Academic literature on the topic 'Weyle invariance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Weyle invariance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Weyle invariance"
NIETO, J. A. "REMARKS ON WEYL INVARIANT p-BRANES AND Dp-BRANES." Modern Physics Letters A 16, no. 40 (December 28, 2001): 2567–78. http://dx.doi.org/10.1142/s0217732301005497.
Full textEdery, Ariel, and Yu Nakayama. "Generating Einstein gravity, cosmological constant and Higgs mass from restricted Weyl invariance." Modern Physics Letters A 30, no. 30 (September 7, 2015): 1550152. http://dx.doi.org/10.1142/s0217732315501527.
Full textFutorny, Vyacheslav, and João Schwarz. "Holonomic modules for rings of invariant differential operators." International Journal of Algebra and Computation 31, no. 04 (April 10, 2021): 605–22. http://dx.doi.org/10.1142/s0218196721500296.
Full textSUZUKI, HIROSHI. "THERMAL PARTITION FUNCTION OF NON-CRITICAL BOSONIC STRINGS." Modern Physics Letters A 04, no. 21 (October 20, 1989): 2085–92. http://dx.doi.org/10.1142/s0217732389002343.
Full textJAIN, SANJAY. "CONFORMALLY INVARIANT FIELD THEORY IN TWO DIMENSIONS AND STRINGS IN CURVED SPACETIME." International Journal of Modern Physics A 03, no. 08 (August 1988): 1759–846. http://dx.doi.org/10.1142/s0217751x8800076x.
Full textCHO, Y. M. "MONOPOLE CONDENSATION AND MASS GAP IN SU(3) QCD." International Journal of Modern Physics A 29, no. 03n04 (February 10, 2014): 1450013. http://dx.doi.org/10.1142/s0217751x14500134.
Full textZENKIN, S. V. "GENERAL FORM OF THE LATTICE FERMION ACTION." Modern Physics Letters A 06, no. 02 (January 20, 1991): 151–55. http://dx.doi.org/10.1142/s0217732391000105.
Full textIRAC-ASTAUD, MICHÈLE. "DIFFERENTIAL CALCULUS ON A THREE-PARAMETER OSCILLATOR ALGEBRA." Reviews in Mathematical Physics 08, no. 08 (November 1996): 1083–90. http://dx.doi.org/10.1142/s0129055x96000408.
Full textHARADA, KOJI. "EQUIVALENCE BETWEEN THE WESS-ZUMINO-WITTEN MODEL AND TWO CHIRAL BOSONS." International Journal of Modern Physics A 06, no. 19 (August 10, 1991): 3399–418. http://dx.doi.org/10.1142/s0217751x91001659.
Full textTemme, Francis P. "Commutator-Based (A)[X]n(SU(2)×Sn) NMR Cluster Systems: Establishment of the Universality of [n](Sn) Salients and Constraints on ϕ±11(1.1) Polarisations to the [1n] Salient: Permutational Spin Symmetry (PSS) Within NMR Spin Dynamics - an Analytic View." Collection of Czechoslovak Chemical Communications 70, no. 8 (2005): 1177–95. http://dx.doi.org/10.1135/cccc20051177.
Full textDissertations / Theses on the topic "Weyle invariance"
Bonezzi, Roberto <1983>. "Complex higher spins, Weyl invariance and tractors." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3546/1/bonezzi_roberto_tesi.pdf.
Full textBonezzi, Roberto <1983>. "Complex higher spins, Weyl invariance and tractors." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3546/.
Full textWang, Haowu. "Reflective modular forms and Weyl invariant E8 Jacobi modular forms." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I028/document.
Full textThis thesis consists of two independent parts. In the first part we develop an approach based on the theory of Jacobi forms of lattice index to classify reflective modular forms on lattices of arbitrary level. Reflective modular forms have applications in algebraic geometry, Lie algebra and arithmetic. The classification of reflective modular forms is an open problem and has been investigated by Borcherds, Gritsenko, Nikulin, Scheithauer and Ma since 1998. In this part, we establish new necessary conditions for the existence of a reflective modular form. We prove non-existence of reflective modular forms and 2-reflective modular forms on lattices of large rank. We also give a complete classification of 2-reflective modular forms on lattices containing two hyperbolic planes. The second part is devoted to the study of Weyl invariant $E_8$ Jacobi forms. This type of Jacobi forms has significance in Frobenius manifolds, Gromov--Witten theory and string theory. In 1992, Wirthm\"{u}ller proved that the space of Jacobi forms for any irreducible root system not of type $E_8$ is a polynomial algebra. But very little has been known about the case of $E_8$. In this paper we show that the bigraded ring of Weyl invariant $E_8$ Jacobi forms is not a polynomial algebra and prove that every such Jacobi form can be expressed uniquely as a polynomial in nine algebraically independent Jacobi forms introduced by Sakai with coefficients which are meromorphic $\SL_2(\ZZ)$ modular forms. The latter result implies that the space of Weyl invariant $E_8$ Jacobi forms of fixed index is a free module over the ring of $\SL_2(\ZZ)$ modular forms and that the number of generators can be calculated by a generating series. We determine and construct all generators of small index. These results give a proper extension of the Chevalley type theorem to the case of $E_8$
Davies, Ian James. "A large-D Weyl invariant string model in Anti-de Sitter space." Thesis, Durham University, 2002. http://etheses.dur.ac.uk/3838/.
Full textEckes, Christophe. "Groupes, invariants et géométries dans l'œuvre de Weyl : Une étude des écrits de Hermann Weyl en mathématiques, physique mathématique et philosophie, 1910-1931." Thesis, Lyon 3, 2011. http://www.theses.fr/2011LYO30069/document.
Full textOur purpose consists in comparing Weyl's mathematical practice with his philosophical reflections on mathematics. We will study (a) his monographs on complex analysis, general relativity and quantum mechanics, (b) the articles which are linked to these books, (c) some of his lecture courses, (d) his correspondence with different scientists, mainly A. Einstein, E. Cartan, J. von Neumann. We will show that his mathematical research has a strong influence on the different stands he successively takes regarding the foundations of mathematics. Conversely, we will show that the philosophical systems he refers to (mainly kantian criticism, fichtean idealism and husserlian phenomenology) have a real impact on his investigations in mathematics. We will first analyse Die Idee der Riemannschen Fläche (first edition 1913). In this book, Weyl seems to take up a formalist point of view, but this is partly true. In fact, he is influenced by two traditions respectively embodied by Hilbert and Klein. Then, we will study the successive editions of Raum, Zeit, Materie (1918-1923). We will describe Weyl's project of a “purely infinitesimal geometry”. Thanks to this geometrical framework, he builds a unified fields theory, which will be disproved by Einstein, Pauli, Reichenbach, Hilbert and Eddington. During this short period, Weyl also constructs and solves the so-called space problem (1921-1923). Weyl's references to Fichte and Husserl have a significant impact on these two projects. Finally, we will comment Weyl's main article on Lie groups (1925-1926) and his monograph on quantum mechanics, i.e. Gruppentheorie und Quantenmechanik (1rst ed. 1928, 2nd ed. 1931). Weyl's article on Lie groups is in accordance with his compromise between intuitionism and formalism (1924). On the other hand, Weyl's book on quantum mechanics encapsulates an “empirical turn” in his epistemology, which will be compared with the so-called empirical logicism
Hill, David Edward. "The Jantzen-Shapovalov form and Cartan invariants of symmetric groups and Hecke algebras /." view abstract or download file of text, 2007. http://proquest.umi.com/pqdweb?did=1400959351&sid=1&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 107-108). Also available for download via the World Wide Web; free to University of Oregon users.
Broccoli, Matteo. "On the trace anomaly of a Weyl fermion in a gauge background." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16408/.
Full textReho, Riccardo. "A higher derivative fermion model." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19852/.
Full textHezard, David. "Sur le support unipotent des faisceaux-caractères." Phd thesis, Université Claude Bernard - Lyon I, 2004. http://tel.archives-ouvertes.fr/tel-00012071.
Full textOn définit alors une application Phi_G de l'ensemble des classes de conjugaison spéciales de G^* dans l'ensemble des classes unipotentes de G. Cette application décrit le support unipotent des différentes classes de faisceaux-caractères définis sur G.
Parallèlement à cela, via la correspondance de Springer, on définit différents invariants, dont les d-invariants, pour les caractères d'un groupe de Weyl W. Nous avons étudié le lien entre l'induction de caractères spéciaux de certains sous groupes de W et les d-invariants. A l'aide de ceci, on démontre que Phi_G, restreinte à certaines classes spéciales particulières de G^* est surjective. On a montré que la stabilité vis-à-vis du Frobenius pouvait être introduite dans ce résultat.
On en déduit deux résultats. Le premier est un lien étroit entre les restrictions aux éléments unipotents de faisceaux-caractères de certaines classes et différents systèmes locaux irréductibles et G-équivariants sur les classes unipotentes de G.
Le second est une preuve d'une conjecture de Kawanaka sur les caractères de Gelfand-Graev généralisés de G : ils forment une base du Z-module des caractères virtuels de G^F à support unipotent.
Körber, Martin Julius. "Phase-Space Localization of Chaotic Resonance States due to Partial Transport Barriers." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-218817.
Full textBooks on the topic "Weyle invariance"
Strocchi, Franco. Gauge Invariance and Weyl-polymer Quantization. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17695-6.
Full textStrocchi, Franco. Gauge Invariance and Weyl-polymer Quantization. Springer, 2015.
Find full textStrocchi, Franco. Gauge Invariance and Weyl-Polymer Quantization. Springer London, Limited, 2015.
Find full textRajeev, S. G. Boundary Layers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0007.
Full textBook chapters on the topic "Weyle invariance"
Helgason, Sigurdur. "Invariant Differential Operators and Weyl Group Invariants." In Progress in Mathematics, 193–200. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0455-8_9.
Full textStrocchi, Franco. "Heisenberg Quantization and Weyl Quantization." In Gauge Invariance and Weyl-polymer Quantization, 1–9. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17695-6_1.
Full textStrocchi, Franco. "Diffeomorphism Invariance and Weyl Polymer Quantization." In Gauge Invariance and Weyl-polymer Quantization, 77–84. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17695-6_5.
Full textStrocchi, Franco. "Delocalization, Gauge Invariance and Non-regular Representations." In Gauge Invariance and Weyl-polymer Quantization, 11–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17695-6_2.
Full textStrocchi, Franco. "Quantum Mechanical Gauge Models." In Gauge Invariance and Weyl-polymer Quantization, 35–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17695-6_3.
Full textStrocchi, Franco. "Non-regular Representations in Quantum Field Theory." In Gauge Invariance and Weyl-polymer Quantization, 53–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17695-6_4.
Full textStrocchi, Franco. "∗ A Generalization of the Stone-von Neumann Theorem." In Gauge Invariance and Weyl-polymer Quantization, 85–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17695-6_6.
Full textRyckman, Thomas. "Hermann Weyl and “First Philosophy”: Constituting Gauge Invariance." In The Western Ontario Series In Philosophy of Science, 279–98. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9510-8_17.
Full textShi, Jian-Yi. "Left cells are characterized by the generalized right τ-invariant." In The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, 236–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0074984.
Full textBertrand, J., and M. Irac-Astaud. "Invariant Differential Calculus on a Deformation of the Weyl-Heisenberg Algebra." In Modern Group Theoretical Methods in Physics, 37–49. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8543-9_4.
Full textConference papers on the topic "Weyle invariance"
Jackiw, R. "Weyl Invariant Dynamics in 3 Dimensions." In PARTICLES, STRINGS, AND COSMOLOGY: 11th International Symposium on Particles, Strings, and Cosmology; PASCOS 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2149712.
Full textOda, Ichiro. "Planck scale from broken local conformal invariance in Weyl geometry." In Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.376.0070.
Full textNAKATA, Fuminori. "S1-INVARIANT EINSTEIN-WEYL STRUCTURE AND TWISTOR CORRESPONDENCE." In 4th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719780_0003.
Full textFishman, Louis. "Direct and Inverse Wave Propagation in the Frequency Domain via the Weyl Operator Symbol Calculus." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0660.
Full text