Dissertations / Theses on the topic 'Wetting phenomena'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 36 dissertations / theses for your research on the topic 'Wetting phenomena.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wålinder, Magnus. "Wetting phenomena on wood." Doctoral thesis, KTH, Production Systems, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2908.
Full textDenesuk, Matthew 1965. "Modelling of dynamic wetting phenomena." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/291345.
Full textDarbellay, Georges Alexis. "Wetting and capillary condensation transitions in novel geometries." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303592.
Full textWoywod, Dirk. "Binary mixtures near solid surfaces: wetting and confinement phenomena." [S.l.] : [s.n.], 2004. http://edocs.tu-berlin.de/diss/2004/woywod_dirk.pdf.
Full textLowe, P. "Molecular de-wetting phenomena in adsorbed bio-molecule layers." Thesis, Cranfield University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269544.
Full textIbagon, Ingrid [Verfasser], and Siegfried [Akademischer Betreuer] Dietrich. "Wetting phenomena in electrolyte solutions / Ingrid Ibagon. Betreuer: Siegfried Dietrich." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1063334926/34.
Full textMills, John Robert. "Wetting phenomena associated with CO2 sequestration and low salinity waterflooding." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2753.
Full textRuiz, Gutierrez Elfego. "Theoretical and computational modelling of wetting phenomena in smooth geometries." Thesis, Northumbria University, 2017. http://nrl.northumbria.ac.uk/34536/.
Full textXiao, Rong Ph D. Massachusetts Institute of Technology. "Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79285.
Full textPage 76 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 71-75).
Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer performance during phase-change which is of great importance in a wide range of applications including thermal management, building environment, water harvesting and power production. In particular, superhydrophilic surfaces have been of interest to achieve thin film evaporation with high heat fluxes. Meanwhile, superhydrophobic surfaces with dropwise condensation promises higher heat transfer coefficients than typical filmwise condensation. My thesis work aims at improving fundamental understanding as well as demonstrating practical enhancements in these two areas. A key challenge to realizing thin film evaporation is the ability to achieve efficient fluid transport using superhydrophilic surfaces. Accordingly, we developed a semi-analytical model based on the balance between capillary pressure and viscous resistance to predict the propagation rates in micropillar arrays with high aspect ratios. Our experimental results showed good agreement with the model, and design guidelines for optimal propagation rates were proposed. For micropillar arrays with low aspect ratio and large spacing between pillars, however, we identified that the microscopic sweeping of the liquid front becomes important. We studied this phenomenon, explained the effect of such microscale dynamics on the overall propagation behavior, and proposed a strategy to account for these dynamics. While these propagation studies provide a means to deliver liquid to high heat flux regions, we investigated a different configuration using nanoporous membrane that decouples capillarity from the viscous resistance to demonstrate the potential heat dissipation capability. With nanoporous membranes with average pore diameters of 150 nm and thicknesses of 50 [mu]m, we achieved interfacial heat fluxes as high as 96 W/cm2 via evaporation with isopropyl alcohol. The effect of membrane thickness was studied to offer designs that promise dissipation of 1000 W/cm 2 . Meanwhile, we developed new metrology to measure transient heat transfer coefficients with a temporal resolution of 0.2 seconds during the evaporation process. Such a technique offers insight into the relationship between liquid morphology and heat transfer behavior. Finally, for enhanced condensation, we demonstrated immersion condensation using a composite surface fabricated by infusing hydrophobic oil into micro/nanostructures with a heterogeneous coating. With this approach, three key attributes to maximize heat transfer coefficient, low departure radii, low contact angle, and high nucleation density, were achieved simultaneously. We specifically elucidated the mechanism for the increase in nucleation density and attribute it to the combined effect of reduced water-oil interfacial energy and local high surface energy sites. As a result, we demonstrated approximately 100% enhancement in heat transfer coefficient over state-of-the-art superhydrophobic surfaces with the presence of non-condensable gases. This thesis presents improved fundamental understanding of wetting, evaporation, and condensation processes on micro/nanostructures as well as practical implementation of these structures for enhanced heat transfer. The insights gained demonstrate the potential of new nanostructure engineering approaches to improve the performance of various thermal management and energy production applications.
by Rong Xiao.
Ph.D.
Cai, Jundao. "Topics in two kinds of wetting phenomena and equilibrium shapes of HCP crystal /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487684245465788.
Full textKoshy, Pramod Materials Science & Engineering Faculty of Science UNSW. "Effect of chemical additives on the interfacial phenomena of high alumina refractories with al-alloys." Publisher:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/43559.
Full textBlackmore, William Henry. "Capillary Phenomena: Investigations in Compressed Bubble Migration, Geometric Wetting, and Blade-Bound Droplet Stability." PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/651.
Full textLIU, WEN. "TRANSPORT PHENOMENA ASSOCIATED WITH LIQUID METAL FLOW OVER TOPOGRAPHICALLY MODIFIED SURFACES." UKnowledge, 2012. http://uknowledge.uky.edu/me_etds/16.
Full textCalvimontes, Alfredo. "Topographic characterization of polymer materials at different length scales and the mechanistic understanding of wetting phenomena." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-27152.
Full textDie vorliegende Arbeit vermittelt neue Einblicke in die topographische Charakterisierung technisch relevanter Polymeroberflächen mit dem Ziel, die Mechanismen der Benetzungsphänomene auf rauen Oberflächen besser zu verstehen. Eine 3D-Abbildung der Oberflächentopographie wurde mit einem konfokalen Mikroskop mit chromatischer Kodierung zwecks optimaler Charakterisierung duromerer Verbundwerkstoffsystemen (SMS: Sheet Moulding Compounds) sowie Polyester- und Baumwolltextilien berührungsfrei durchgeführt. Zur topographischen Oberflächencharakterisierung wurde eine systematische Prozedur vorgeschlagen, welche es erlaubt, eine entsprechende Auswahl von optimalen Messbedingungen, wie die Bewertungslänge (cut-off length) und Auflösung, für Oberflächen mit periodischer und nicht-periodischer Rauheit zu treffen. Die topographische Charakterisierung von Oberflächen wurde methodologisch weiter entwickelt, indem die Oberflächen auf verschiedenen Längenskalen je nach Morphologie untersucht werden können. Für duromere Verbundwerkstoffsysteme wurde der Einfluss von den Bedingungen des Formpressens (Druck, Zeit, Topographie und Form des metallischen Werkzeugs, Einbringen des Prepregs, Glasfasergehalt und -orientierung) auf die resultierende makro-, meso- und mikroskopische Topographie studiert. Eine modellmäßige Beschreibung des Einflusses der wichtigsten Charakteristiken des Herstellungsprozesses duromerer Verbundwerkstoffsysteme auf ihre topographische Charakteristiken und demzufolge auf die Qualität des Endproduktes wurde konzipiert. Zur Quantifizierung des Effekts der Oberflächenmodifizierung wurde einen neuen Parameter – Surface Relative Smooth – vorgeschlagen und dessen Nutzung für jedes beliebige Feststoffkörpers verifiziert. Das Hauptaugenmerk bei der Durchführung der Arbeit wurde auf die Entwicklung neuer Konzepte zur topographischen Charakterisierung textiler Materialien gelegt, welche die Nutzung mehrerer Längenskalen in Betracht ziehen. Dies ermöglicht die spezifische Morphologien textiler Strukturen zu berücksichtigen und jede Struktur, welche durch die Gewebeart, die Art der Fasern und des Garns entstanden ist, gesondert bezüglich ihr Einflusses auf die Benetzbarkeit infolge der Modifizierung (Konstruktionsparameter, Thermofixierung, Imprägnierung mit Soil-Release- Polymeren, Waschen/Trocknen-Zyklen) zu analysieren. In der vorliegenden Arbeit wird gezeigt, wie die Konstruktionsparameter von Polyestertextilien, wie z.B. die Filament- und Garnfeinheit, Kett- und Schussdichte sowie die Gewebebindung Einfluss auf die Oberflächentopographie und als Folge auf ihre Kapillarität nehmen, und zwar als Mesoporosität (Abstände zwischen Garnwindungen) und als Mikroporosität (Abstände zwischen einzelnen Filamenten). Auf der Basis von umfangreichen experimentellen Daten, welche die Unterschiede zwischen verschiedenen Bindungsarten (Leinwand, Köper, Panama) offenbaren, wurde ein neues Modell zur Beschreibung der Penetration von Flüssigkeiten in die textile Strukturen entwickelt. Außerdem wurde der Einfluss der Thermofixierung und Imprägnierung von Polyester Materialen mit Soil-Release-Polymeren auf die Topographie, Benetzbarkeit und Auswaschbarkeit für die drei wichtigsten Gewebearten untersucht, welche die gleiche Anzahl von Schussfäden haben. Für die Charakterisierung des Anschmutzungsverhaltens von Textilen wurde eine so genannte Fleck-Analysierungsmethode (spot analysis method) vorgeschlagen, welche es erlaubt, benetzungsdynamische Eigenschaften von Flüssigkeiten an Oberflächen mit anisotroper Topographie zu studieren. Diese Methode ist geeignet auch für Oberflächen mit anisotropen Rauheitsstrukturen und für poröse Materialien. Der Effekt von Waschen/Trocken-Zyklen auf die Topographie, Spreitung, Benetzung und Anschmutzung von Leinwandgewebe und Gestricke aus Baumwolle wurde zusätzlich untersucht. In allen Spezialfällen diente die topographische Charakterisierung und die Interpretation der Ergebnisse auf verschiedenen Längenskalen zur besseren Verständnis von Benetzungsphänomenen. Ein mathematisches Modell für die virtuelle Konstruktion von textilen Oberflächen wurde entwickelt, die das Studium der Effekte infolge topographischer Änderungen auf das Verhalten von Polymer- und Textiloberflächen ermöglicht. Oberflächen von Leingeweben und duromeren Verbundwerkstoffsystemen wurden mit der Fourier-Synthese unter Zuhilfenahme verschiedener harmonischer Wellen mathematisch abgebildet. Die Topographie- und Konstruktionsparameter wurden bei der Fourier-Synthese zur Konstruktion virtueller Topographien genutzt. Im Falle der textilen Materialein wurde der Effekt von Waschen/Trocknen-Zyklen für die Baumwolltextilien sowie der Thermofixierung von Polyestertextilien auf ihre Meso- und Mikromorphologie auf der Basis gemessener Parameter für jede Topographie modelliert. Dieses Modell erlaubt auch die Vorhersage der Änderungen in der Porosität von resultierenden textilen Strukturen, ihres Benetzungs- und Anschmutzungsverhaltens. Mit dieser Methode ist es möglich, gewünschte Änderungen von textilen Konstruktionsparametern einzustellen und ihre Effekte auf die Topographie zu untersuchen
Villanueva, Walter. "Diffuse-Interface Simulations of Capillary Phenomena." Doctoral thesis, Stockholm : Kungl. tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4402.
Full textIsele-Holder, Rolf Erwin [Verfasser], Ahmed E. [Akademischer Betreuer] Ismail, and Martin T. [Akademischer Betreuer] Horsch. "Molecular phenomena in dynamic wetting: superspreading and precursors / Rolf Erwin Isele-Holder ; Ahmed E. Ismail, Martin T. Horsch." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128316595/34.
Full textJamie, Elizabeth A. G. "Colloidal interfaces in confinement." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:26b47a79-7198-4983-9109-174ac2d3e01d.
Full textMcCarthy, Fiona Materials Science & Engineering Faculty of Science UNSW. "Interfacial phenomena and dissolution of carbon from chars into liquid iron during pulverised coal injection in a blast furnace." Awarded by:University of New South Wales. School of Materials Science and Engineering, 2005. http://handle.unsw.edu.au/1959.4/20797.
Full textPavan, Sara. "Nouveaux schémas de convection pour les écoulements à surface libre." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1011/document.
Full textThe purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemannsolver [135]. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by [13]. The Monotonic Upwind Scheme for Conservation Law [89], combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme [112] is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in terms of accuracy and stability, has the advantage to cope with dry zones. The two methods are first validated on academical test cases with analytical solution in order to assess the order of the schemes. Then more complex cases are addressed to test the robustness of the schemes and their performance under different flow conditions. Finally a real test case for which real data are available is carried out. An extension of the predictor-corrector residual distribution schemes to the 3D case is presented as final contribution. Even in this case the RD technique is completely compatible with the finite element framework used for the Navier-Stokes equations, thus its extension to the 3D case does not present any extra theoretical problem. The method is tested on preliminary cases
Radulovic, Jovana. "Experimental and theoretical investigation of the interfacial phenomenon associated with wetting of trisiloxane surfactant solutions." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4710.
Full textAttinger, Daniel. "An investigation of microdroplet surface deposition : transient behavior, wetting angle dynamics and substrate melting phenomenon /." Zürich : [s.n.], 2001. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14004.
Full textLim, Ying Ying. "Printing conductive traces to enable high frequency wearable electronics applications." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17880.
Full textLedesma, Alonso René. "Study of the interaction between a liquid film and a local probe." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0105/document.
Full textThe static and dynamic interaction between a local probe and a liquid film provokes the deformation of the latter. This phenomenon has been described by means of analytical equations, which had been analyzed and numerically solved. Probe/liquid and liquid/substrate interaction potentials have been deduced from the integration of the dispersion forces. The pressure difference across the air/liquid interface has been calculated with a modified Young-Laplace equation, which takes into account the effects of gravity, surface tension, the liquid film/substrate and the probe/liquid interaction potentials. For the static case, the equilibrium modified Young-Laplace equation has been considered. The lubrication theory has been used to describe the liquid film evolution, in order to analyze the dynamic phenomenon. Numerical simulations of the equilibrium surface shape and the dynamic evolution of the film have been performed. Stable and unstable behaviors had been discerned, and results confirmed the existence of a threshold distance, for the static case, and a combination of oscillation parameters, for the dynamic situation, for which the jump of the liquid to contact the probe occurs. A theoretical analysis confirmed the existence of critical conditions separating the behavior regimes. This critical conditions indicate the role of the physical and geometric parameters in the system stability. For the dynamic case, preliminary results are reported and a qualitative interpretation of the phenomenon is formulated. In addition, AFM force and amplitude spectroscopy experiments had been performed and compared with the numerical results
黃寶瑤. "A study of wetting phenomena." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/03866718301246735324.
Full textChang, Feng-Ming, and 張峰明. "Investigation on Wetting Phenomena of Superhydrophobic Surfaces." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/47220431869271636851.
Full text國立中央大學
化學工程與材料工程研究所
98
Wetting phenomena of liquid on various substrates are of crucial concern in our daily life as well as in engineering and science. In this paper, there are five main topics about the wetting phenomena, described as follow: First, the wettability of hydrophobic surfaces is generally improved by surfactant solutions. The wetting behavior of superhydrophobic surfaces can be classified into two types, in terms of the variation of contact angle with surfactant concentration (cs). Contact angle is controlled by surface tension for common linear surfactants and becomes independent of cs as cs > cmc (critical micelle concentration). Consequently, superhydrophobic surfaces remain in hydrophobic range, as reported. However, for branch-tailed surfactants such as sodium bisethylhexylsulfosuccinate and didodecyldimethylammonium bromide, superhydrophobic surfaces can turn superhydrophilic by increasing cs owing to continuous reduction of solid-liquid interfacial tension. The superhydrophobicity is recoverable simply by water rinsing. Secondly, tiny bubbles are easily formed on the rough, hydrophobic surface results in difficulties in bubble detachment and removal. We show that bubbles captured by porous superhydrophobic surfaces merge into larger ones, which can detach by buoyancy. The responsible mechanism is convective Ostwald ripening because networklike pores in the superhydrophobic film remain nonwetted and provide passage for gas flow between adhered bubbles. A large bubble grows spontaneously by absorbing all small adhered bubbles due to capillary pressure differences. Our results demonstrate that porous hydrophobic film can be an efficient, passive way of bubble removal in microfluidic systems. Thirdly, the typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle CA hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious contact angle hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing contact angle, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of contact angle hysteresis, the surface remains superhydrophobic but becomes highly adhesive. Fourthly, it is generally believed that a water-repellent surface is necessary for small insects to stand on water. Through a combined experimental and theoretical study, we demonstrate that an object with hydrophilic surface can float with apparent contact angle greater than 90o due to edge effect. The apparent contact angle rises with increasing loading even to a value typically displayed only by superhydrophobic surfaces. On the basis of free energy minimization, two regimes are identified. When buoyancy controls, the meniscus meets the object with the intrinsic contact angle. As surface tension dominates, however, contact angle is regulated by total force balance. Finally, the wetting phenomenon in the vicinity of a corner boundary is ubiquitous. The daily life examples include the meniscus of water near the mouth of a container and the halt of the movement of a sliding droplet by the edge. In this study the wetting behavior near the edge is investigated both theoretically and experimentally by considering the volume growth of a droplet atop a conical frustum and the gradual immersion of a wedge. On the basis of free energy minimization, three different regimes are identified. When the contact line is away from the edge and Young’s equation is followed. Once the contact line reaches the edge, the contact line is pinning at the edge due to the boundary minimum of the free energy. Consequently, the apparent contact angle exceeds the intrinsic contact angle and grows with increasing droplet volume or water level. As the apparent contact angle reaches the critical angle, which depends on the solid edge angle, liquid extends over the edge and the contact line advances along new surface at its intrinsic contact angle. Similar behavior can be observed for wetting retreat but in a reverse order. The theoretical prediction has been experimentally confirmed.
Lin, Cheng-Yu, and 林政佑. "Wetting Phenomena of Porous Films for Oil-water Separation." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/65420510137837653290.
Full text國立中央大學
化學工程與材料工程學系
105
In this study, a facile fabrication of superhydrophobic Cu mesh for oil-water separation is applied in a low-temperature vacuum environment. When the predominant composition of surface is CuO, it’s a hydrophilic substrate with contact angle 56o, and oil cannot be separated from water due to the penetration of both oil and water. After this facile fabrication, the composition of surface changes into Cu2O partially, and it becomes a superhydrophobic substrate with contact angle 152.6o. Oil-water separation can be achieved because oil penetrates the superhydrophobic mesh while water is repelled on the mesh. And the separation efficiency can be higher than 99%. In addition, there’s no chemicals coated on mesh in this fabrication, so the stability is pretty high. The mesh can be against various aqueous chemical drops such as salts, acid, base, and surfactant. Besides, if the pore size of a mesh is shrunk and a mesh remains hydrophobicity, the stability can be elevated and operated in an environment of higher intrusion pressure. Nanofiltration membranes sometimes are used as the material for oil-water separation. Due to the small pore size (1-10 nm), the operation pressure should be higher than atmospheric pressure. In order to improve the performance in future works, the wetting behavior of nanofiltration membrane (Dow FILMTEC™ NF270) is investigated in this study. The contact angle of NF270 produced by Dow Chemical is 20.8o which is hydrophilic, and also it has ultralow contact angle hysteresis. A small bubble (1.6 μL) can slide steadily on 2o-inclined NF270. Because of the ultralow contact angle hysteresis, a bubble doesn’t deform and move on the surface with spherical shape. Without the effect of shape, it becomes easier to observe bubble motion in surfactant solution. Besides, nanofiltration membranes are also used to reject specific salt ions for water softening. Generally, there’s positive or negative function group on a nanofiltration membrane to reject co-ions. However, besides the effects of function group and ion size, the ions in a solution also compete and the permeation ions varies. For NaCl solution, Cl- permeates NF270 more, while for CH3COONa solution, Na+ permeates NF270 more. By measuring the potential difference and comparing the correlation of various solutions, the ion permeation can be understood easily and straightforward.
Chuang, Yu-Chen, and 莊于真. "Sessile Drop Evaporation and Wetting Phenomena on Patterned Surfaces." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/01139451371467471875.
Full text國立臺灣大學
化學工程學研究所
101
There are two topics discussed in this study: water evaporation on soft patterned surfaces and the observation of the Cassie impregnating wetting state. First, we demonstrate the evaporation mechanism of water sessile drop on different softness of fixed patterned PDMS (polydimethylsiloxane) substrate and also compare the results from the viewing angle of 0° with that from the viewing angle of 45°. The evaporation mechanism generally starts from the constant contact radius mode and turns into constant contact angle mode when the receding contact angle is reached. The softer the substrate is, the smaller the receding contact angle is. The wetting transition from the Cassie to the Wenzel state is also observed after the constant contact angle mode and the softer substrate will induce an earlier wetting transition due to the softer texture. By comparing the theoretical calculation of evaporation rate in different modes, we can examine whether the expected evaporation mechanism is suitable or not. Second, the Cassie impregnating wetting state is investigated by placing the ethanol drop on different patterned PDMS surfaces. Due to the lack of the knowledge of the Cassie impregnating state, our main purpose is to find out the relationship between the structure of the surfaces and the impregnating region. It is observed that the rougher the substrate is, the larger the impregnating region is. However, so far we cannot specify this phenomenon and its impregnating region. Our preliminary inference is that the Cassie impregnating wetting state is only the metastable state passing to complete wetting and the metastable state is the result of the equilibrium of the imbibition rate and the evaporation rate of ethanol. Besides, the contact angle in the Cassie impregnating wetting state is also examined to see if the Cassie equation can describe and the study of the ethanol drop evaporation on patterned surface is discussed to further understand the Cassie impregnating wetting state.
Woywod, Dirk [Verfasser]. "Binary mixtures near solid surfaces: wetting and confinement phenomena / von Dirk Woywod." 2004. http://d-nb.info/973472871/34.
Full textChiu, Chun-Da, and 邱俊達. "A Study of Wetting Phenomena In Three-Component Water-Oil-Surfactant Systems." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/83575409513121419220.
Full text國立臺灣大學
化學工程學系研究所
86
Generally speaking, three component systems of the type water- oil-surfactant have four different types of phase equilibrium. With the change of thermodynamic conditions, systems will exhibit one, two or three coexisting liquid phases. In the three-phase region, we can observe some interesting interfacial phenomena. Middle phase can obviously wet or not wet the interface between the upper and lower phases. The transition from wetting to nonwetting is called the wetting transition. Beside the middle-phase wetting transition, in some situation, the lower water-rich phase may form an intruding layer between the upper and middle phases. In fact, this alternation of structure is due to the change of the relation between interfacial tensions. In this study, we choose ternary system water-n-decane- to observe the existence of different wetting transitions. A video- enhanced pendant drop tensiometry is used to measure the interfacial tension and verify the phenomena. A direct naked-eye observation is also performed as a direct evidence. It is found that a middle-phase wetting transition when the temperature closes to the upper critical consolute temperature, and a lower-phase wetting transition when the lower critical consolute temperature is approached. In spite of the wetting/nonwetting behavior described above, a middle- phase intruding layer between the upper phase and air exists over the whole three-phase regime, while the lower-phase wetting transition between the middle phase and the bottom of tube may also be concluded. In addition, fish-shape phase diagrams of three systems: water- octane-, water-decane- and water-dodecane- are performed to determine their upper and lower critical consolute temperatures.
Cheng, We Jia, and 鄭文嘉. "A study of wetting phenomena in water + oil +surfactant + fourth component quaternary systems." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/52580505095135576833.
Full text國立臺灣大學
化學工程學研究所
90
Within a certain temperature range, a water + oil + nonionic amphiphile mixture exhibits three coexisting liquid phases: oil-rich phase (α phase), surfactant-rich phase (β phase) and water-rich phase (γ phase). When three fluid phases coexist at equilibrium, we can observe some interesting interfacial phenomena. A small amount of β phase can obviously wet, not wet or partially wet the interface between the α-γ phase. At different thermodynamic conditions, for example: temperature, the β phase can exhibit a transition from wetting to partial wetting. This transition is called the β phase wetting transition. Beside the middle phase wetting transition, in some situation, the lower water-rich phase(γ) may form an intruding layer(wetting) or suspending beads(partial wetting) between the α-β phase which is called the γ wetting transition. In fact, this γ wetting transition is due to the change of the interfacial tensions. In this study, we not only choose the ternary system water + n-decane + C6E2 and water + n-Octane + C6E2 but also adding the fourth component ethanol, salt or amide where C6E2 stands for the nonionic suffactant CH3(CH2)5(OCH2CH2)2OH . Then we will study the effect of the ethanol, salt and amide to the ternary system. We used the spinning drop tensiometer to measure the interfacial tension and direct naked eye observation to find the wetting transition. We found that a β wetting transition when the temperature closes to the upper critical consolute temperature, and a γ wetting transition when the lower critical consolute temperature is approached. We also determine the quaternary system water + ethanol, salt or amide + oil + C6E2 fish-shaped phase diagrams and their upper and lower critical consolute temperatures. We also discuss how to reach a tricritical point.
Calvimontes, Alfredo. "Topographic characterization of polymer materials at different length scales and the mechanistic understanding of wetting phenomena." Doctoral thesis, 2009. https://tud.qucosa.de/id/qucosa%3A25238.
Full textDie vorliegende Arbeit vermittelt neue Einblicke in die topographische Charakterisierung technisch relevanter Polymeroberflächen mit dem Ziel, die Mechanismen der Benetzungsphänomene auf rauen Oberflächen besser zu verstehen. Eine 3D-Abbildung der Oberflächentopographie wurde mit einem konfokalen Mikroskop mit chromatischer Kodierung zwecks optimaler Charakterisierung duromerer Verbundwerkstoffsystemen (SMS: Sheet Moulding Compounds) sowie Polyester- und Baumwolltextilien berührungsfrei durchgeführt. Zur topographischen Oberflächencharakterisierung wurde eine systematische Prozedur vorgeschlagen, welche es erlaubt, eine entsprechende Auswahl von optimalen Messbedingungen, wie die Bewertungslänge (cut-off length) und Auflösung, für Oberflächen mit periodischer und nicht-periodischer Rauheit zu treffen. Die topographische Charakterisierung von Oberflächen wurde methodologisch weiter entwickelt, indem die Oberflächen auf verschiedenen Längenskalen je nach Morphologie untersucht werden können. Für duromere Verbundwerkstoffsysteme wurde der Einfluss von den Bedingungen des Formpressens (Druck, Zeit, Topographie und Form des metallischen Werkzeugs, Einbringen des Prepregs, Glasfasergehalt und -orientierung) auf die resultierende makro-, meso- und mikroskopische Topographie studiert. Eine modellmäßige Beschreibung des Einflusses der wichtigsten Charakteristiken des Herstellungsprozesses duromerer Verbundwerkstoffsysteme auf ihre topographische Charakteristiken und demzufolge auf die Qualität des Endproduktes wurde konzipiert. Zur Quantifizierung des Effekts der Oberflächenmodifizierung wurde einen neuen Parameter – Surface Relative Smooth – vorgeschlagen und dessen Nutzung für jedes beliebige Feststoffkörpers verifiziert. Das Hauptaugenmerk bei der Durchführung der Arbeit wurde auf die Entwicklung neuer Konzepte zur topographischen Charakterisierung textiler Materialien gelegt, welche die Nutzung mehrerer Längenskalen in Betracht ziehen. Dies ermöglicht die spezifische Morphologien textiler Strukturen zu berücksichtigen und jede Struktur, welche durch die Gewebeart, die Art der Fasern und des Garns entstanden ist, gesondert bezüglich ihr Einflusses auf die Benetzbarkeit infolge der Modifizierung (Konstruktionsparameter, Thermofixierung, Imprägnierung mit Soil-Release- Polymeren, Waschen/Trocknen-Zyklen) zu analysieren. In der vorliegenden Arbeit wird gezeigt, wie die Konstruktionsparameter von Polyestertextilien, wie z.B. die Filament- und Garnfeinheit, Kett- und Schussdichte sowie die Gewebebindung Einfluss auf die Oberflächentopographie und als Folge auf ihre Kapillarität nehmen, und zwar als Mesoporosität (Abstände zwischen Garnwindungen) und als Mikroporosität (Abstände zwischen einzelnen Filamenten). Auf der Basis von umfangreichen experimentellen Daten, welche die Unterschiede zwischen verschiedenen Bindungsarten (Leinwand, Köper, Panama) offenbaren, wurde ein neues Modell zur Beschreibung der Penetration von Flüssigkeiten in die textile Strukturen entwickelt. Außerdem wurde der Einfluss der Thermofixierung und Imprägnierung von Polyester Materialen mit Soil-Release-Polymeren auf die Topographie, Benetzbarkeit und Auswaschbarkeit für die drei wichtigsten Gewebearten untersucht, welche die gleiche Anzahl von Schussfäden haben. Für die Charakterisierung des Anschmutzungsverhaltens von Textilen wurde eine so genannte Fleck-Analysierungsmethode (spot analysis method) vorgeschlagen, welche es erlaubt, benetzungsdynamische Eigenschaften von Flüssigkeiten an Oberflächen mit anisotroper Topographie zu studieren. Diese Methode ist geeignet auch für Oberflächen mit anisotropen Rauheitsstrukturen und für poröse Materialien. Der Effekt von Waschen/Trocken-Zyklen auf die Topographie, Spreitung, Benetzung und Anschmutzung von Leinwandgewebe und Gestricke aus Baumwolle wurde zusätzlich untersucht. In allen Spezialfällen diente die topographische Charakterisierung und die Interpretation der Ergebnisse auf verschiedenen Längenskalen zur besseren Verständnis von Benetzungsphänomenen. Ein mathematisches Modell für die virtuelle Konstruktion von textilen Oberflächen wurde entwickelt, die das Studium der Effekte infolge topographischer Änderungen auf das Verhalten von Polymer- und Textiloberflächen ermöglicht. Oberflächen von Leingeweben und duromeren Verbundwerkstoffsystemen wurden mit der Fourier-Synthese unter Zuhilfenahme verschiedener harmonischer Wellen mathematisch abgebildet. Die Topographie- und Konstruktionsparameter wurden bei der Fourier-Synthese zur Konstruktion virtueller Topographien genutzt. Im Falle der textilen Materialein wurde der Effekt von Waschen/Trocknen-Zyklen für die Baumwolltextilien sowie der Thermofixierung von Polyestertextilien auf ihre Meso- und Mikromorphologie auf der Basis gemessener Parameter für jede Topographie modelliert. Dieses Modell erlaubt auch die Vorhersage der Änderungen in der Porosität von resultierenden textilen Strukturen, ihres Benetzungs- und Anschmutzungsverhaltens. Mit dieser Methode ist es möglich, gewünschte Änderungen von textilen Konstruktionsparametern einzustellen und ihre Effekte auf die Topographie zu untersuchen.
Calvimontes, Alfredo [Verfasser]. "Topographic characterization of polymer materials at different length scales and the mechanistic understanding of wetting phenomena / von Alfredo Calvimontes." 2009. http://d-nb.info/1008628735/34.
Full textShabani, Roxana. "Three-phase contact line phenomena in droplets on solid and liquid surfaces: electrocapillary, pinning, wetting line velocity effect, and free liquid surface deformation." Doctoral diss., 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6180.
Full textPh.D.
Doctorate
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering
Ming-Ya, Wu, and 吳孟亞. "A Study of Wetting Phenomenon of Melting Glasses." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/60259635790216824903.
Full text國立臺灣科技大學
化學工程系
93
A system for the studying the wetting phenomenon of melting glasses is developed in this work. The wetting behavior is via the measurement of dynamic contact angle of the melting glasses. An apparatus for measuring the melting glasses at temperature ranging between 800 and 1600 oC is built first. A program for acquiring drop images continuously and for locating the edge coordinates is then developed. After that, this contact angle of sessile drop of melting glasses is measured at different temperature and different heating time. The wetting phenomena are then studied from the dynamic contact angle data for various melting glasses at different solid substrates. The data of contact angle show some interesting results. Different wetting phenomena were observed for POI melting glass on various solid substrates, which includes metals (Pt, Pt-Au alloy, and Pt-Rh alloy) and non-metal (two different refractory bricks). The temperature for POI glass reaching a constant contact angle is: Pt < alloy < non-metal. The temperature for different glasses on the new refractory to reach a constant contact angle is: C18 > POI = N8.
Hsieh, I.-Fan, and 謝逸凡. "Wetting Phenomenon of Nanoscaled Drop-protrusion and Drop-groove Systems." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/6e54rq.
Full text國立臺灣大學
化學工程學研究所
105
The wetting behavior of a nanodrop encountering a nanoprotrusion and atop a nanogroove on a hysteresis-free surface is explored by Surface Evolver. On a smooth surface, a nanodrop exhibits random motion but will be captured as it encounters a nanoprotrusion, which possesses the same wettability as that of the surface. For both lyophilic and lyophobic systems, there exists an attraction between the drop and the protrusion. The energy profiles corresponding to the detaching processes with and without crossing the protrusion is determined by the displacement of the captured drop due to the applied external force. It is found that the critical forces and the depth of the energy wells of the lyophilic system are greater than those of the lyophobic system. Furthermore, the drop symmetrically straddling on the protrusion is stable for the lyophilic system but becomes unstable for the lyophobic system. For a nanodrop placed atop a nanogroove, whether the groove can be wetted by the drop depends on the wettability (contact angle), drop volume, groove size, and the shape of the groove. It is found that the critical contact angle corresponding to the impregnation of the groove by the drop diminishes with increasing drop volume or decreasing groove size. According to this result, the observed difference in the wetting phenomena between a pyramidal groove and an inverted pyramidal groove can be elucidated.
Chen, Chung-Ping, and 陳郡蘋. "The Wetting Phenomenon of Polymer Thin Film On Polymer Brush Surfaces." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/59tc84.
Full text國立臺灣大學
化學工程學研究所
106
The wetting behaviors of polymer films/droplets on smooth substrates or substrates modified with polymer brushes are investigated by many-body dissipative particle dynamics simulation method. Three wetting dynamics of a polymer film on a smooth, partial wetting surface can be identified, (i) spinodal decomposition, (ii) nucleation decomposition, and (iii) self-healing. The outcome depends on polymer chain length(N), polymer film thickness(H), and radius of the dry hole (R_0). The phase diagram of the dewetting mechanism as a function of H and N is obtained for a specified R_0. As chain length increases (increasing N), the critical film thickness associated with the nucleation/self-healing crossover grows so that the metastability of the film can be retained by the self-healing process. It is also found that the stability of the polymer thin film can be enhanced by employing polymers with compact structures such as star polymers, which has smaller radius of gyration as the arm number increases. Our simulation results also indicate that the modification of a substrate with a chemically identical polymer brush can significantly retard the dewetting phenomena of polymer droplets. Three wetting dynamics of a polymer film on top of a polymer brush can be identified, (i) self-healing, (ii) quasi-stable hole, and (iii) dewet by external disturbance (nucleation decomposition). The phase diagram of the dewetting behavior as a function of grafting density and radius of dry hole is obtained. When the grafting density is low, the polymer film is more stable and tends to proceed with self-healing process as an external disturbance is applied. As the grafting density becomes high, a quasi-stable hole is formed with imposed dry hole. Further increase in the grafting density leads to the effect of autophobicity and polymer film becomes high unstable even under a minor disturbance. Our simulation results can provide strategies for dewetting suppression such as the metastability of the film of polymers with large molecular weight can be promoted either by the addition of short polymers or by employing compact polymers such as star polymers.