos. Na 2ª etapa também foram realizados dois experimentos. O primeiro experimento consistiu na fabricação dos requeijões cremosos utilizando quatro níveis de CPS (6,8, 10 e 12%) e três níveis de gordura no extrato seco (GES) (55, 60e 65%). Foram avaliadas as caracteristicas fisico-quimicas dos ingredientes e, o fluxo de requeijão e os parâmetros de textura industrial dos produytos. Os produtos fabricados foram comparados com requeijões comerciais. No segundo experimento foram utilizados cinco níveis de CPS (0, 6, 8, 10 e 12%) e três níveis de GES (55, 60, e 65%). Ocorreram diferenças significativas (p<0,05) entre as amostras de requeijão cremosos, em relação aos parâmetros de textura instrumental e teste de derretimento. A 3ª etapa consistiu de um experimento que permitiu a realização do estudo de análise sensorial que incluiu o teste de aceitação a Análise Descritiva Quantitativa (ADQ) realizada por uma equipe sensorial de onze provadores. Foram avaliadas 15 amostras de requeijão cremoso fabricadas com a adição de cinco níveis de concentrado protéico de soro e três níveis de sal emulsificante e quatro amostras comerciais de requeijão. Foram escolhidas pelo teste de aceitação as quatro melhores amostras de requeijão com CPS e uma amostra de requeijão comercial, considerando a aparência, aroma, sabor, consistência e espalhabilidade. Baseado nestes resultados, as cinco melhores amostras foram realizadas por meio de análise descritiva quantitativa, caracterizando os produtos, Foi avaliada a realção que existe entre as caracteristicas fisico-quimica com a capacidade de derretimento e parametros de textura instrumental (TPA) dos requeijões cremosos. A 4ª e ultima etapa consistiu de um experimento, em que se avaliou o efeito das variáveis de processo, pela incorporação de diferentes níveis de concentrado protéico de soro obtido por ultrafiltração de sal emulsificante sobre as respostas de textura instrumental e sensorial. O planejamento experimental consistiu de quatro ensaios, quatro pontos centrais, totalizando 12 ensaios. Obteve-se faixas ótimas de uso de CPS e SE que proporcionaram as melhores respostas sensoriais de cremosidade, pastosidadee espalhabilidade e de textura instrumental de dureza, adesividade, elasticidade e gomosidade. Obteve-se um índice reológico de comportamento (n) mínimo n = 0,51 para amostra 07 (produto mais viscoso) e máximo n = 0,80 para amostra 08 (produto menos viscoso)
Abstract: This work consisted to develop technology of manufacture of requeijão cremoso utilizing whey protein concentrate ultrafiltered and study the chemicalphysical characteristics, sensory and instrumental texture, melting cheese capacity, rheological properties and sensorial characteristics of products. The fabrication of products was realized in Bombardelli Dairy Industry in conditions insdustrial process. In the first stage, were realized two experiments. The first experiment evaluated the possibility of to use whey protein concentrate, soft coagulante curd with and without curd was, use of different fat sources as milk cream or butter in fabrication os requeijão cremoso. The second experiment, was realized to define the process fluxogram to be used and the operacional range of the variables to be studied. In second stage was realized two experiments again. First experiment consisted in manufactured requeijões cremosos utilizing 6, 8, 10 and 12% whey protein concentrate and three levels of fat dry matter (55, 60 and 65%) . Were evaluated chemicalphysical characteristics of the ingredients and, melting capacity and instrumental texture parameters (TPA) of products. In second experiment were utilized five levels whey protein concentrate (zero, 6, 8, 10 and 12%), and theree levels of fat dry matter (55, 60 and 65%). Ocurred significant difference (P<0,05) between samples of requeijões cremosos in relationship melting capacity and instrumental texture parameters (TPA). Third stage consisted of one experiment that permited the realization of sensory analysis, including acceptance test and Descriptive Quantitative Analysis (DQA) realized by eleven panelist judged. Were choosed by acceptance test lhe four better samples of requeijão with addition whey protein concentrate and one commercial sample of requeijão with base in appearance, flavour, tate, consistency and spreadly. Based in this results, the fivebetter samples were analised utilizing descriptive quantitative analysis, characterizing the products. Was evaluated the relationship there are between chemicalphysical characteristics and melting capacity and texture parameters (TPA) oj "requeijões cremosos". Fouth and final stage consisted also of one experiment, in that evaluated the process variables effects, by incorporation of differents levels whey protein concentrate obtained by ultrafiltration and emulsifying salt on the instrumental and sensorial texture responses. The experimental design included four assay, four axis point and four centre points, resulting in 12 experimetal runs. Obatained abtimize regions of use of whey protein concentrate and emulsifying salt that providing the better sensorial responses of cremosity, stickiness and spreadability and better instrumental textures responses of firmness, adesiviness, elasticity and gumniness. The sample seven had minimal flow rheological behaviour index (n=0,51 product more viscous) and sample eight had maximum flow rheological behaviour index (n=0,80 product lesser viscous)
Doutorado
Doutor em Tecnologia de Alimentos
APA, Harvard, Vancouver, ISO, and other styles
7

Pagno, Carlos Henrique. "Desenvolvimento de espessante alimentar para líquidos com valor nutricional agregado, destinados a indivíduos disfágicos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/16410.

Full text
Abstract:
A deglutição é um processo coordenado e extremamente complexo, envolvendo contração e inibição de músculos localizados entre a boca e o estômago. Alterações neste sistema podem gerar disfagia, sinal comum de diversas doenças orgânicas, alterações neurológicas ou doenças neuromusculares, produzindo no paciente dificuldade na mastigação e deglutição de alimentos. Prover deglutição segura para indivíduos disfágicos é um desafio, contudo, esta pode ser facilitada se os alimentos tiverem a textura modificada e os líquidos forem espessados. Dessa maneira, este trabalho teve por objetivo desenvolver uma formulação de espessante alimentar, com valor nutricional agregado, para espessar diferentes líquidos, tornando-os com consistência adequada para pacientes disfásicos e avaliar sua ação em diferentes líquidos, testando a influência do tempo de espessamento e temperatura, sobre a estabilidade das viscosidades obtidas com as amostras. O ingrediente base usado para formulação e fonte de proteína foi o concentrado protéico de soro de leite (WPC), obtido experimentalmente, através da utilização das tecnologias de membranas, ultrafiltração (UF) e diafiltração (DF), através de três experimentos distintos. Inicialmente, 30 litros de soro em pó reconstituído, foram concentrados através da ultrafiltração, com redução do volume para cinco litros, a partir deste volume realizaram-se as diafiltrações. No primeiro experimento executaram-se quatro DF, duas de cinco litros e duas de 2,5 litros, obtendo-se WPC-1 com 56% de proteína. No segundo experimento também com quatro DF, executaram-se dois deles com 10 litros e dois com cinco litros, obtendo-se o WPC-2, com 71% de proteína. Para o terceiro experimento, os ciclos das diafiltrações foram aumentados para seis DF de cinco litros cada, obtendo-se o WPC-3, com 80% de proteína. Os concentrados obtidos foram liofilizados e caracterizados em relação a suas propriedades funcionais, sendo a solubilidade a mais importante por estar diretamente ligada à utilização em formulações alimentares de bebidas. Obteve-se solubilidade média de 70, 77 e 85% para WPC-1, 2 e 3 respectivamente. Pelas características obtidas de concentração de proteínas e percentual de solubilidade, o concentrado protéico obtido no terceiro experimento foi o selecionado para ser utilizado na formulação. Esta ficou constituída de 68% de concentrado protéico de soro de leite, 2% de mix de vitaminas e minerais e 30% do agente espessante (goma guar). Através de testes preliminares realizados com o agente espessante, determinou-se a porção do produto formulado necessária de ser adicionada aos líquidos para que os mesmos atingissem os níveis de consistência desejados, ou seja, 4,2 g para consistência de néctar (50 – 351 cP), 6,7 g para consistência de mel (351-1750 cP) e 9,2 g para consistência de pudim (> 1750 cP), tradicionalmente recomendadas para indivíduos disfásicos, segundo o National Dysphagia Diet Guidelines (NDD). Diferentes amostras (leite, sucos de abacaxi, de uva e de laranja) foram espessadas e realizadas medidas da viscosidade aparente, expressas em centipoise (cP), nos tempos pós-preparo: 10 minutos, 2 horas com taxa de cisalhamento (“shear rate”) de 50s-1 a 25ºC. As amostras foram armazenadas sob refrigeração e após 24 horas, novas medidas foram realizadas com taxa de cisalhamento de 50s-1 a 10ºC. Houve diferença estatística significativa entre as médias de viscosidade nos tempos de preparo de todos os níveis de consistência, demonstrando que o agente espessante utilizado continuou agindo, hidratando-se e aumentando a viscosidade com o passar do tempo. Também foi encontrada diferença significativa entre algumas amostras, com diferentes líquidos de diluição, quando comparadas entre si no mesmo nível de consistência. No entanto, as amostras apresentaram viscosidade dentro dos níveis sugeridos pela National Disfagic Diet, com exceção da consistência de pudim que, no tempo 10 minutos, permaneceu abaixo dos limites, adequando-se com o tempo, para o consumo de indivíduos disfágicos.
The swallowing is a coordinated and extremely complex process, involving contractions and inhibitions of muscles located between the mouth and the stomach. Alterations on this system can generate dysphagia, common sign of several organic diseases, neurological alterations or neuromuscular diseases, producing in the patient difficulty in the mastication and Swallowing of food .To provide safe swallowing for dysphagic individuals is a challenge, however, this can be facilitated, if the food has modified texture and if the liquids are thickened. In this way, the purpose of this work was to develop a formulation of food thickener, with aggregated nutritional value, to thicken different liquid foods, giving them an appropriate consistence for dysphagic individuals and to evaluate its action in different liquid foods, testing the influence of the time of thickening and temperature, over the stability of the viscosities obtained by the samples. As ingredient base for formulation and protein source was used whey protein concentrate (WPC), obtained experimentally, through the use of the technologies of membranes, the ultrafiltration (UF) and diafiltration (DF), through three different experiments. Initially, 30 liters of reconstituted powder serum, were concentrate through ultrafiltration, with reduction of the volume for cinco liters, starting from this volume the diafiltration took place. In the first experiment quatro DF were executed, two of cinco liters and two of 2.5 liters, obtained WPC-1 with 56% of protein. In the second experiment quatro DF were executed, two of them with 10 liters and two with cinco liters, obtaining WPC-2 with 71% of protein. For the third experiment, the cycles of the diafiltration were increased for 6 DF of 5 liters each, obtaining WPC-3 with 80% of protein.The obtained concentrates were liofilized and characterized in relation to its functional properties, being the solubility the most important for being directly linked to the use in alimentary formulations and drink. Average solubility of 70, 77 and 85% were obtained for WPC, 1, 2 and 3 respectively. Due to the obtained characteristics of protein concentrate and its solubility, the WPC obtained in the third experiment was selected for if used in the formulation. This was constituted of 68% of whey protein concentrate, 2% of mix of Vitamins and Minerals and 30% of the thickning agent (gum guar). Through preliminary tests accomplished with the thickening agent the amount of formulated product necessary to reach the desired consistence levels was determined, being 4.2 g for nectar consistence (50 – 351 cP), 6.7 g for honey consistence (351-1750 cP) and 9.2 g for pudding (> 1750 cP), traditionally recommended for dysphagic individuals according to National Dysphagia Diet Guidelines (NDD). Different samples (milk, pineapple juices, and grape and orange) were thickened and measurements of apparent viscosity were carried out, expressed in centipoise (cP), in the times after preparation: 10 minutes, 2 hour with shear rate of 50s-1 to 25±2ºC. The samples were stored under refrigeration and after 24 hours, new measurements were accomplished with shear rate of 50 s-1 to 10±2ºC. There were significant statistic difference among the average viscosity in the times of preparation of all the consistence levels, demonstrating that the thickening agent used continued acting, increasing the viscosity in the course of time. As well as significant differences among some samples when compared to each other in the same consistence level, caused by the different constituents of the drinks taken as sample. However, all samples presented viscosity inside the levels suggested by National Dysphagic Diet, except for the pudding consistence that, in the time of 10 minutes, was below these limits, fitting with time, being for this inside the levels suggested, appropriated for consumption by dysphagic individuals.
APA, Harvard, Vancouver, ISO, and other styles
8

SOUZA, Renata Silva Cabral de. "Avalia??o do potencial antioxidante e antimicrobiano de prote?nas do soro de leite concentradas por membranas e hidrolisadas por diferentes enzimas comerciais." Universidade Federal Rural do Rio de Janeiro, 2013. https://tede.ufrrj.br/jspui/handle/jspui/2534.

Full text
Abstract:
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2018-11-29T17:12:51Z No. of bitstreams: 1 2013 - Renata Silva Cabral de Souza.pdf: 1753830 bytes, checksum: 2dff8752eb3f7974e34f8809d059f126 (MD5)
Made available in DSpace on 2018-11-29T17:12:51Z (GMT). No. of bitstreams: 1 2013 - Renata Silva Cabral de Souza.pdf: 1753830 bytes, checksum: 2dff8752eb3f7974e34f8809d059f126 (MD5) Previous issue date: 2013-05-23
CAPES
The aim of this study was to evaluate the process of protein concentration in bovine whey proteins by ultrafiltration process and subsequently the protein hydrolysate obtained by enzymatic hydrolysis to produce bioactive peptides with potential antimicrobial and antioxidant activities. For concentration process was used a ceramic ultrafiltration membrane with a molecular range cut-off of 10-20 kDa, transmembrane pressure of 5 bar and, temperature of 30 ?C, 40 ?C and 50 ?C . The optimum temperature condition was at 40 ?C. The Volume Concentrate Factor (VCF) parameter was used as a end-point of the ultrafiltration process and fixed at 2, corresponding on concentrating the initial volume twice, in volume. At the temperature of 40 ?C, VCF had a correspondence on final protein concentration on the concentrated fraction by ultrafiltration and confirmed by Bradford method. Two commercial enzymes were tested Alcalase, Flavourzyme and an equivalent mixture of both 50:50 (w/w) in the hydrolysis reaction. The hydrolysis conditions were determined according to manufacturer instructions and confirmed by other studies: 60 ?C and pH 8 for Alcalase; 50 ?C and pH 7 for Flavourzyme; 50 ?C and pH 8 for enzyme mixture with enzyme / substrate ratio (w / w) 5/100 for all enzymes. The reaction was monitored by pH Stat method. The final Degree of Hydrolysis (DH) achieved was 15%, 52% and 63% for Flavourzyme, Alcalase and enzyme mixture, respectively. Five aliquots were collected along the hydrolysis for each enzyme reaction corresponding to differents DH in order to evaluatethe antioxidant activity by ORAC and ABTS assays with final values between 597- 1092 m? TE (ABTS) and from 1615 to 2920 ?M TE (ORAC) for Flavourzyme; 998-6290 ?M TE (ABTS) and 3092-7567 ?M TE ( ORAC) for Alcalase and finally 913-2678 ?M TE (ABTS) and 2547-5903 ?M TE (ORAC) for the enzyme mixture. The samples from all hydrolysates showed no antimicrobial activity against strains of Salmonella choleraesuis subsp. Enteritidis (ATCC 13076) and Listeria monocytogenes (ATCC 9117).
A proposta do presente trabalho foi avaliar a concentra??o das prote?nas do soro de leite bovino por ultrafiltra??o e posterior obten??o de hidrolisados proteicos deste concentrado via hidr?lise enzim?tica visando obter pept?deos bioativos com potencial atividade antimicrobiana e antioxidante. Para concentra??o das prote?nas do soro foi utilizada membrana cer?mica de ultrafiltra??o com massa molar de corte de 10-20 kDa, press?o aplicada ? membrana de 5 bar, temperaturas testadas (30 ?C, 40 ?C e 50 ?C) . A temperatura ?tima selecionada foi de 40 ?C. O Fator de Concentra??o Volum?trica foi o par?metro utilizado para indicar o final do processo de ultrafiltra??o sendo fixado em duas vezes o volume inicial da alimenta??o. Na temperatura de 40 ?C foi obtida correspond?ncia entre a concentra??o volum?trica e a concentra??o proteica final na fra??o retida pela UF, que tamb?m foi o dobro da encontrada na fra??o alimenta??o, avaliada pelo m?todo de Bradford. Foram testadas duas enzimas comerciais: Alcalase, Flavourzyme e uma mistura equivalente de ambas, na propor??o 50:50 (m/m) na rea??o de hidr?lise. As condi??es de rea??o enzim?tica foram determinadas de acordo com instru??es do fabricante e corroboradas por outros estudos em: 60 ?C, pH 8 para Alcalase; 50 ?C, pH 7 para Flavourzyme; 50 ?C, pH 8 para mistura enzim?tica e rela??o enzima/substrato (g/g) foi de 5/100 para todas as enzimas. A rea??o de hidr?lise foi monitorada pelo m?todo pH Stat. Os Graus de Hidr?lise (GH) finais alcan?ados foram de 15 %, 52 % e 63 % para Flavourzyme, mistura enzim?tica e Alcalase, respectivamente. Foram coletadas cinco al?quotas correspondentes a diferentes GH ao longo da rea??o para cada condi??o enzim?tica utilizada e avaliadas quanto a atividade antioxidante pelos m?todos ABTS e ORAC tendo valores entre 597 a 1092 ?M TE (ABTS) e 1615 a 2920 ?M TE (ORAC) para Flavourzyme, 998 a 6290 ?M TE (ABTS) e 3092 a 7567 ?M TE (ORAC) para Alcalase e por fim, 913 a 2678 ?M TE (ABTS) e 2547 a 5903 ?M TE (ORAC) para a mistura enzim?tica. Nenhuma das amostras de hidrolisado com diferentes GH apresentou atividade antimicrobiana contra cepas de Salmonella choleraesuis subsp. Enteritidis (ATCC 13076) e Listeria monocytogenes (ATCC 9117).
APA, Harvard, Vancouver, ISO, and other styles
9

Boccia, Juliana Nogueira. "Aproveitamento de diferentes tipos de soro de leite na elaboração de bebidas lácteas acidificadas carbonatadas." Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/6913.

Full text
Abstract:
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-07-04T13:35:00Z No. of bitstreams: 0
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-07-04T14:22:18Z (GMT) No. of bitstreams: 0
Made available in DSpace on 2018-07-04T14:22:19Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-05-25
A proposta deste estudo foi oferecer novas alternativas para o aproveitamento sustentável do soro desproteinado através do desenvolvimento e disponibilização de tecnologias simples de fabricação de bebidas lácteas acidificadas carbonatadas, com vida útil estendida, sem a utilização de tratamentos térmicos extremos. Foram utilizados três diferentes tipos de soros desproteinados (permeado de ultrafiltração, soro de ricota e soro ácido obtido da fabricação de queijos coagulados por acidificação direta), que normalmente são descartados pelas indústrias de laticínios. Para cada tipo de soro foram produzidas bebidas acidificadas carbonatadas em 3 repetições que foram analisadas ao longo do período de 60 dias. Verificou-se diferenças significativas entre as bebidas em relação á acidez, pH e viscosidade. Porém, para cada bebida, não houveram diferenças significativas em relação ao tempo, o que significa que permaneceram estáveis sob esses aspectos durante os 60 dias de armazenamento. Entretanto, pôde - se observar a deposição de proteínas que iniciou entre 20 e 30 dias de estocagem , em razão do pH baixo, e à perda de capacidade do estabilizante de manter essas proteínas dispersas. Os produtos apresentaram estabilidade microbiológica durante todo o tempo de estocagem sob refrigeração, não apresentando contagem de microrganismos patogênicos, confirmando assim a eficácia das barreiras microbiológicas aplicadas (pH, tratamento térmico e dióxido de carbono). As análises sensoriais demonstraram que as bebidas apresentaram boa aceitação. No entanto, a bebida produzida com soro permeado de ultrafiltração obteve maior aceitação e foi preferida em relação às demais. Ao longo do tempo de estocagem as bebidas apresentaram a mesma aceitabilidade sensorial. A bebida láctea desenvolvida pode agregar valor ao soro desproteinado permitindo o seu uso adequado e sustentável por parte das indústrias de laticínios.
The purpose of this study was to offer new alternatives for the sustainable use of unprocessed whey through the development and availability of simple technologies for the production of acidified carbonated dairy drinks with an extended shelf life without the use of extreme heat treatments. Three different types of deproteinated sera (ultrafiltration permeate, ricotta whey and acid whey obtained from the manufacture of cheeses coagulated by direct acidification) were used, which are normally discarded by the dairy industry. For each type of serum, acidified carbonated beverages were produced in 3 replicates that were analyzed over the 60 day period. There were significant differences between the beverages in relation to acidity, pH and viscosity. However, for each beverage, there were no significant differences in time, which means that they remained stable under these aspects during the 60 days of storage. However, protein deposition occurred between 20 and 30 days of storage due to the low pH and the loss of capacity of the stabilizer to keep these proteins in solution. The products presented microbiological stability during the whole storage time under refrigeration, not counting pathogenic microorganisms, thus confirming the effectiveness of the applied microbiological barriers (pH, heat treatment and carbon dioxide). Sensory analysis showed that the drinks were well accepted. However, the beverage produced with permeated ultrafiltration serum obtained greater acceptance and was preferred over the others. Throughout the time of storage the drinks presented the same sensorial acceptability. The developed dairy beverage can add value to the unprotected whey allowing its proper and sustainable use by the dairy industries.
APA, Harvard, Vancouver, ISO, and other styles
10

Srnak, Paul Marijan. "Ultrafiltration fractionation of sweet whey proteins." 1988. http://catalog.hathitrust.org/api/volumes/oclc/19104330.html.

Full text
Abstract:
Thesis (M.S.)--University of Wisconsin--Madison, 1988.
Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 109-121).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Whey ultrafiltration"

1

Vranckx, Pascal, Wilfried Mullens, and Johan Vijgen. Non-pharmacological therapy of acute heart failure: when drugs alone are not enough. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0053.

Full text
Abstract:
Acute heart failure syndrome has been defined as new-onset or a recurrence of worsening signs and symptoms of heart failure, necessitating urgent or emergency management. The management of acute heart failure syndrome is challenging, given the heterogeneity of the patient population, in terms of the clinical presentation, pathophysiology, prognosis, and therapeutic options. The management of acute heart failure syndrome is a dynamic process, requiring ongoing simultaneous diagnosis (monitoring) and treatment. Pharmacological agents remain the mainstay of therapy for acute heart failure syndrome. However, at all time, during the early diagnostic, aetiologic, and therapeutic work-up, non-pharmacologic therapy may be indicated and should be considered. The management of the complex cardiac patient with acute heart failure syndrome and/or (potential) haemodynamic compromise has become a special dimension for specialized myocardial intervention centres, providing 24 hours per day and 7 days per week state-of-the-art facilities for (primary) percutaneous coronary intervention and cardiac intensive care, including mechanical ventilation, ultrafiltration, with or without dialysis, and short-term percutaneous mechanical circulatory support. Through the understanding of the underlying pathophysiology and approaches into the problems of acute heart failure syndrome, one should be better prepared to understand and treat its many facets.
APA, Harvard, Vancouver, ISO, and other styles
2

Stachowska-Pietka, Joanna, Jacek Waniewski, and Bengt Lindholm. Peritoneal dialysis. Edited by Jonathan Himmelfarb. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0264.

Full text
Abstract:
The principles of peritoneal dialysis are based on the physiological processes and their driving forces which permit the exchange of water (by ultrafiltration and fluid absorption) and solutes (by diffusion and convective transport) between the peritoneal microvasculature and the dialysate. In peritoneal dialysis, the peritoneal transport system—mesenchymal cells, interstitium, microvasculature, and lymphatics—is repeatedly exposed to high concentrations of an osmotic agent, and a volume load, leading to increased intraperitoneal hydrostatic and osmotic pressure. This results in immediate as well as long-term structural and functional changes of the peritoneal transport system. Clinical tests supplemented with mathematical modelling have been developed to monitor the quantitative characteristics of the peritoneal transport system, allowing detection and diagnosis of various problems and guidance when predicting consequences of changes in prescription.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Whey ultrafiltration"

1

Duke, Mikel, and Todor Vasiljevic. "Whey Ultrafiltration." In Encyclopedia of Membranes, 2035–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_2053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duke, Mikel, and Todor Vasiljevic. "Whey Ultrafiltration." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2053-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hobman, P. G. "Ultrafiltration and Manufacture of Whey Protein Concentrates." In Whey and Lactose Processing, 195–230. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2894-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roehl, D., and P. Jelen. "Ultrafiltration of Soluble and Heat Precipitated Whey Protein Concentrates." In MILK the vital force, 137. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3733-8_115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Acem, K., C. Fersi, and A. Yahia. "Physicochemical and Foaming Properties of Crude Acid Whey Treated by Ultrafiltration." In Proceedings of the 4th International Symposium on Materials and Sustainable Development, 1–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43211-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

De Carvalho, Itamar C., and H. G. Kessler. "The Influence of the Whey Protein Denaturation on the Flow Properties of Milk Ultrafiltration Concentrates." In MILK the vital force, 15. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3733-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chacko, Paul, Donald Kikta, and William T. Abraham. "Ultrafiltration and Heart Failure." In Managing the Kidney when the Heart is Failing, 91–111. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3691-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bart, Bradley A. "Refractory Congestion: When to Use Ultrafiltration?" In Cardiorenal Syndrome in Heart Failure, 263–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21033-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kisielewska, Marta. "Feasibility of Bioenergy Production from Ultrafiltration Whey Permeate Using the UASB Reactors." In Biogas. InTech, 2012. http://dx.doi.org/10.5772/31528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henriques, Marta Helena Fernandes, Carlos José Dias Pereira, and Maria Helena Mendes Gil. "Characteristics of Bovine and Ovine Whey Protein Concentrates Obtained by Ultrafiltration and Diafiltration Using Different Configuration Processes." In Challenges and Advances in Chemical Science Vol. 1, 119–31. Book Publisher International (a part of SCIENCEDOMAIN International), 2021. http://dx.doi.org/10.9734/bpi/cacs/v1/9761d.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Whey ultrafiltration"

1

Chenchaiah Marella and K.Muthukumarappan. "Whey Protein Fractionation Using a Multistage Ultrafiltration System." In 2006 Portland, Oregon, July 9-12, 2006. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duignan, Mark R., and Si Y. Lee. "Cross-Flow Ultrafiltration Scaling Considerations." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98492.

Full text
Abstract:
One legacy of the nuclear age is radioactive waste and it must be stabilized to be stored in a safe manner. An important part of the stabilization process is the separation of radioactive solids from the liquid wastes by cross-flow ultrafiltration. The performance of this technology with the wastes to be treated was unknown and, therefore, had to be obtained. However, before beginning a filter study the question of experimental scale had to be addressed. Of course, carrying out experiments using full-size equipment is always ideal, but rarely practical when dealing with plant size processes. Flow loops that will handle millions of liters of slurries, which are either highly caustic or acidic, with flow rates of 10,000 lpm make full-scale tests prohibitively expensive. Moreover, when the slurries happen to be radioactive such work is also very dangerous. All of these considerations lend themselves to investigations at smaller scales and in many situations can be treated with computational analyses. Unfortunately, as scale is reduced it becomes harder to provide prototypic results and the two and three phase multi-component mixtures challenge accurate computational results. To obtain accurate and representative filter results two smaller scale filters were chosen: 1. Small-scale – would allow the testing with actual radioactive waste samples and compare results with simulated wastes that were not radioactive. For this scale the feed tank held 6 liters of waste and it had a single cross-flow filter tube 0.61 m long. 2. Pilot-scale – would be restricted to use simulated non-radioactive wastes. At this larger scale the feed tank held 120 liters of waste and the filter unit was prototypic to the planned plant facility in pore size (0.1 micron), length (2.29 m), diameter (0.0127 m inside and 0.0159 m outside diameter), and being multi-tubed. The small-scale apparatus is convenient, easy to use, and can test both radioactive and non-radioactive wastes; therefore, there is a larger database than at the pilot scale. In fact, the small-scale data are very useful to compare actual waste to simulated waste filter performance to validate a simulant, but data availability does not mean they accurately represent full-scale performance. Results indicate that small-scale filter fluxes to be significantly higher that those at the pilot scale. In an attempt to study the difference in filter performance at the two scales an experiment was done that used exactly the same simultant which was created at the same time so that issues of composition and aging would not compromise the results. This paper will discuss those experimental results, as well as those from a computational fluid dynamics model to better understand the small-scale limitations.
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Chyouhwu Brian, and Hung-Shyong Chen. "The Effect of Flow Pulsation on Ultrafiltration System Limiting Flux Behavior." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62514.

Full text
Abstract:
Ultrafiltration (UF) is an important industrial operation and is found in the food industry, separation of oil-water emulsions, treatment effluents from the pulp and paper industry, and environmental protection systems. Despite being widely used in these areas, UF systems exhibit a limiting flux behavior caused by concentration polarization on the membrane surface. Concentration polarization can be severe in macromolecular solutions due to low diffusivity on membrane separation and both mechanical and chemical methods have been used to reduce this phenomenon. This study introduces a new mechanical method that improves the performance of membrane separation and decreases concentration polarization. It involves pulsing the feed flow discontinuously and based on our results, feed flow velocity and solution bypass/membrane filtration time ratio are two vital factors when it comes to improving permeate flux. The proposed method is expected to find wide application, particularly in the processing of macromolecular solution.
APA, Harvard, Vancouver, ISO, and other styles
4

In der Maur, D. W., P. J. Hoëk, M. P. J. Piet, E. R. de Jonge, R. E. Jordan, and J. Over. "PRODUCTION OF A HIGH-PURITY FACTOR VIII CONCENTRATE BY MEANS OF FOROUS SILICA." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643921.

Full text
Abstract:
Adsorption of proteins contaminating Factor VIII in cryoprecipitate to porous silica has been evaluated as a means to produce a high-purity Factor VIII concentrate for clinical use. At first, optimal conditions for the adsorption step have been assessed. A pore size of the silica of 1000 A, a pH of 6.6 and a contact time of 30 minutes gave the best results, while ionic strength and temperature were of no importance. The specific activity of Factor VIII in the effluent was directly proportional to the ratio of silica over cryoprecipitate solution, but the Factor VIII recovery was inversely proportional. At ratio's of about 2:1 the recovery was about 90% with a specific activity of 1.5 - 2.0 IU/mg protein.Several techniques to concentrate Factor VIII from the effluent were evaluated. Of those tried (precipitation by ammonium sulphate, polyethyleneglycol or a combination of NaCl and glycin, freezedrying, and ultrafiltration using several types of membranes) ultrafiltration using hollow-fiber cartridges meant for kidney dialysis proved to be optimal: when stabilized by a mixture of amino acids the Factor VIII solution could be concentrated five-fold within 60 minutes at a 80 - 95% yield of Factor VIII with some additional purification. The stabilizers also allowed the final preparation to be heat-treated in lyophilized state for 72 hours at 60 °C or 30 hours at 70 °C.The process scheme (cryoprecipitation, porous silica adsorption, ultrafiltration, sterile filtration, freezedrying and heat treatment) has been tried out 8 times at 200 - 300 liter plasma scale and showed highly consistent results. On average, the specific activity was 1.8 IU/mg, the Factor VIII recovery 56% relative to the Factor VIII content of the starting cryoprecipitate, and the Factor VIII concentration 28 IU/ml. The process is now being scaled up to 1,000 - 1,500 liter plasma, after which clinical evaluation will follow. It is anticipated that at full production scale the porous silica method combines good purifying capacity with a relatively high yield of Factor VIII
APA, Harvard, Vancouver, ISO, and other styles
5

Alkhouzaam, Abedalkader Ibraheem, Hazim Qiblawey, and Majeda Khraisheh. "Synthesis of High-Antifouling and Antibacterial Ultrafiltration Membranes incorporating Low Concentrations of Graphene Oxide." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0070.

Full text
Abstract:
Membrane treatment for wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Graphene Oxide (GO) is one of the materials that have been recently investigated in membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using modified Hummers’ method. The synthesized GO was characterized using different analytical techniques including (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis that showed high oxidation degree of GO represented by the its oxygen content (50 wt.%). Morphology and hydrophilicity of membranes were investigated using SEM, AFM and contact angle analyses and showed clear effect of GO on PSF morphology and better hydrophilicity of GO-based membranes caused by the hydrophilic nature of GO and its high oxygen content. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Biofouling and organic fouling resistance of membranes were tested using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 86.9 ± 0.1 % with loading of 0.1 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 95.6 ± 4.2 % with 0.1 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m-2.h-1.bar-1 of pure PSF to 181.1 and 167.4 L.m-2.h-1.bar-1 with 0.02 and 0.1 wt.% GO respectively. Furthermore, GO based membranes exhibited effective antibacterial performance against Halomonas aquamarina compared to pristine PSF. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling and antibacterial properties of PSF hence improving its lifetime and reuse.
APA, Harvard, Vancouver, ISO, and other styles
6

Nnanna, A. G. Agwu, Chenguang Sheng, Kimberly Conrad, and Greg Crowley. "Performance Assessment of Pre-Filtration Strainer of an Ultrafiltration Membrane System by Particle Size Analysis." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53447.

Full text
Abstract:
One of the industrial applications of ultrafiltration membrane system is water purification and wastewater treatment. Membranes act as physical barriers by eliminating particles such as pollen, yeast, bacteria, colloids, viruses, and macromolecules from feed water. The effectiveness of the membrane to separate particles is determined by its molecular weight cut-off and feed water characteristics. Typically, pre-filtration strainers are installed upstream of an ultrafiltration membrane system to separate large particles from the flow stream. The criteria for selection of the strainer pore size is unclear and is often determined by the feed water average particle size distribution. This paper is motivated by the hydraulic loading failure of a 125 μm strainer by average feed water particle size of 1.6 μm when the volumetric flow is at or greater than 40% of the rated design flow capacity. The objective of this paper are to: a) determine if the feed particle size distribution is a sufficient parameter for selection of pre-filtration strainer, b) evaluate the effect of feed flow velocity on strainer performance, and c) enhance strainer performance using vortex generator. In this experimental study, a Single Particle Optical Sensing, Accusizer, was used to analyze particle size distribution of five water samples collected at strainer feed, strainer filtrate, and strainer backwash. All samples were analyzed using a lower detection limit of 0.5 μm. In order to capture more counts of the larger particles present in the sample, a second analysis was done for each sample at a higher detection limit, 5.09 μm for feed sample, and 2.15 μm for the rest of the samples. Particle size data based on individual detection limits were statistically combined to generate comprehensive blended results of total number and total volume. The volume was determined based on assumption that each particle is spherically shaped. The Particle Size Distribution Measurement Accuracy is ±0.035 μm. Results showed that the feed particle size diameter and volume was insufficient to determine strainer size. Particle size distribution is needed at the feed, filtrate, and backwash to evaluate the strainer particle separation efficiency. It was observed that the total particle count in the filtrate (4.4 × 106) was an order of magnitude higher than the feed (3.2 × 105). Specifically, the total count for particles with diameter less than 7.22 μm were higher in the filtrate while larger particle size ≥ 7.22 μm were more in the feed stream. It appears that the large particles in the feed breaks down into smaller particles at the strainer interface and the small particles (≤ 7.22μm) passed through the pore into the filtrate. The particle breakdown, detachment of particles in the strainer pore into the filtrate, and particle to particle interactions are enhanced by increase in flow velocity hence increasing the hydrodynamic shear that acts on attached particles. A vortex generator inserted in to the strainer reduced pore clogging and pressure drop.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Xu, and A. G. Agwu Nnanna. "Mitigation of Fouling on Hollow Fibre Membrane Using Ultrasonic Transducer." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10926.

Full text
Abstract:
Ultrasound based on-line cleaning for hollow fiber (HF) membrane filtration of synthetic wastewater was studied. An ultrasonic transducer was submerged into a filtration system in order to get an efficient cleaning of HF membranes in fouling conditions. An ultrafiltration (UF) HF membrane with the pore size at 10,000 NMWC is employed to purify waste water. The focus of this study is on the effects of temperature, ultrasonic frequency, ultrasonic power intensity and caviation micro-bubbles as well as the transmembrane pressure (TMP) performance. Experimental evidence reveals that the permeate flux increased with the application of ultrasound after fouling by sullage solution for one hour. The micro-bubble size measured by laser PDA system shows a decreased tendency with the increase of ultrasonic frequencies, and larger micro-bubbles have greater contribution to the increase of permeate flux. Results futher shows that the permeate flux measured with lower ultrasonic frequency or higher power intensity maintained higher value in general as feeding sullage water and maintain a higher risk to extend membrane pore size. In addition, the rise of the temperature around filtration system has less impact on permeate flow rate in online ultrasound system when the temperature of feed solution maintained constant.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Xu, and A. G. Agwu Nnanna. "Mitigation of Fouling on Hollow Fibre Membrane Using Ultrasonic Transducer." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11708.

Full text
Abstract:
Ultrasound based on-line cleaning for hollow fiber (HF) membrane filtration of synthetic wastewater was studied. An ultrasonic transducer was submerged into a filtration system in order to get an efficient cleaning of HF membranes in fouling conditions. An ultrafiltration (UF) HF membrane with the pore size at 10,000 NMWC is employed to purify waste water. The focus of this study is on the effects of temperature, ultrasonic frequency, ultrasonic power intensity and caviation micro-bubbles as well as the transmembrane pressure (TMP) performance. Experimental evidence reveals that the permeate flux increased with the application of ultrasound after fouling by sullage solution for one hour. The micro-bubble size measured by laser PDA system shows a decreased tendency with the increase of ultrasonic frequencies, and larger micro-bubbles have greater contribution to the increase of permeate flux. Results futher shows that the permeate flux measured with lower ultrasonic frequency or higher power intensity maintained higher value in general as feeding sullage water and maintain a higher risk to extend membrane pore size. In addition, the rise of the temperature around filtration system has less impact on permeate flow rate in online ultrasound system when the temperature of feed solution maintained constant.
APA, Harvard, Vancouver, ISO, and other styles
9

Amme, M., H. Lang, and M. Sto¨ckl. "Different Pathways of Secondary Phase Formation Induced by Colloidal and Dissolved Silica During the Dissolution of UO2 Nuclear Fuel in Leaching Tests." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4504.

Full text
Abstract:
We investigated the different dissolution behaviour of UO2 nuclear fuel material in waters containing silica in two different physical and chemical forms (dissolved ions and as SiO2 colloids, respectively) at elevated temperatures (95 °C in autoclaves). It was investigated if SiO2 colloids can act as carrier material for U ions during a interface geochemical dissolution process, a process that might possibly enhance the mobilization of uranium. Herefore, leaching / dissolution tests were conducted in batch reactors, using both dissolved Si (sodium metasilicate solution), as well as synthetic SiO2 colloids (100 nm diameter). Solid materials were examined with scanning electron microscopy (SEM-EDX) after the tests and ICP-OES was used for analysis of concentrations of U and Si in solutions. Thermodynamic calculations were applied for modelling the surface charges of the solid materials. Results show that a treatment with colloidal SiO2 has different effects on the surfaces than a leaching in dissolved silicate solutions. In the presence of colloids, well-crystallized secondary phases containing U and Si (most obviously uranyl silicates) were found on the surfaces, which were attacked by the treatment. This was not the case when dissolved Si was used. SiO2 colloids were partly found to remain on the surfaces after 1000 h at 95 °C. Dissolved U concentrations decreased with increasing Si content in the systems, especially so when colloidal Si was used. Ultrafiltration showed that the greatest part of the dissolved U was associated with Si colloids. A surface charge model suggests that the different effects are due to the development of electrostatic interactions between the UO2 and SiO2 surfaces.
APA, Harvard, Vancouver, ISO, and other styles
10

Krasnoshtanova, Alla, and Alesya Yudina. "PRODUCTION OF ANTIBODIES FROM POULTRY YOLK (IgY) AND INVESTIGATION OF THEIR IMMUNOCHEMICAL PROPERTIES." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/17.

Full text
Abstract:
"A particularly important aspect of immunology is to develop non-invasive methods of obtaining antibodies which could be a great alternative to traditional ones that based on the harmful procedure of isolation of immunoglobulins from animal blood sera. That’s why the extraction of antibodies from poultry egg yolks (IgY) is the most promising. Due to the fact of variation of IgY structural features that determine the definite immunochemical properties, yolk antibodies in comparison with mammalian immunoglobulins (IgG) does not interact with rheumatoid factor (Rf), contribute to the activation of the complement system, bind to the Fc-receptor (FcR), and also has weak cross-reactivity, which confirms the possibility of their widespread use in medicine and food. Also the presence of phylogenetic distance between chickens and mammalians guarantees immune response against conservative mammalian protein molecules which is highly important for the creation of new generation test systems. The aim of this work is to develop a selective method of producing high-purity immunoglobulin Y preparations from the yolk of chicken eggs. There were adopted selective conditions of isolation of IgY under spontaneous thawing procedure at the room temperature of firstly frozen yolk solution in a sodium-phosphate buffer mixed with water (pH 5.0) in a ratio of 1:6, which leads to receiving a water-soluble fraction further precipitated with the sodium chloride at a concentration of 10% of the solution mass and subsequently concentrated using ultrafiltration with membrane UAM-10, that allows achieving the content of IgY not less than 95% per dry substance in immunoglobulin fraction. It is possible to produce a protein fraction with a protein content of at least 9 g/l. The purity of the immunoglobulin fraction was verified using polyacrylamide gel electrophoresis. The presence of a light chain in the IgY solution was proved to be a low-molecular compound using the method of gel-filtration-chromatography. The immunological activity of IgY was studied with respect to bovine serum albumin (BSA) as an antigen. The enzymatic resistance of IgY against proteolytic enzymes was tested in area of the gastrointestinal tract."
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography