To see the other types of publications on this topic, follow the link: Wetting phenomena.

Dissertations / Theses on the topic 'Wetting phenomena'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 36 dissertations / theses for your research on the topic 'Wetting phenomena.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Wålinder, Magnus. "Wetting phenomena on wood." Doctoral thesis, KTH, Production Systems, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Denesuk, Matthew 1965. "Modelling of dynamic wetting phenomena." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/291345.

Full text
Abstract:
A general dynamic wetting model is presented in which surface and gravitational driving energies are balanced against energy lost through bulk viscous dissipation. Behavior is described in terms only of independently measurable quantities, with no adjustable parameters. Additionally, the model can be expressed so as to predict liquid viscosity as a function of dynamic wetting behavior. Application of the model to a lead-silicate liquid on a gold substrate demonstrate excellent agreement of the model with experiment. The general framework of the model is especially amenable to the incorporation of other physico-chemical processes which may impact dynamic wetting phenomena. Examples are given which extend the model to specific cases where substrate roughness and/or substrate dissolution are important. Additionally, the dynamic wetting model is extended to porous substrates, accounting for the effects of composite interface formation and depletion of the liquid via capillary flow.
APA, Harvard, Vancouver, ISO, and other styles
3

Darbellay, Georges Alexis. "Wetting and capillary condensation transitions in novel geometries." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Woywod, Dirk. "Binary mixtures near solid surfaces: wetting and confinement phenomena." [S.l.] : [s.n.], 2004. http://edocs.tu-berlin.de/diss/2004/woywod_dirk.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lowe, P. "Molecular de-wetting phenomena in adsorbed bio-molecule layers." Thesis, Cranfield University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ibagon, Ingrid [Verfasser], and Siegfried [Akademischer Betreuer] Dietrich. "Wetting phenomena in electrolyte solutions / Ingrid Ibagon. Betreuer: Siegfried Dietrich." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1063334926/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mills, John Robert. "Wetting phenomena associated with CO2 sequestration and low salinity waterflooding." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ruiz, Gutierrez Elfego. "Theoretical and computational modelling of wetting phenomena in smooth geometries." Thesis, Northumbria University, 2017. http://nrl.northumbria.ac.uk/34536/.

Full text
Abstract:
Capillarity and wetting are the study of the interfaces that separate immiscible fluids and their interaction with solid surfaces. The interest in understanding capillary and wetting phenomena in complex geometries has grown in recent years. This is partly motivated by applications, such as the micro-fabrication of surfaces that achieve a controlled wettability, but also because of the fundamental role that the geometry of a solid surface can play in the statics and dynamics of liquids that come into contact with it. In this work, the statics and dynamics of liquids in contact with smooth, but non-planar geometries are studied. The approach is theoretical, and include mathematical modelling and numerical simulations using a new lattice-Boltzmann simulation method. The latter can account for solid boundaries of arbitrary geometry and a variety of boundary conditions relevant to experimental situations. The focus is directed to two model systems. First, an analysis on the statics and dynamics of a droplet inside wedge is performed, this is accomplished by proposing the shape of the droplet, a new shape that will be referred in this document as a “liquid barrel”. Using this assumption, the static position and shape of the droplet in response to an external body force is predicted. Then, the analysis is extended to include to dynamical situations in the absence of external forces, in which the translational motion of the liquid barrel towards equilibrium it is described. The proposed analytical model was validated by comparison with full 3D lattice-Boltzmann simulations and with recent experimental results. The applicability of these ideas is materialised with the purpose of achieving energy-invariant manipulation of a liquid barrel in a reconfigurable wedge. As a second model system, the evaporation of a sessile droplet in contact with a wavy solid surface was studied. Due to the non-planar solid topography, the droplet position in equilibrium is restricted to a discrete set of positions. It is shown that when the amplitude of the surface is sufficiently high, the droplet can suddenly readjust its shape and location to a new equilibrium configuration. These events occur in a time-scale much shorter than the evaporation time-scale, a “snap”. With numerical simulations and theoretical analysis, the study reveals the causes for the snap transitions, which lie in shape bifurcations of the droplet shapes, The analysis and results are compared against recent experiments of droplets evaporating on smooth sinusoidal surfaces. With the advent of low-friction surfaces, in which static friction is practically absent, the mobility of droplets is close to ideal, and with this, predicting and controlling them in static cases becomes a challenge. The analysis and results presented in this work can be used for manipulating the position and defining the shape of droplets via the geometry of their confinements.
APA, Harvard, Vancouver, ISO, and other styles
9

Xiao, Rong Ph D. Massachusetts Institute of Technology. "Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79285.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, February 2013.
Page 76 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 71-75).
Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer performance during phase-change which is of great importance in a wide range of applications including thermal management, building environment, water harvesting and power production. In particular, superhydrophilic surfaces have been of interest to achieve thin film evaporation with high heat fluxes. Meanwhile, superhydrophobic surfaces with dropwise condensation promises higher heat transfer coefficients than typical filmwise condensation. My thesis work aims at improving fundamental understanding as well as demonstrating practical enhancements in these two areas. A key challenge to realizing thin film evaporation is the ability to achieve efficient fluid transport using superhydrophilic surfaces. Accordingly, we developed a semi-analytical model based on the balance between capillary pressure and viscous resistance to predict the propagation rates in micropillar arrays with high aspect ratios. Our experimental results showed good agreement with the model, and design guidelines for optimal propagation rates were proposed. For micropillar arrays with low aspect ratio and large spacing between pillars, however, we identified that the microscopic sweeping of the liquid front becomes important. We studied this phenomenon, explained the effect of such microscale dynamics on the overall propagation behavior, and proposed a strategy to account for these dynamics. While these propagation studies provide a means to deliver liquid to high heat flux regions, we investigated a different configuration using nanoporous membrane that decouples capillarity from the viscous resistance to demonstrate the potential heat dissipation capability. With nanoporous membranes with average pore diameters of 150 nm and thicknesses of 50 [mu]m, we achieved interfacial heat fluxes as high as 96 W/cm2 via evaporation with isopropyl alcohol. The effect of membrane thickness was studied to offer designs that promise dissipation of 1000 W/cm 2 . Meanwhile, we developed new metrology to measure transient heat transfer coefficients with a temporal resolution of 0.2 seconds during the evaporation process. Such a technique offers insight into the relationship between liquid morphology and heat transfer behavior. Finally, for enhanced condensation, we demonstrated immersion condensation using a composite surface fabricated by infusing hydrophobic oil into micro/nanostructures with a heterogeneous coating. With this approach, three key attributes to maximize heat transfer coefficient, low departure radii, low contact angle, and high nucleation density, were achieved simultaneously. We specifically elucidated the mechanism for the increase in nucleation density and attribute it to the combined effect of reduced water-oil interfacial energy and local high surface energy sites. As a result, we demonstrated approximately 100% enhancement in heat transfer coefficient over state-of-the-art superhydrophobic surfaces with the presence of non-condensable gases. This thesis presents improved fundamental understanding of wetting, evaporation, and condensation processes on micro/nanostructures as well as practical implementation of these structures for enhanced heat transfer. The insights gained demonstrate the potential of new nanostructure engineering approaches to improve the performance of various thermal management and energy production applications.
by Rong Xiao.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
10

Cai, Jundao. "Topics in two kinds of wetting phenomena and equilibrium shapes of HCP crystal /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487684245465788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Koshy, Pramod Materials Science &amp Engineering Faculty of Science UNSW. "Effect of chemical additives on the interfacial phenomena of high alumina refractories with al-alloys." Publisher:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/43559.

Full text
Abstract:
Understanding high temperature interfacial phenomena with Al-alloys is essential for improving corrosion performance of refractories in melting/holding furnaces. Both physical and chemical properties are known to influence wetting and corrosion behaviour. However, uncertainties exist regarding the influence of SiO2 in refractory compositions on interfacial reactions/mechanisms, particularly when present along with non-wetting chemical additives like BaSO4, CaF2 and AlF3. An experimental study was conducted to clarify the interfacial phenomena of Al-alloy7075 with high-alumina refractories at extreme furnace temperatures of 1250??C and 815??C, using classical sessile drop approach and industrial cup tests respectively. At 1250??C, Al-alloy reacted more intensely with SiO2 compared to Al2O3. The interfacial behaviour of SiO2-Al2O3 system with Al-alloy was strongly dependent on SiO2 percentage, such that when upto 25% silica was present, wetting was reduced due to the presence of both original and newly formed corundum. Formation of mullite and originally present silica, along with decreasing corundum contents increased wetting in systems where silica varied from 25-45wt% and more than 45wt% respectively. Moreover, the nature of silica did not influence wetting when present in concentrations less than 20wt%. Different additives produced varying interfacial reactions in the Al-alloy/high-alumina refractory system. AlF3 did not improve the wetting resistance, except when present in high concentrations (>10wt%) in the refractory; this improvement attributed to corundum-rich matrix formation resulting from silica loss as gaseous fluorides. Low CaF2 amounts (<3wt%) improved the wetting resistance due to corundum presence and anorthite formation in the refractory. As CaF2 content exceeded 5wt%, proportion of glassy phases increased, hence enhancing interfacial reactions. However unlike CaF2, low BaSO4 levels (<5wt%) decreased the wetting resistance due to barium silicate formation, while high BaSO4 concentrations (≥10wt%) increased the wetting resistance due to celsian formation. Also, CaF2 dominated interfacial mechanisms when present along with BaSO4 in the refractory. The effect of additives on modifying wetting resistance was found to strongly vary with SiO2 levels of the refractory. The study demonstrated that additive effect is also influenced by treatment temperatures such that generally higher additive amounts are required at lower temperatures for improving the wetting resistance of high-alumina refractories.
APA, Harvard, Vancouver, ISO, and other styles
12

Blackmore, William Henry. "Capillary Phenomena: Investigations in Compressed Bubble Migration, Geometric Wetting, and Blade-Bound Droplet Stability." PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/651.

Full text
Abstract:
Capillary flows continue to be important in numerous spacecraft systems where the effective magnitude of the gravity vector is approximately one millionth that of normal Earth gravity. Due to the free fall state of orbiting spacecraft, the effects of capillarity on the fluid systems onboard can dominate the fluid behavior over large length scales. In this research three investigations are pursued where the unique interplay between surface tension forces, wetting characteristics, and system geometry control the fluid behavior, whether in large systems aboard spacecraft, or micro-scale systems on Earth. First, efforts in support of two International Space Station (ISS) experiments are reported. A description of the development of a new NASA ground station at Portland State University is provided along with descriptions of astronaut training activities for the proper operation of four handheld experiments currently in orbit as part of the second iteration of the Capillary Flow Experiments (CFE-2). Concerning the latter, seven more vessels are expected to be launched to the ISS shortly. Analysis of the data alongside numerical simulations shows excellent agreement with theory, and a new intuitive method of viewing critical wetting angles and fluid bulk shift phenomena is offered. Secondly, during the CFE-2 space experiments, unplanned peripheral observations revealed that, on occasion, rapidly compressed air bubbles migrate along paths with vector components common to the residual acceleration onboard the ISS. Unexpectedly however, the migration velocities could be shown to be up to three orders of magnitude greater than the appropriate Stokes flow limit! Likely mechanisms are explored analytically and experimentally while citing prior theoretical works that may have anticipated such phenomena. Once properly understood, compressed bubble migration may be used as an elegant method for phase separation in spacecraft systems or microgravity-based materials manufacturing. Lastly, the stability of drops on surfaces is important in a variety of natural and industrial processes. So called 'wall-edge-vertex bound drops' (a.k.a. drops on blade tips or drops on leaf tips which they resemble) are explored using a numerical approach which applies the Surface Evolver algorithm through implementation of a new file layer and a multi-parameter sweep function. As part of a recently open sourced SE-FIT software, thousands of critical drop configurations are efficiently computed as functions of contact angle, blade edge vertex half-angle, and g-orientation. With the support of other graduate students, simple experiments are performed to benchmark the computations which are then correlated for ease of application. It is shown that sessile, pendant, and wall-edge bound drops are only limiting cases of the more generalized blade-bound drops, and that a ubiquitous 'dry leaf tip' is observed for a range of the critical geometric and wetting parameters.
APA, Harvard, Vancouver, ISO, and other styles
13

LIU, WEN. "TRANSPORT PHENOMENA ASSOCIATED WITH LIQUID METAL FLOW OVER TOPOGRAPHICALLY MODIFIED SURFACES." UKnowledge, 2012. http://uknowledge.uky.edu/me_etds/16.

Full text
Abstract:
Brazing and soldering, as advanced manufacturing processes, are of significant importance to industrial applications. It is widely accepted that joining by brazing or soldering is possible if a liquid metal wets the solids to be joined. Wetting, hence spreading and capillary action of liquid metal (often called filler) is of significant importance. Good wetting is required to distribute liquid metal over/between the substrate materials for a successful bonding. Topographically altered surfaces have been used to exploit novel wetting phenomena and associated capillary actions, such as imbibitions (a penetration of a liquid front over/through a rough, patterned surface). Modification of surface roughness may be considered as a venue to tune and control the spreading behavior of the liquids. Modeling of spreading of liquids on rough surface, in particular liquid metals is to a large extent unexplored and constitutes a cutting edge research topic. In this dissertation the imbibitions of liquid metal has been considered as pertained to the metal bonding processes involving brazing and soldering fillers. First, a detailed review of fundamentals and the recent progress in studies of non-reactive and reactive wetting/capillary phenomena has been provided. An imbibition phenomenon has been experimentally achieved for organic liquids and molten metals during spreading over topographically modified intermetallic surfaces. It is demonstrated that the kinetics of such an imbibition over rough surfaces follows the Washburn-type law during the main spreading stage. The Washburn-type theoretical modeling framework has been established for both isotropic and anisotropic non-reactive imbibition of liquid systems over rough surfaces. The rough surface domain is considered as a porous-like medium and the associated surface topographical features have been characterized either theoretically or experimentally through corresponding permeability, porosity and tortuosity. Phenomenological records and empirical data have been utilized to verify the constructed model. The agreement between predictions and empirical evidence appears to be good. Moreover, a reactive wetting in a high temperature brazing process has been studied for both polished and rough surfaces. A linear relation between the propagating triple line and the time has been established, with spreading dominated by a strong chemical reaction.
APA, Harvard, Vancouver, ISO, and other styles
14

Calvimontes, Alfredo. "Topographic characterization of polymer materials at different length scales and the mechanistic understanding of wetting phenomena." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-27152.

Full text
Abstract:
The present study suggests new insights into topographic characterisation of engineering polymer surfaces towards to physical-chemical and mechanistic understanding of wetting phenomena on rough surfaces. Non-contact chromatic confocal imaging was chosen and justified as the optimal measuring method to study and correlate surface topography and surface properties of Sheet Moulding Compounds (SMC) as well as polyester and cotton fabrics. Before topographical characterisation, an adequate selection of optimal sampling conditions (cut-off length and resolution) were done by a systematic procedure proposed for periodic and non-periodic surfaces. Topographical characterisation of the surfaces was realized by an innovative methodology, separately considering different length scales in dependence on the surface morphologies of the materials. For SMC materials, the influence of moulding conditions (pressure, moulding time, metallic mold topography, metallic mold form, prepregs placement procedure, glass fibres content and orientation) on resulting macro-, meso- and micro-topography was studied. A model to conceptualize the influence of the most important moulding conditions on topographic characteristics and, as a consequence, on the quality of the resulting surface was presented. To quantify the effect of surface modification, a new parameter (Surface Relative Smooth) was suggested, developed and validated, which can be used for the characterisation of changes due to surface modifications for every solid material. A very important and innovative part of the present study is the development of new concepts for topographic characterisation of textile materials using different length scales, that makes possible to consider and analyse separately their specific morphologies caused by weave, yarn and filament/fibres, and to investigate the influence of topography on wettability by modification processes, e.g. construction parameters, thermosetting, impregnation with Soil Release Polymers (SRP) and wash-dry cycles. The present study showed, how construction parameters of polyester textiles, such as fineness of filaments and yarn, warp and weft densities as well as the type of weave, control the surface topography - characterised as meso-porosity (spaces between yarns) and micro-porosity (spaces between filaments) - and as a consequence strongly influence their capillarity. On the basis of experimental results, revealing differences in three basic types of woven fabrics – plain, twill and Panama – in respect to water penetration, the concept of an innovative novel wicking model was developed. Additionally, the influence of thermosetting and impregnation of polyester fabrics with Soil Release Polymers on topography, wetting and cleanability of three woven plain polyester fabrics, having different wefts, were studied. To characterise the soiling behaviour, an ‘spot analysis method’ was suggested, allowing wetting dynamics studies of liquids on fabrics with anisotropic surface properties. This method is applicable also to surfaces with anisotropic roughness characteristics and to porous media. The effect of wash-dry cycles on topography, spreading, wetting and soiling of woven plain and knitted cotton fabrics was in addition investigated. In all cases studied, the topographical characterisation and interpretation of results on different length scales contributed to a better understanding of wetting phenomena. A mathematical model for a virtual construction of textile surfaces to predict effects resulting from topographic changes on the behaviour of polymer and textiles surfaces was developed. Woven plain textiles and SMC surfaces were mathematically synthesized by a combination of various harmonic waves, i.e. Fourier synthesis. Topographic and technical construction parameters were taken into account to build their virtual topographies. In the case of textile surfaces, the effect of wash-dry cycles for cotton fabrics and thermosetting of polyester fabrics on their meso- and micro-morphology was investigated on the basis of the real topography of a given textile surface. The model allows to predict changes in the porosity of resulting textile materials, their wettability and soiling behaviour. The method presented provides possibilities to simulate controlled changes in textile construction parameters and to study their effect on the resulting topography
Die vorliegende Arbeit vermittelt neue Einblicke in die topographische Charakterisierung technisch relevanter Polymeroberflächen mit dem Ziel, die Mechanismen der Benetzungsphänomene auf rauen Oberflächen besser zu verstehen. Eine 3D-Abbildung der Oberflächentopographie wurde mit einem konfokalen Mikroskop mit chromatischer Kodierung zwecks optimaler Charakterisierung duromerer Verbundwerkstoffsystemen (SMS: Sheet Moulding Compounds) sowie Polyester- und Baumwolltextilien berührungsfrei durchgeführt. Zur topographischen Oberflächencharakterisierung wurde eine systematische Prozedur vorgeschlagen, welche es erlaubt, eine entsprechende Auswahl von optimalen Messbedingungen, wie die Bewertungslänge (cut-off length) und Auflösung, für Oberflächen mit periodischer und nicht-periodischer Rauheit zu treffen. Die topographische Charakterisierung von Oberflächen wurde methodologisch weiter entwickelt, indem die Oberflächen auf verschiedenen Längenskalen je nach Morphologie untersucht werden können. Für duromere Verbundwerkstoffsysteme wurde der Einfluss von den Bedingungen des Formpressens (Druck, Zeit, Topographie und Form des metallischen Werkzeugs, Einbringen des Prepregs, Glasfasergehalt und -orientierung) auf die resultierende makro-, meso- und mikroskopische Topographie studiert. Eine modellmäßige Beschreibung des Einflusses der wichtigsten Charakteristiken des Herstellungsprozesses duromerer Verbundwerkstoffsysteme auf ihre topographische Charakteristiken und demzufolge auf die Qualität des Endproduktes wurde konzipiert. Zur Quantifizierung des Effekts der Oberflächenmodifizierung wurde einen neuen Parameter – Surface Relative Smooth – vorgeschlagen und dessen Nutzung für jedes beliebige Feststoffkörpers verifiziert. Das Hauptaugenmerk bei der Durchführung der Arbeit wurde auf die Entwicklung neuer Konzepte zur topographischen Charakterisierung textiler Materialien gelegt, welche die Nutzung mehrerer Längenskalen in Betracht ziehen. Dies ermöglicht die spezifische Morphologien textiler Strukturen zu berücksichtigen und jede Struktur, welche durch die Gewebeart, die Art der Fasern und des Garns entstanden ist, gesondert bezüglich ihr Einflusses auf die Benetzbarkeit infolge der Modifizierung (Konstruktionsparameter, Thermofixierung, Imprägnierung mit Soil-Release- Polymeren, Waschen/Trocknen-Zyklen) zu analysieren. In der vorliegenden Arbeit wird gezeigt, wie die Konstruktionsparameter von Polyestertextilien, wie z.B. die Filament- und Garnfeinheit, Kett- und Schussdichte sowie die Gewebebindung Einfluss auf die Oberflächentopographie und als Folge auf ihre Kapillarität nehmen, und zwar als Mesoporosität (Abstände zwischen Garnwindungen) und als Mikroporosität (Abstände zwischen einzelnen Filamenten). Auf der Basis von umfangreichen experimentellen Daten, welche die Unterschiede zwischen verschiedenen Bindungsarten (Leinwand, Köper, Panama) offenbaren, wurde ein neues Modell zur Beschreibung der Penetration von Flüssigkeiten in die textile Strukturen entwickelt. Außerdem wurde der Einfluss der Thermofixierung und Imprägnierung von Polyester Materialen mit Soil-Release-Polymeren auf die Topographie, Benetzbarkeit und Auswaschbarkeit für die drei wichtigsten Gewebearten untersucht, welche die gleiche Anzahl von Schussfäden haben. Für die Charakterisierung des Anschmutzungsverhaltens von Textilen wurde eine so genannte Fleck-Analysierungsmethode (spot analysis method) vorgeschlagen, welche es erlaubt, benetzungsdynamische Eigenschaften von Flüssigkeiten an Oberflächen mit anisotroper Topographie zu studieren. Diese Methode ist geeignet auch für Oberflächen mit anisotropen Rauheitsstrukturen und für poröse Materialien. Der Effekt von Waschen/Trocken-Zyklen auf die Topographie, Spreitung, Benetzung und Anschmutzung von Leinwandgewebe und Gestricke aus Baumwolle wurde zusätzlich untersucht. In allen Spezialfällen diente die topographische Charakterisierung und die Interpretation der Ergebnisse auf verschiedenen Längenskalen zur besseren Verständnis von Benetzungsphänomenen. Ein mathematisches Modell für die virtuelle Konstruktion von textilen Oberflächen wurde entwickelt, die das Studium der Effekte infolge topographischer Änderungen auf das Verhalten von Polymer- und Textiloberflächen ermöglicht. Oberflächen von Leingeweben und duromeren Verbundwerkstoffsystemen wurden mit der Fourier-Synthese unter Zuhilfenahme verschiedener harmonischer Wellen mathematisch abgebildet. Die Topographie- und Konstruktionsparameter wurden bei der Fourier-Synthese zur Konstruktion virtueller Topographien genutzt. Im Falle der textilen Materialein wurde der Effekt von Waschen/Trocknen-Zyklen für die Baumwolltextilien sowie der Thermofixierung von Polyestertextilien auf ihre Meso- und Mikromorphologie auf der Basis gemessener Parameter für jede Topographie modelliert. Dieses Modell erlaubt auch die Vorhersage der Änderungen in der Porosität von resultierenden textilen Strukturen, ihres Benetzungs- und Anschmutzungsverhaltens. Mit dieser Methode ist es möglich, gewünschte Änderungen von textilen Konstruktionsparametern einzustellen und ihre Effekte auf die Topographie zu untersuchen
APA, Harvard, Vancouver, ISO, and other styles
15

Villanueva, Walter. "Diffuse-Interface Simulations of Capillary Phenomena." Doctoral thesis, Stockholm : Kungl. tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Isele-Holder, Rolf Erwin [Verfasser], Ahmed E. [Akademischer Betreuer] Ismail, and Martin T. [Akademischer Betreuer] Horsch. "Molecular phenomena in dynamic wetting: superspreading and precursors / Rolf Erwin Isele-Holder ; Ahmed E. Ismail, Martin T. Horsch." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128316595/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jamie, Elizabeth A. G. "Colloidal interfaces in confinement." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:26b47a79-7198-4983-9109-174ac2d3e01d.

Full text
Abstract:
A fluid-fluid demixing colloid-polymer system provides us with an opportunity to study interfacial phenomena that cannot be observed in molecular systems due to unfavourable length and timescales. We develop such a system compatible with cells of varying dimensions, allowing us to investigate confined interfacial behaviour in real space using Confocal Scanning Laser Microscopy. The degree to which a system is affected by the sedimentation-diffusion gradient is dependent on the ratio of the suspension height to the gravitational length of the colloids. We illustrate that we may control the distance of our interface to the critical point by altering the suspension height, determining the importance of the gravitational field. Furthermore, the timescale on which the sedimentation- diffusion gradient is established is considerably longer than that of initial fluid-fluid demixing. We show that after the formation of the macroscopic interface, the system passes through a series of local mechanical equilibria on the way to achieving full equilibrium. Should the system be of sufficient height, it will pass through the gas-liquid critical point opening up new ways to study critical phenomena. The time and length scales of the fluid-fluid demixing of our system may be manipulated by altering the density and viscosity of our solvent. We exploit a slowed phase separation process to study the interplay between demixing and wetting phenomena of systems in the vicinity of a single wetting surface, and confined between two parallel plates. We demonstrate that the presence of a surface strongly affects the morphology of phase separation. The growth of the wetting layer is determined by the demixing regime of the system, and may be accelerated by hydrodynamics. The additional restriction by a second surface limits the lengthscale of coarsening domains and may further alter the mechanism of wetting layer growth.
APA, Harvard, Vancouver, ISO, and other styles
18

McCarthy, Fiona Materials Science &amp Engineering Faculty of Science UNSW. "Interfacial phenomena and dissolution of carbon from chars into liquid iron during pulverised coal injection in a blast furnace." Awarded by:University of New South Wales. School of Materials Science and Engineering, 2005. http://handle.unsw.edu.au/1959.4/20797.

Full text
Abstract:
As carbon dissolution rates have been determined for a few chars only, a systematic and comprehensive study was undertaken in this project on the dissolution behaviour of carbon from non-graphitic materials into liquid iron. In addition to measuring the kinetics of carbon dissolution from a number of coal chars into liquid iron as a function of parent coal and coal ash composition, the influence of chemical reactions between solute/solid carbon and ash oxides was also investigated. These studies were supplemented with investigations on one metallurgical coke for the sake of comparison. The wettability of coal chars and coke with liquid iron at 1550 degrees C was measured as a function of time. Being essentially non-wetting, only a marginal improvement in contact angles was observed with time. The accumulation of alumina at the interface was detected for all materials and was seen to increase with time in all cases. Calcium and sulphur also appeared to preferentially accumulate at the interface, concentrating at levels in excess of those expected from the ash composition alone. Despite the high levels of silica in the ash initially, very little silica was detected in the interfacial region, implying ongoing silica reduction reactions. A small amount of silicon was however detected in the iron droplets, indicating silica reduction with solute carbon. It was identified that the reduction reactions can also consume solute carbon in the liquid iron. As this is occurring simultaneously with carbon dissolution into liquid iron, the interdependency of silica reduction and carbon dissolution could potentially limit the observed carbon dissolution rate. A theoretical model was developed for estimating the interfacial contact area between chars and liquid iron. Wettability was found to have a very significant effect on the area of contact. A two-step behaviour was observed in the carbon dissolution of two chars and coke. Slow rates of carbon dissolution in stage II were attributed to very high levels of interfacial blockage by reaction products leading to much reduced areas of contact between carbonaceous material and liquid iron. The first order dissolution rate constants for four chars/coke and the observed trend in first order dissolution rate constants were calculated. These dissolution results compare well with the previously measured dissolution rate constants. The trends in dissolution can be adequately explained on the basis of carbon structure, silica reduction, sulphur concentration in the metal and ash impurities.
APA, Harvard, Vancouver, ISO, and other styles
19

Pavan, Sara. "Nouveaux schémas de convection pour les écoulements à surface libre." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1011/document.

Full text
Abstract:
Cette thèse a pour objectif la construction de schémas d’ordre élevé et peu diffusifs pour le transport d’un scalaire dans les écoulements à surface libre, en deux ou trois dimensions. On souhaite en particulier obtenir des schémas robustes, qui gardent au niveau discret les propriétés mathématiques de l’équation de transport avec une faible diffusion numérique, et les utiliser sur des cas industriels. Dans ce travail deux méthodes numériques sont envisagées : une méthode aux volumes finis (VF) et une méthode aux résidus distribués (RD). Dans les deux cas, l’équation de transport est résolue avec une approche découplée, qui est la solution la plus avantageuse en termes de précision et de coûts de calcul. Pour ce qui concerne la méthode aux volumes finis, les équations de Saint-Venant couplées à l’équation du transport sont d’abord résolues avec un schéma dit vertex-centred où le flux numérique est approximé avec un solveur de Riemann appelé Harten-Lax-Van Leer-Contact [135]. A partir de cette approche, une formulation découplée est proposée. Cette dernière permet de résoudre l’équation du transport avec un pas de temps plus grand que celui de la formulation couplée. Cette idée a été d’abord proposée pour d’autres schémas dans [13]. Pour augmenter l’ordre de précision en espace, la technique MUSCL [89] est utilisée en combinaison avec l’approche découplée. Finalement, la problématique des zones sèches est abordée. Dans le cas de la méthode aux résidus distribués, les équations de Saint-Venant sont résolues avec une méthode éléments finis, et la méthode RD est utilisée seulement pour discrétiser l’équation du transport, en focalisant l’attention sur les problèmes non stationnaires. L’équation de continuité du fluide discrétisée est employée pour garantir la conservation de la masse et le principe du maximum. Pour obtenir des schémas d’ordre deux dans les problèmes non stationnaires, un schéma prédicteur-correcteur [112] est utilisé, en l’adaptant au cas de concentration moyennée sur la verticale. Une version d’ordre 1 mais peu diffusive, est aussi présentée dans ce travail. De plus, un schéma localement implicite, complètement nouveau, est aussi formulé pour pouvoir traiter le problème des bancs découvrant. Les deux techniques sont validées d’abord sur des cas simples, pour évaluer l’ordre de précision des schémas et ensuite sur des cas plus complexes pour vérifier aussi les autres propriétés numériques. Les résultats montrent que les nouveaux schémas sont à la fois précis et conservatifs, tout en gardant la monotonie comme le prévoient les démonstrations. Un cas d’application industriel est aussi présenté en conclusion. Le schéma prédicteur-correcteur RD est adapté aussi au cas 3D, sans aucun problème théorique nouveau, par rapport au cas 2D. Les propriétés de base des schémas sont validées sur des cas test préliminaires
The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemannsolver [135]. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by [13]. The Monotonic Upwind Scheme for Conservation Law [89], combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme [112] is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in terms of accuracy and stability, has the advantage to cope with dry zones. The two methods are first validated on academical test cases with analytical solution in order to assess the order of the schemes. Then more complex cases are addressed to test the robustness of the schemes and their performance under different flow conditions. Finally a real test case for which real data are available is carried out. An extension of the predictor-corrector residual distribution schemes to the 3D case is presented as final contribution. Even in this case the RD technique is completely compatible with the finite element framework used for the Navier-Stokes equations, thus its extension to the 3D case does not present any extra theoretical problem. The method is tested on preliminary cases
APA, Harvard, Vancouver, ISO, and other styles
20

Radulovic, Jovana. "Experimental and theoretical investigation of the interfacial phenomenon associated with wetting of trisiloxane surfactant solutions." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4710.

Full text
Abstract:
Surface active agents have been successfully employed in numerous industrial, agricultural and biomedical applications for decades. Trisiloxane surfactants in particular have proved to be exceptionally effective as wetting enhancers; hence the name ‘superspreaders’. Since the early ‘90s these extraordinary surfactants have become an irreplaceable component in various products and processes. However, the true nature of their specific wetting behaviour has not been fully revealed and their underlying wetting mechanisms are still poorly understood despite substantial scientific interest during the last decades. In this thesis is an attempt to shed light on specific wetting and spreading behaviour of trisiloxane solutions. Commercial superspreader products were tested in various environments in order to get further insight into their performance in specific practical applications. Experimental investigation of wetting of superspreader solutions on surfaces of different hydrophobicity and comparison to that of a conventional surfactant revealed superiority of trisiloxanes. Exceptional interfacial activity was explained in terms of the specific chemical structure and ‘T’-shape of the molecule. However, sensitivity of the trisiloxane head to low pH and long-time ageing in aqueous environment was revealed. Performance of binary mixtures of commercial superspreaders and conventional surfactant was also assessed. Behaviour of trisiloxanes in the capillary action was studied. Finally, a comprehensive mathematical model for trisiloxane wetting, which incorporates diffusion as the governing factor of the wetting process, was developed.
APA, Harvard, Vancouver, ISO, and other styles
21

Attinger, Daniel. "An investigation of microdroplet surface deposition : transient behavior, wetting angle dynamics and substrate melting phenomenon /." Zürich : [s.n.], 2001. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lim, Ying Ying. "Printing conductive traces to enable high frequency wearable electronics applications." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17880.

Full text
Abstract:
With the emergence of the Internet of Things (IoT), wireless body area networks (WBANs) are becoming increasingly pervasive in everyday life. Most WBANs are currently working at the IEEE 802.15.4 Zigbee standard. However there are growing interests to investigate the performance of BANs operating at higher frequencies (e.g. millimetre-wave band), due to the advantages offered compared to those operating at lower microwave frequencies. This thesis aims to realise printed conductive traces on flexible substrates, targeted for high frequency wearable electronics applications. Specifically, investigations were performed in the areas pertaining to the surface modification of substrates and the electrical performance of printed interconnects. Firstly, a novel methodology was proposed to characterise the dielectric properties of a non-woven fabric (Tyvek) up to 20 GHz. This approach utilised electromagnetic (EM) simulation to improve the analytical equations based on transmission line structures, in order to improve the accuracy of the conductor loss values in the gigahertz range. To reduce the substrate roughness, an UV-curable insulator was used to form a planarisation layer on a non-porous substrate via inkjet printing. The results obtained demonstrated the importance of matching the surface energy of the substrate to the ink to minimise the ink de-wetting phenomenon, which was possible within the parameters of heating the platen. Furthermore, the substrate surface roughness was observed to affect the printed line width significantly, and a surface roughness factor was introduced in the equation of Smith et al. to predict the printed line width on a substrate with non-negligible surface roughness (Ra ≤ 1 μm). Silver ink de-wetting was observed when overprinting silver onto the UV-cured insulator, and studies were performed to investigate the conditions for achieving electrically conductive traces using commercial ink formulations, where the curing equipment may be non-optimal. In particular, different techniques were used to characterise the samples at different stages in order to evaluate the surface properties and printability, and to ascertain if measurable resistances could be predicted. Following the results obtained, it was demonstrated that measurable resistance could be obtained for samples cured under an ambient atmosphere, which was verified on Tyvek samples. Lastly, a methodology was proposed to model for the non-ideal characteristics of printed transmission lines to predict the high frequency electrical performance of those structures. The methodology was validated on transmission line structures of different lengths up to 30 GHz, where a good correlation was obtained between simulation and measurement results. Furthermore, the results obtained demonstrate the significance of the paste levelling effect on the extracted DC conductivity values, and the need for accurate DC conductivity values in the modelling of printed interconnects.
APA, Harvard, Vancouver, ISO, and other styles
23

Ledesma, Alonso René. "Study of the interaction between a liquid film and a local probe." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0105/document.

Full text
Abstract:
L’interaction statique et dynamique entre une sonde locale et un film de liquide provoque la déformation de ce dernier. Ce phénomène a été décrit par des équations analytiques, qui ont été analysées et résolues numériquement. Les potentiels d’interaction sonde/liquide et liquide/substrat ont été déduits à partir de l’intégration des forces de dispersion. La différence de pression à travers l’interface air/liquide a été calculée avec une équation de Young-Laplace modifiée, qui prend en compte les effets de la gravité, de tension superficielle, ainsi que les potentiels d’interaction liquide/substrat et sonde/liquide. Pour le cas statique, l’équation modifiée de Young-Laplace en équilibre a été examinée. La théorie de la lubrification a été utilisé pour décrire l’évolution du film liquide, afin d’analyser le phénomène dynamique. Des simulations numériques de la forme de la surface d’équilibre et de l’évolution dynamique du film ont été réalisées. Des comportements stables et instables ont été discernés, et les résultats ont confirmé l’existence d’une distance de seuil, pour le cas statique, et d’une combinaison de paramètres d’oscillation, pour la situation dynamique, pour lesquelles le saut du liquide vers la sonde se produit. Une analyse théorique a confirmé l’existence de conditions critiques qui séparent les régimes de comportement. Ces conditions critiques indiquent le rôle des paramètres physiques et géométriques dans la stabilité du système. Pour le cas dynamique, les résultats préliminaires sont rapportés et une interprétation qualitative du phénomène est formulée. En outre, des expériences de spectroscopie AFM de force et amplitude ont été effectuées et comparées avec les résultats numériques
The static and dynamic interaction between a local probe and a liquid film provokes the deformation of the latter. This phenomenon has been described by means of analytical equations, which had been analyzed and numerically solved. Probe/liquid and liquid/substrate interaction potentials have been deduced from the integration of the dispersion forces. The pressure difference across the air/liquid interface has been calculated with a modified Young-Laplace equation, which takes into account the effects of gravity, surface tension, the liquid film/substrate and the probe/liquid interaction potentials. For the static case, the equilibrium modified Young-Laplace equation has been considered. The lubrication theory has been used to describe the liquid film evolution, in order to analyze the dynamic phenomenon. Numerical simulations of the equilibrium surface shape and the dynamic evolution of the film have been performed. Stable and unstable behaviors had been discerned, and results confirmed the existence of a threshold distance, for the static case, and a combination of oscillation parameters, for the dynamic situation, for which the jump of the liquid to contact the probe occurs. A theoretical analysis confirmed the existence of critical conditions separating the behavior regimes. This critical conditions indicate the role of the physical and geometric parameters in the system stability. For the dynamic case, preliminary results are reported and a qualitative interpretation of the phenomenon is formulated. In addition, AFM force and amplitude spectroscopy experiments had been performed and compared with the numerical results
APA, Harvard, Vancouver, ISO, and other styles
24

黃寶瑤. "A study of wetting phenomena." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/03866718301246735324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chang, Feng-Ming, and 張峰明. "Investigation on Wetting Phenomena of Superhydrophobic Surfaces." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/47220431869271636851.

Full text
Abstract:
博士
國立中央大學
化學工程與材料工程研究所
98
Wetting phenomena of liquid on various substrates are of crucial concern in our daily life as well as in engineering and science. In this paper, there are five main topics about the wetting phenomena, described as follow: First, the wettability of hydrophobic surfaces is generally improved by surfactant solutions. The wetting behavior of superhydrophobic surfaces can be classified into two types, in terms of the variation of contact angle with surfactant concentration (cs). Contact angle is controlled by surface tension for common linear surfactants and becomes independent of cs as cs > cmc (critical micelle concentration). Consequently, superhydrophobic surfaces remain in hydrophobic range, as reported. However, for branch-tailed surfactants such as sodium bisethylhexylsulfosuccinate and didodecyldimethylammonium bromide, superhydrophobic surfaces can turn superhydrophilic by increasing cs owing to continuous reduction of solid-liquid interfacial tension. The superhydrophobicity is recoverable simply by water rinsing. Secondly, tiny bubbles are easily formed on the rough, hydrophobic surface results in difficulties in bubble detachment and removal. We show that bubbles captured by porous superhydrophobic surfaces merge into larger ones, which can detach by buoyancy. The responsible mechanism is convective Ostwald ripening because networklike pores in the superhydrophobic film remain nonwetted and provide passage for gas flow between adhered bubbles. A large bubble grows spontaneously by absorbing all small adhered bubbles due to capillary pressure differences. Our results demonstrate that porous hydrophobic film can be an efficient, passive way of bubble removal in microfluidic systems. Thirdly, the typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle CA hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious contact angle hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing contact angle, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of contact angle hysteresis, the surface remains superhydrophobic but becomes highly adhesive. Fourthly, it is generally believed that a water-repellent surface is necessary for small insects to stand on water. Through a combined experimental and theoretical study, we demonstrate that an object with hydrophilic surface can float with apparent contact angle greater than 90o due to edge effect. The apparent contact angle rises with increasing loading even to a value typically displayed only by superhydrophobic surfaces. On the basis of free energy minimization, two regimes are identified. When buoyancy controls, the meniscus meets the object with the intrinsic contact angle. As surface tension dominates, however, contact angle is regulated by total force balance. Finally, the wetting phenomenon in the vicinity of a corner boundary is ubiquitous. The daily life examples include the meniscus of water near the mouth of a container and the halt of the movement of a sliding droplet by the edge. In this study the wetting behavior near the edge is investigated both theoretically and experimentally by considering the volume growth of a droplet atop a conical frustum and the gradual immersion of a wedge. On the basis of free energy minimization, three different regimes are identified. When the contact line is away from the edge and Young’s equation is followed. Once the contact line reaches the edge, the contact line is pinning at the edge due to the boundary minimum of the free energy. Consequently, the apparent contact angle exceeds the intrinsic contact angle and grows with increasing droplet volume or water level. As the apparent contact angle reaches the critical angle, which depends on the solid edge angle, liquid extends over the edge and the contact line advances along new surface at its intrinsic contact angle. Similar behavior can be observed for wetting retreat but in a reverse order. The theoretical prediction has been experimentally confirmed.
APA, Harvard, Vancouver, ISO, and other styles
26

Lin, Cheng-Yu, and 林政佑. "Wetting Phenomena of Porous Films for Oil-water Separation." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/65420510137837653290.

Full text
Abstract:
碩士
國立中央大學
化學工程與材料工程學系
105
In this study, a facile fabrication of superhydrophobic Cu mesh for oil-water separation is applied in a low-temperature vacuum environment. When the predominant composition of surface is CuO, it’s a hydrophilic substrate with contact angle 56o, and oil cannot be separated from water due to the penetration of both oil and water. After this facile fabrication, the composition of surface changes into Cu2O partially, and it becomes a superhydrophobic substrate with contact angle 152.6o. Oil-water separation can be achieved because oil penetrates the superhydrophobic mesh while water is repelled on the mesh. And the separation efficiency can be higher than 99%. In addition, there’s no chemicals coated on mesh in this fabrication, so the stability is pretty high. The mesh can be against various aqueous chemical drops such as salts, acid, base, and surfactant. Besides, if the pore size of a mesh is shrunk and a mesh remains hydrophobicity, the stability can be elevated and operated in an environment of higher intrusion pressure. Nanofiltration membranes sometimes are used as the material for oil-water separation. Due to the small pore size (1-10 nm), the operation pressure should be higher than atmospheric pressure. In order to improve the performance in future works, the wetting behavior of nanofiltration membrane (Dow FILMTEC™ NF270) is investigated in this study. The contact angle of NF270 produced by Dow Chemical is 20.8o which is hydrophilic, and also it has ultralow contact angle hysteresis. A small bubble (1.6 μL) can slide steadily on 2o-inclined NF270. Because of the ultralow contact angle hysteresis, a bubble doesn’t deform and move on the surface with spherical shape. Without the effect of shape, it becomes easier to observe bubble motion in surfactant solution. Besides, nanofiltration membranes are also used to reject specific salt ions for water softening. Generally, there’s positive or negative function group on a nanofiltration membrane to reject co-ions. However, besides the effects of function group and ion size, the ions in a solution also compete and the permeation ions varies. For NaCl solution, Cl- permeates NF270 more, while for CH3COONa solution, Na+ permeates NF270 more. By measuring the potential difference and comparing the correlation of various solutions, the ion permeation can be understood easily and straightforward.
APA, Harvard, Vancouver, ISO, and other styles
27

Chuang, Yu-Chen, and 莊于真. "Sessile Drop Evaporation and Wetting Phenomena on Patterned Surfaces." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/01139451371467471875.

Full text
Abstract:
碩士
國立臺灣大學
化學工程學研究所
101
There are two topics discussed in this study: water evaporation on soft patterned surfaces and the observation of the Cassie impregnating wetting state. First, we demonstrate the evaporation mechanism of water sessile drop on different softness of fixed patterned PDMS (polydimethylsiloxane) substrate and also compare the results from the viewing angle of 0° with that from the viewing angle of 45°. The evaporation mechanism generally starts from the constant contact radius mode and turns into constant contact angle mode when the receding contact angle is reached. The softer the substrate is, the smaller the receding contact angle is. The wetting transition from the Cassie to the Wenzel state is also observed after the constant contact angle mode and the softer substrate will induce an earlier wetting transition due to the softer texture. By comparing the theoretical calculation of evaporation rate in different modes, we can examine whether the expected evaporation mechanism is suitable or not. Second, the Cassie impregnating wetting state is investigated by placing the ethanol drop on different patterned PDMS surfaces. Due to the lack of the knowledge of the Cassie impregnating state, our main purpose is to find out the relationship between the structure of the surfaces and the impregnating region. It is observed that the rougher the substrate is, the larger the impregnating region is. However, so far we cannot specify this phenomenon and its impregnating region. Our preliminary inference is that the Cassie impregnating wetting state is only the metastable state passing to complete wetting and the metastable state is the result of the equilibrium of the imbibition rate and the evaporation rate of ethanol. Besides, the contact angle in the Cassie impregnating wetting state is also examined to see if the Cassie equation can describe and the study of the ethanol drop evaporation on patterned surface is discussed to further understand the Cassie impregnating wetting state.
APA, Harvard, Vancouver, ISO, and other styles
28

Woywod, Dirk [Verfasser]. "Binary mixtures near solid surfaces: wetting and confinement phenomena / von Dirk Woywod." 2004. http://d-nb.info/973472871/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chiu, Chun-Da, and 邱俊達. "A Study of Wetting Phenomena In Three-Component Water-Oil-Surfactant Systems." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/83575409513121419220.

Full text
Abstract:
碩士
國立臺灣大學
化學工程學系研究所
86
Generally speaking, three component systems of the type water- oil-surfactant have four different types of phase equilibrium. With the change of thermodynamic conditions, systems will exhibit one, two or three coexisting liquid phases. In the three-phase region, we can observe some interesting interfacial phenomena. Middle phase can obviously wet or not wet the interface between the upper and lower phases. The transition from wetting to nonwetting is called the wetting transition. Beside the middle-phase wetting transition, in some situation, the lower water-rich phase may form an intruding layer between the upper and middle phases. In fact, this alternation of structure is due to the change of the relation between interfacial tensions. In this study, we choose ternary system water-n-decane- to observe the existence of different wetting transitions. A video- enhanced pendant drop tensiometry is used to measure the interfacial tension and verify the phenomena. A direct naked-eye observation is also performed as a direct evidence. It is found that a middle-phase wetting transition when the temperature closes to the upper critical consolute temperature, and a lower-phase wetting transition when the lower critical consolute temperature is approached. In spite of the wetting/nonwetting behavior described above, a middle- phase intruding layer between the upper phase and air exists over the whole three-phase regime, while the lower-phase wetting transition between the middle phase and the bottom of tube may also be concluded. In addition, fish-shape phase diagrams of three systems: water- octane-, water-decane- and water-dodecane- are performed to determine their upper and lower critical consolute temperatures.
APA, Harvard, Vancouver, ISO, and other styles
30

Cheng, We Jia, and 鄭文嘉. "A study of wetting phenomena in water + oil +surfactant + fourth component quaternary systems." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/52580505095135576833.

Full text
Abstract:
碩士
國立臺灣大學
化學工程學研究所
90
Within a certain temperature range, a water + oil + nonionic amphiphile mixture exhibits three coexisting liquid phases: oil-rich phase (α phase), surfactant-rich phase (β phase) and water-rich phase (γ phase). When three fluid phases coexist at equilibrium, we can observe some interesting interfacial phenomena. A small amount of β phase can obviously wet, not wet or partially wet the interface between the α-γ phase. At different thermodynamic conditions, for example: temperature, the β phase can exhibit a transition from wetting to partial wetting. This transition is called the β phase wetting transition. Beside the middle phase wetting transition, in some situation, the lower water-rich phase(γ) may form an intruding layer(wetting) or suspending beads(partial wetting) between the α-β phase which is called the γ wetting transition. In fact, this γ wetting transition is due to the change of the interfacial tensions. In this study, we not only choose the ternary system water + n-decane + C6E2 and water + n-Octane + C6E2 but also adding the fourth component ethanol, salt or amide where C6E2 stands for the nonionic suffactant CH3(CH2)5(OCH2CH2)2OH . Then we will study the effect of the ethanol, salt and amide to the ternary system. We used the spinning drop tensiometer to measure the interfacial tension and direct naked eye observation to find the wetting transition. We found that a β wetting transition when the temperature closes to the upper critical consolute temperature, and a γ wetting transition when the lower critical consolute temperature is approached. We also determine the quaternary system water + ethanol, salt or amide + oil + C6E2 fish-shaped phase diagrams and their upper and lower critical consolute temperatures. We also discuss how to reach a tricritical point.
APA, Harvard, Vancouver, ISO, and other styles
31

Calvimontes, Alfredo. "Topographic characterization of polymer materials at different length scales and the mechanistic understanding of wetting phenomena." Doctoral thesis, 2009. https://tud.qucosa.de/id/qucosa%3A25238.

Full text
Abstract:
The present study suggests new insights into topographic characterisation of engineering polymer surfaces towards to physical-chemical and mechanistic understanding of wetting phenomena on rough surfaces. Non-contact chromatic confocal imaging was chosen and justified as the optimal measuring method to study and correlate surface topography and surface properties of Sheet Moulding Compounds (SMC) as well as polyester and cotton fabrics. Before topographical characterisation, an adequate selection of optimal sampling conditions (cut-off length and resolution) were done by a systematic procedure proposed for periodic and non-periodic surfaces. Topographical characterisation of the surfaces was realized by an innovative methodology, separately considering different length scales in dependence on the surface morphologies of the materials. For SMC materials, the influence of moulding conditions (pressure, moulding time, metallic mold topography, metallic mold form, prepregs placement procedure, glass fibres content and orientation) on resulting macro-, meso- and micro-topography was studied. A model to conceptualize the influence of the most important moulding conditions on topographic characteristics and, as a consequence, on the quality of the resulting surface was presented. To quantify the effect of surface modification, a new parameter (Surface Relative Smooth) was suggested, developed and validated, which can be used for the characterisation of changes due to surface modifications for every solid material. A very important and innovative part of the present study is the development of new concepts for topographic characterisation of textile materials using different length scales, that makes possible to consider and analyse separately their specific morphologies caused by weave, yarn and filament/fibres, and to investigate the influence of topography on wettability by modification processes, e.g. construction parameters, thermosetting, impregnation with Soil Release Polymers (SRP) and wash-dry cycles. The present study showed, how construction parameters of polyester textiles, such as fineness of filaments and yarn, warp and weft densities as well as the type of weave, control the surface topography - characterised as meso-porosity (spaces between yarns) and micro-porosity (spaces between filaments) - and as a consequence strongly influence their capillarity. On the basis of experimental results, revealing differences in three basic types of woven fabrics – plain, twill and Panama – in respect to water penetration, the concept of an innovative novel wicking model was developed. Additionally, the influence of thermosetting and impregnation of polyester fabrics with Soil Release Polymers on topography, wetting and cleanability of three woven plain polyester fabrics, having different wefts, were studied. To characterise the soiling behaviour, an ‘spot analysis method’ was suggested, allowing wetting dynamics studies of liquids on fabrics with anisotropic surface properties. This method is applicable also to surfaces with anisotropic roughness characteristics and to porous media. The effect of wash-dry cycles on topography, spreading, wetting and soiling of woven plain and knitted cotton fabrics was in addition investigated. In all cases studied, the topographical characterisation and interpretation of results on different length scales contributed to a better understanding of wetting phenomena. A mathematical model for a virtual construction of textile surfaces to predict effects resulting from topographic changes on the behaviour of polymer and textiles surfaces was developed. Woven plain textiles and SMC surfaces were mathematically synthesized by a combination of various harmonic waves, i.e. Fourier synthesis. Topographic and technical construction parameters were taken into account to build their virtual topographies. In the case of textile surfaces, the effect of wash-dry cycles for cotton fabrics and thermosetting of polyester fabrics on their meso- and micro-morphology was investigated on the basis of the real topography of a given textile surface. The model allows to predict changes in the porosity of resulting textile materials, their wettability and soiling behaviour. The method presented provides possibilities to simulate controlled changes in textile construction parameters and to study their effect on the resulting topography.
Die vorliegende Arbeit vermittelt neue Einblicke in die topographische Charakterisierung technisch relevanter Polymeroberflächen mit dem Ziel, die Mechanismen der Benetzungsphänomene auf rauen Oberflächen besser zu verstehen. Eine 3D-Abbildung der Oberflächentopographie wurde mit einem konfokalen Mikroskop mit chromatischer Kodierung zwecks optimaler Charakterisierung duromerer Verbundwerkstoffsystemen (SMS: Sheet Moulding Compounds) sowie Polyester- und Baumwolltextilien berührungsfrei durchgeführt. Zur topographischen Oberflächencharakterisierung wurde eine systematische Prozedur vorgeschlagen, welche es erlaubt, eine entsprechende Auswahl von optimalen Messbedingungen, wie die Bewertungslänge (cut-off length) und Auflösung, für Oberflächen mit periodischer und nicht-periodischer Rauheit zu treffen. Die topographische Charakterisierung von Oberflächen wurde methodologisch weiter entwickelt, indem die Oberflächen auf verschiedenen Längenskalen je nach Morphologie untersucht werden können. Für duromere Verbundwerkstoffsysteme wurde der Einfluss von den Bedingungen des Formpressens (Druck, Zeit, Topographie und Form des metallischen Werkzeugs, Einbringen des Prepregs, Glasfasergehalt und -orientierung) auf die resultierende makro-, meso- und mikroskopische Topographie studiert. Eine modellmäßige Beschreibung des Einflusses der wichtigsten Charakteristiken des Herstellungsprozesses duromerer Verbundwerkstoffsysteme auf ihre topographische Charakteristiken und demzufolge auf die Qualität des Endproduktes wurde konzipiert. Zur Quantifizierung des Effekts der Oberflächenmodifizierung wurde einen neuen Parameter – Surface Relative Smooth – vorgeschlagen und dessen Nutzung für jedes beliebige Feststoffkörpers verifiziert. Das Hauptaugenmerk bei der Durchführung der Arbeit wurde auf die Entwicklung neuer Konzepte zur topographischen Charakterisierung textiler Materialien gelegt, welche die Nutzung mehrerer Längenskalen in Betracht ziehen. Dies ermöglicht die spezifische Morphologien textiler Strukturen zu berücksichtigen und jede Struktur, welche durch die Gewebeart, die Art der Fasern und des Garns entstanden ist, gesondert bezüglich ihr Einflusses auf die Benetzbarkeit infolge der Modifizierung (Konstruktionsparameter, Thermofixierung, Imprägnierung mit Soil-Release- Polymeren, Waschen/Trocknen-Zyklen) zu analysieren. In der vorliegenden Arbeit wird gezeigt, wie die Konstruktionsparameter von Polyestertextilien, wie z.B. die Filament- und Garnfeinheit, Kett- und Schussdichte sowie die Gewebebindung Einfluss auf die Oberflächentopographie und als Folge auf ihre Kapillarität nehmen, und zwar als Mesoporosität (Abstände zwischen Garnwindungen) und als Mikroporosität (Abstände zwischen einzelnen Filamenten). Auf der Basis von umfangreichen experimentellen Daten, welche die Unterschiede zwischen verschiedenen Bindungsarten (Leinwand, Köper, Panama) offenbaren, wurde ein neues Modell zur Beschreibung der Penetration von Flüssigkeiten in die textile Strukturen entwickelt. Außerdem wurde der Einfluss der Thermofixierung und Imprägnierung von Polyester Materialen mit Soil-Release-Polymeren auf die Topographie, Benetzbarkeit und Auswaschbarkeit für die drei wichtigsten Gewebearten untersucht, welche die gleiche Anzahl von Schussfäden haben. Für die Charakterisierung des Anschmutzungsverhaltens von Textilen wurde eine so genannte Fleck-Analysierungsmethode (spot analysis method) vorgeschlagen, welche es erlaubt, benetzungsdynamische Eigenschaften von Flüssigkeiten an Oberflächen mit anisotroper Topographie zu studieren. Diese Methode ist geeignet auch für Oberflächen mit anisotropen Rauheitsstrukturen und für poröse Materialien. Der Effekt von Waschen/Trocken-Zyklen auf die Topographie, Spreitung, Benetzung und Anschmutzung von Leinwandgewebe und Gestricke aus Baumwolle wurde zusätzlich untersucht. In allen Spezialfällen diente die topographische Charakterisierung und die Interpretation der Ergebnisse auf verschiedenen Längenskalen zur besseren Verständnis von Benetzungsphänomenen. Ein mathematisches Modell für die virtuelle Konstruktion von textilen Oberflächen wurde entwickelt, die das Studium der Effekte infolge topographischer Änderungen auf das Verhalten von Polymer- und Textiloberflächen ermöglicht. Oberflächen von Leingeweben und duromeren Verbundwerkstoffsystemen wurden mit der Fourier-Synthese unter Zuhilfenahme verschiedener harmonischer Wellen mathematisch abgebildet. Die Topographie- und Konstruktionsparameter wurden bei der Fourier-Synthese zur Konstruktion virtueller Topographien genutzt. Im Falle der textilen Materialein wurde der Effekt von Waschen/Trocknen-Zyklen für die Baumwolltextilien sowie der Thermofixierung von Polyestertextilien auf ihre Meso- und Mikromorphologie auf der Basis gemessener Parameter für jede Topographie modelliert. Dieses Modell erlaubt auch die Vorhersage der Änderungen in der Porosität von resultierenden textilen Strukturen, ihres Benetzungs- und Anschmutzungsverhaltens. Mit dieser Methode ist es möglich, gewünschte Änderungen von textilen Konstruktionsparametern einzustellen und ihre Effekte auf die Topographie zu untersuchen.
APA, Harvard, Vancouver, ISO, and other styles
32

Calvimontes, Alfredo [Verfasser]. "Topographic characterization of polymer materials at different length scales and the mechanistic understanding of wetting phenomena / von Alfredo Calvimontes." 2009. http://d-nb.info/1008628735/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shabani, Roxana. "Three-phase contact line phenomena in droplets on solid and liquid surfaces: electrocapillary, pinning, wetting line velocity effect, and free liquid surface deformation." Doctoral diss., 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6180.

Full text
Abstract:
In this dissertation, physical phenomena relevant to (i) an interface formed between two fluids and a solid phase (wetting line) and (ii) an interface between three fluids (triple contact line) were investigated. In the former case, the wetting line (WL) phenomena, which encompass the wetting line energy (WLE), the wetting line velocity (WLV), and the contact angle hysteresis, were studied using a micropump based on electrowetting on dielectric (EWOD). In the latter case, the air film lubrication effect and the liquid free surface deformation were taken into account to explain the dual equilibrium states of water droplets on liquid free surfaces. A micropump based on droplet/meniscus pressure gradient generated by EWOD was designed and fabricated. By altering the contact angle between liquid and solid using an electric field a pressure gradient was induced and a small droplet was pumped into the channel. The flow rate in the channel was found to be constant in spite of the changes in the droplet's radius. The WL phenomena were studied to unravel the physical concept behind the micropump constant flow rate. The observation and measurement reveal that the shrinking input droplet changes its shape in two modes in time sequence: (i) its contact angle decreases, while its wetting area remains constant, and (ii) its WL starts to move while its contact angle changes. Contact angles were measured for the advancing and receding WLs at different velocities to capture a full picture of contact angle behavior. The effects of the WLE on the static contact angle and the WLV on the dynamic contact angle in the pump operation were investigated. Also the effect of EWOD voltage on the magnitude and uniformity of the micropump flow rate was studied. Dynamic contact angles were used to accurately calculate the pressure gradient between the droplet and the meniscus, and estimate the flow rate. It was shown that neglecting either of these effects not only results in a considerable gap between the predicted and the measured flow rates but also in an unphysical instability in the flow rate analysis. However, when the WLE and WLV effects were fully taken into account, an excellent agreement between the predicted and the experimental flow rates was obtained. For the study of the TCL between three fluids, aqueous droplets were formed at oil-air interface and two stable configurations of (i) non-coalescent droplet and (ii) cap/bead droplet were observed. General solutions for energy and force analysis were obtained and were shown to be in good agreement with the experimental observations. Further the energy barrier obtained for transition from configuration (i) to (ii) was correlated to the droplet release height and the probability of non-coalescent droplet formation. Droplets formed on the solid surfaces and on the free surface of immiscible liquids have various applications in droplet-based microfluidic devices. This research provides an insight into their formation and manipulation.
Ph.D.
Doctorate
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering
APA, Harvard, Vancouver, ISO, and other styles
34

Ming-Ya, Wu, and 吳孟亞. "A Study of Wetting Phenomenon of Melting Glasses." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/60259635790216824903.

Full text
Abstract:
碩士
國立臺灣科技大學
化學工程系
93
A system for the studying the wetting phenomenon of melting glasses is developed in this work. The wetting behavior is via the measurement of dynamic contact angle of the melting glasses. An apparatus for measuring the melting glasses at temperature ranging between 800 and 1600 oC is built first. A program for acquiring drop images continuously and for locating the edge coordinates is then developed. After that, this contact angle of sessile drop of melting glasses is measured at different temperature and different heating time. The wetting phenomena are then studied from the dynamic contact angle data for various melting glasses at different solid substrates. The data of contact angle show some interesting results. Different wetting phenomena were observed for POI melting glass on various solid substrates, which includes metals (Pt, Pt-Au alloy, and Pt-Rh alloy) and non-metal (two different refractory bricks). The temperature for POI glass reaching a constant contact angle is: Pt < alloy < non-metal. The temperature for different glasses on the new refractory to reach a constant contact angle is: C18 > POI = N8.
APA, Harvard, Vancouver, ISO, and other styles
35

Hsieh, I.-Fan, and 謝逸凡. "Wetting Phenomenon of Nanoscaled Drop-protrusion and Drop-groove Systems." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/6e54rq.

Full text
Abstract:
碩士
國立臺灣大學
化學工程學研究所
105
The wetting behavior of a nanodrop encountering a nanoprotrusion and atop a nanogroove on a hysteresis-free surface is explored by Surface Evolver. On a smooth surface, a nanodrop exhibits random motion but will be captured as it encounters a nanoprotrusion, which possesses the same wettability as that of the surface. For both lyophilic and lyophobic systems, there exists an attraction between the drop and the protrusion. The energy profiles corresponding to the detaching processes with and without crossing the protrusion is determined by the displacement of the captured drop due to the applied external force. It is found that the critical forces and the depth of the energy wells of the lyophilic system are greater than those of the lyophobic system. Furthermore, the drop symmetrically straddling on the protrusion is stable for the lyophilic system but becomes unstable for the lyophobic system. For a nanodrop placed atop a nanogroove, whether the groove can be wetted by the drop depends on the wettability (contact angle), drop volume, groove size, and the shape of the groove. It is found that the critical contact angle corresponding to the impregnation of the groove by the drop diminishes with increasing drop volume or decreasing groove size. According to this result, the observed difference in the wetting phenomena between a pyramidal groove and an inverted pyramidal groove can be elucidated.
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Chung-Ping, and 陳郡蘋. "The Wetting Phenomenon of Polymer Thin Film On Polymer Brush Surfaces." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/59tc84.

Full text
Abstract:
碩士
國立臺灣大學
化學工程學研究所
106
The wetting behaviors of polymer films/droplets on smooth substrates or substrates modified with polymer brushes are investigated by many-body dissipative particle dynamics simulation method. Three wetting dynamics of a polymer film on a smooth, partial wetting surface can be identified, (i) spinodal decomposition, (ii) nucleation decomposition, and (iii) self-healing. The outcome depends on polymer chain length(N), polymer film thickness(H), and radius of the dry hole (R_0). The phase diagram of the dewetting mechanism as a function of H and N is obtained for a specified R_0. As chain length increases (increasing N), the critical film thickness associated with the nucleation/self-healing crossover grows so that the metastability of the film can be retained by the self-healing process. It is also found that the stability of the polymer thin film can be enhanced by employing polymers with compact structures such as star polymers, which has smaller radius of gyration as the arm number increases. Our simulation results also indicate that the modification of a substrate with a chemically identical polymer brush can significantly retard the dewetting phenomena of polymer droplets. Three wetting dynamics of a polymer film on top of a polymer brush can be identified, (i) self-healing, (ii) quasi-stable hole, and (iii) dewet by external disturbance (nucleation decomposition). The phase diagram of the dewetting behavior as a function of grafting density and radius of dry hole is obtained. When the grafting density is low, the polymer film is more stable and tends to proceed with self-healing process as an external disturbance is applied. As the grafting density becomes high, a quasi-stable hole is formed with imposed dry hole. Further increase in the grafting density leads to the effect of autophobicity and polymer film becomes high unstable even under a minor disturbance. Our simulation results can provide strategies for dewetting suppression such as the metastability of the film of polymers with large molecular weight can be promoted either by the addition of short polymers or by employing compact polymers such as star polymers.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography