To see the other types of publications on this topic, follow the link: Wetting phenomena.

Journal articles on the topic 'Wetting phenomena'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Wetting phenomena.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hautman, Joseph, and Michael L. Klein. "Microscopic wetting phenomena." Physical Review Letters 67, no. 13 (September 23, 1991): 1763–66. http://dx.doi.org/10.1103/physrevlett.67.1763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tadmor, Rafael. "Approaches in wetting phenomena." Soft Matter 7, no. 5 (2011): 1577–80. http://dx.doi.org/10.1039/c0sm00775g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rauscher, M., and S. Dietrich. "Wetting Phenomena in Nanofluidics." Annual Review of Materials Research 38, no. 1 (August 2008): 143–72. http://dx.doi.org/10.1146/annurev.matsci.38.060407.132451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tadmor, Rafael. "Misconceptions in Wetting Phenomena." Langmuir 29, no. 49 (November 27, 2013): 15474–75. http://dx.doi.org/10.1021/la403578q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nogi, Kiyoshi. "Atomistic Approach to Wetting Phenomena." Materia Japan 35, no. 5 (1996): 522–25. http://dx.doi.org/10.2320/materia.35.522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

NOGI, Kiyoshi. "Wetting Phenomena in Materials Processing." Tetsu-to-Hagane 84, no. 1 (1998): 1–6. http://dx.doi.org/10.2355/tetsutohagane1955.84.1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Hao, and Mehran Kardar. "Wetting phenomena on rough substrates." Physical Review B 42, no. 10 (October 1, 1990): 6546–54. http://dx.doi.org/10.1103/physrevb.42.6546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shanahan, Martin E. R. "Wetting phenomena on polymeric surfaces." Macromolecular Symposia 101, no. 1 (January 1996): 463–70. http://dx.doi.org/10.1002/masy.19961010152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Selke, Walter. "Wetting Phenomena at Domain Boundaries." Berichte der Bunsengesellschaft für physikalische Chemie 90, no. 3 (March 1986): 232–35. http://dx.doi.org/10.1002/bbpc.19860900315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lenz, P. "Wetting Phenomena on Structured Surfaces." Advanced Materials 11, no. 18 (December 1999): 1531–34. http://dx.doi.org/10.1002/(sici)1521-4095(199912)11:18<1531::aid-adma1531>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dash, J. G., M. Schick, and J. Suzanne. "Wetting phenomena and crystal growth." Annales de Physique 12, no. 4 (1987): 299–312. http://dx.doi.org/10.1051/anphys:01987001204029900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Popescu, M. N., G. Oshanin, S. Dietrich, and A.-M. Cazabat. "Precursor films in wetting phenomena." Journal of Physics: Condensed Matter 24, no. 24 (May 25, 2012): 243102. http://dx.doi.org/10.1088/0953-8984/24/24/243102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Starov, V. M., and M. G. Velarde. "Surface forces and wetting phenomena." Journal of Physics: Condensed Matter 21, no. 46 (October 29, 2009): 464121. http://dx.doi.org/10.1088/0953-8984/21/46/464121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

ONDA, Tomohiro. "Wetting Phenomena of Fractal Surfaces." Kobunshi 44, no. 11 (1995): 744. http://dx.doi.org/10.1295/kobunshi.44.744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Law, Bruce M. "Wetting, adsorption and surface critical phenomena." Progress in Surface Science 66, no. 6-8 (March 2001): 159–216. http://dx.doi.org/10.1016/s0079-6816(00)00025-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

FUJII, Mariko, and Teruo TSUNODA. "On the meaning of wetting phenomena." Hyomen Kagaku 12, no. 1 (1991): 2–7. http://dx.doi.org/10.1380/jsssj.12.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gurfein, V., D. Beysens, and F. Perrot. "Stability of colloids and wetting phenomena." Physical Review A 40, no. 5 (September 1, 1989): 2543–46. http://dx.doi.org/10.1103/physreva.40.2543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hiltl, Stephanie, and Alexander Böker. "Wetting Phenomena on (Gradient) Wrinkle Substrates." Langmuir 32, no. 35 (August 24, 2016): 8882–88. http://dx.doi.org/10.1021/acs.langmuir.6b02364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wynblatt, Paul. "Interfacial Segregation Effects in Wetting Phenomena." Annual Review of Materials Research 38, no. 1 (August 2008): 173–96. http://dx.doi.org/10.1146/annurev.matsci.38.060407.132438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Leizerson, I., S. G. Lipson, and A. V. Lyushnin. "Finger Instability in Wetting−Dewetting Phenomena." Langmuir 20, no. 2 (January 2004): 291–94. http://dx.doi.org/10.1021/la034955h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tronel-Peyroz, E., J. M. Douillard, M. Privat, and R. Bennes. "Local composition fluctuations and wetting phenomena." Langmuir 6, no. 3 (March 1990): 539–42. http://dx.doi.org/10.1021/la00093a003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yao, M., and Y. Ohmasa. "Wetting phenomena for mercury on sapphire." Journal of Physics: Condensed Matter 13, no. 15 (March 29, 2001): R297—R319. http://dx.doi.org/10.1088/0953-8984/13/15/202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Latikka, Mika, Matilda Backholm, Jaakko V. I. Timonen, and Robin H. A. Ras. "Wetting of ferrofluids: Phenomena and control." Current Opinion in Colloid & Interface Science 36 (July 2018): 118–29. http://dx.doi.org/10.1016/j.cocis.2018.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kang, Kwan Hyoung, In Seok Kang, and Choung Mook Lee. "Wetting Tension Due to Coulombic Interaction in Charge-Related Wetting Phenomena." Langmuir 19, no. 13 (June 2003): 5407–12. http://dx.doi.org/10.1021/la034163n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Henderson, J. R. "Sum rule analysis of continuous wetting phenomena." Molecular Physics 59, no. 5 (December 10, 1986): 1049–66. http://dx.doi.org/10.1080/00268978600102581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hawkins, D. L., A. A. Maradudin, and A. V. Shchegrov. "Phonon contribution to wetting phenomena: macroscopic theory." Physics Letters A 234, no. 3 (September 1997): 225–28. http://dx.doi.org/10.1016/s0375-9601(97)00610-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chatterjee, S., V. Vani, S. Guha, and E. S. R. Gopal. "Critical wetting phenomena : observation of hydrodynamic instabilities." Journal de Physique 46, no. 9 (1985): 1533–41. http://dx.doi.org/10.1051/jphys:019850046090153300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shao, Xuqiang, Wei Wu, and Baoyi Wang. "Position-based simulation of cloth wetting phenomena." Computer Animation and Virtual Worlds 29, no. 1 (August 14, 2017): e1788. http://dx.doi.org/10.1002/cav.1788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

El Korchi, Fatima Zahra, Frédéric Jamin, Mohamed El Omari, and Moulay Saïd El Youssoufi. "Collapse phenomena during wetting in granular media." European Journal of Environmental and Civil Engineering 20, no. 10 (May 20, 2016): 1262–76. http://dx.doi.org/10.1080/19648189.2016.1177602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hazlett, R. D. "On surface roughness effects in wetting phenomena." Journal of Adhesion Science and Technology 6, no. 6 (January 1992): 625–33. http://dx.doi.org/10.1163/156856192x01006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Afkhami, S., T. Gambaryan-Roisman, and L. M. Pismen. "Challenges in nanoscale physics of wetting phenomena." European Physical Journal Special Topics 229, no. 10 (September 2020): 1735–38. http://dx.doi.org/10.1140/epjst/e2020-000167-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shanahan, M. E. R., and A. Carre. "Viscoelastic Dissipation in Wetting and Adhesion Phenomena." Langmuir 11, no. 4 (April 1995): 1396–402. http://dx.doi.org/10.1021/la00004a055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Indekeu, J. O. "Wetting phenomena on flat and curved surfaces." Nuclear Physics B - Proceedings Supplements 5, no. 1 (September 1988): 168–72. http://dx.doi.org/10.1016/0920-5632(88)90034-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

NIIMURA, HIROAKI. "VERIFICATION OF MULTI-COMPONENT LATTICE-BOLTZMANN METHOD." International Journal of Modern Physics B 17, no. 01n02 (January 20, 2003): 157–60. http://dx.doi.org/10.1142/s0217979203017473.

Full text
Abstract:
We verified the multi-component multi-phase Lattice-Boltzmann method which had been proposed by X. Shan and H. Chen (1993) in points of wetting phenomena of interface between three fluid phases, interfacial tension influenced by components on the interface and phase segregation phenomena due to wetting. As the results, the wetting and the phase segregation phenomena are agreeably reproduced and controlled. We also show an example of deformation patterns of multi-phase system under shear stress.
APA, Harvard, Vancouver, ISO, and other styles
35

Bonn, D., E. Bertrand, N. Shahidzadeh, K. Ragil, H. T. Dobbs, A. I. Posazhennikova, D. Broseta, J. Meunier, and J. O. Indekeu. "Complex wetting phenomena in liquid mixtures: frustrated-complete wetting and competing intermolecular forces." Journal of Physics: Condensed Matter 13, no. 21 (May 10, 2001): 4903–14. http://dx.doi.org/10.1088/0953-8984/13/21/317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

FUKUDA, Katsuya, Qiusheng LIU, Hayato KIDA, and Jongdock PARK. "Boiling Heat Transfer Phenomena in Highly Wetting Liquid." Journal of The Japan Institute of Marine Engineering 39, no. 10 (2004): 697–705. http://dx.doi.org/10.5988/jime.39.697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Froumin, N., N. Frage, M. Polak, and M. P. Dariel. "Wetting phenomena in the TiC/(Cu–Al) system." Acta Materialia 48, no. 7 (April 2000): 1435–41. http://dx.doi.org/10.1016/s1359-6454(99)00452-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dickson, Jasper L., Gaurav Gupta, Tommy S. Horozov, Bernard P. Binks, and Keith P. Johnston. "Wetting Phenomena at the CO2/Water/Glass Interface." Langmuir 22, no. 5 (February 2006): 2161–70. http://dx.doi.org/10.1021/la0527238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xu, Lei, Anna Lio, Jun Hu, D. Frank Ogletree, and Miquel Salmeron. "Wetting and Capillary Phenomena of Water on Mica." Journal of Physical Chemistry B 102, no. 3 (January 1998): 540–48. http://dx.doi.org/10.1021/jp972289l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sprittles, J. E., and Y. D. Shikhmurzaev. "Finite element framework for describing dynamic wetting phenomena." International Journal for Numerical Methods in Fluids 68, no. 10 (July 12, 2011): 1257–98. http://dx.doi.org/10.1002/fld.2603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Passerone, A., M. L. Muolo, F. Valenza, F. Monteverde, and N. Sobczak. "Wetting and interfacial phenomena in Ni–HfB2 systems." Acta Materialia 57, no. 2 (January 2009): 356–64. http://dx.doi.org/10.1016/j.actamat.2008.09.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Saam, W. F., J. Treiner, E. Cheng, and M. W. Cole. "Helium wetting and prewetting phenomena at finite temperatures." Journal of Low Temperature Physics 89, no. 3-4 (November 1992): 637–40. http://dx.doi.org/10.1007/bf00694105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sluckin, T. J. "Wetting phenomena and colloidal aggregation in binary mixtures." Physical Review A 41, no. 2 (January 1, 1990): 960–64. http://dx.doi.org/10.1103/physreva.41.960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Starov, Victor M., and Hans-Jürgen Butt. "Editorial Overview: Worldwide increasing interest in wetting phenomena." Current Opinion in Colloid & Interface Science 36 (July 2018): A1—A4. http://dx.doi.org/10.1016/j.cocis.2018.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Azimi, Arash, Chae Rohrs, and Ping He. "Hydrodynamics-dominated wetting phenomena on hybrid superhydrophobic surfaces." Journal of Colloid and Interface Science 562 (March 2020): 444–52. http://dx.doi.org/10.1016/j.jcis.2019.11.099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tadmor, Rafael. "Open Problems in Wetting Phenomena: Pinning Retention Forces." Langmuir 37, no. 21 (May 19, 2021): 6357–72. http://dx.doi.org/10.1021/acs.langmuir.0c02768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Straumal, Boris B., Alexey Rodin, A. E. Shotanov, Alexander B. Straumal, Olga A. Kogtenkova, and Brigitte Baretzky. "Pseudopartial Grain Boundary Wetting: Key to the Thin Intergranular Layers." Defect and Diffusion Forum 333 (January 2013): 175–92. http://dx.doi.org/10.4028/www.scientific.net/ddf.333.175.

Full text
Abstract:
The thin layers of a second phase (also called complexions) in grain boundaries (GB) and triple junctions (TJs) are more and more frequently observed in polycrystals. The prewetting (or premelting) phase transitions were the first phenomena proposed to explain their existence. The deficit of the wetting phase in case of complete wetting can also lead to the formation of thin GB and TJ phases. However, only the phenomenon of pseudopartial (or pseudoincomplete, or constrained complete) wetting permitted to explain, how the thin GB film can exist in the equilibrium with GB lenses of a second phase with non-zero contact angle.
APA, Harvard, Vancouver, ISO, and other styles
48

Malik, M. Rizwan, Tie Lin Shi, Zi Rong Tang, and Shi Yuan Liu. "Computational Fluid Dynamics (CFD) Based Simulated Study of Multi-Phase Fluid Flow." Defect and Diffusion Forum 307 (December 2010): 1–11. http://dx.doi.org/10.4028/www.scientific.net/ddf.307.1.

Full text
Abstract:
It is critical to understand multiphase flow applications with regard to dynamic behavior. In this paper, a systematic approach to the study of these applications is pursued, leading to separated flows comprising the effects of free surface flows and wetting. For the first time, wetting phenomena (three wetting regimes such as no wetting, 90 º wetting angle and absolute wetting) are added in the separated flow model. Special attention is paid to computational fluid dynamics (CFD) in order to envisage the relationship between complex metallurgical practices such as mass and momentum exchange, turbulence, heat, reaction kinetics and electromagnetic fields. Simulations are performed in order to develop sub-models for studying multiphase flow phenomena at larger scales. The outcomes show that a proper mixture of techniques is valuable for constructing larger-scale models based upon sub-models for recreating the hierarchical structure of a detailed CFD model applicable throughout the process.
APA, Harvard, Vancouver, ISO, and other styles
49

Udvardy, Oliver, and Antal Lovas. "Dynamic Phenomena during Sessile Drop Measurements due to Oxide Layer Disruption." Materials Science Forum 589 (June 2008): 173–78. http://dx.doi.org/10.4028/www.scientific.net/msf.589.173.

Full text
Abstract:
The wetting phenomenon between solids and liquids has an outstanding role in several technological processes [1, 2]. The knowledge of physical and chemical factors acting on the surface tension is needed to ensure the successful processing in casting, brazing and sintering. The surface oxide layer influences the wetting conditions and makes difficult the exact measurement of contact angle [3]. In this paper the effect of oxide layer disruption and recovery was observed using a high speed camera.
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Xiao-Song, Xiao-Bin Fan, and Aijun Hu. "Nonlinear Relationship between the Radii of Droplets and the Contact Angle of Wetting." Mechanical Engineering Research 5, no. 2 (July 27, 2015): 1. http://dx.doi.org/10.5539/mer.v5n2p1.

Full text
Abstract:
<p class="1Body">Wetting abilities are important in many industrial applications, for instance, the wetting abilities of electrolytes on electrodes plays a key role in improving the specific energy density of supercapacitors and lithium-ion batteries. For nano-scale wetting phenomena, we should consider the curvature effects of the surface tension and the line tension. However, previous works have not analyzed the influence of the curvature effects of the surface tension. In this manuscript, the nano-scale wetting phenomena of spherical droplets on smooth non-deformable substrates were studied by methods of thermodynamics. The total Helmholtz free energy total and the grand potential of this system are calculated. A generalized Young’s equation for wetting of spherical droplets with large enough radius is derived. It is shown that there exists a nonlinear relationship between the contact angle and the radii of droplets or the line tension.</p>
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography