Academic literature on the topic 'Wetting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wetting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wetting"
Churaev, N. V. "Wetting films and wetting." Revue de Physique Appliquée 23, no. 6 (1988): 975–87. http://dx.doi.org/10.1051/rphysap:01988002306097500.
Full textButt, Hans-Jürgen, Rüdiger Berger, Werner Steffen, Doris Vollmer, and Stefan A. L. Weber. "Adaptive Wetting—Adaptation in Wetting." Langmuir 34, no. 38 (August 15, 2018): 11292–304. http://dx.doi.org/10.1021/acs.langmuir.8b01783.
Full textKarmakov, Iordan. "Wetting or non-wetting liquid?" Physics Education 35, no. 6 (November 2000): 435–38. http://dx.doi.org/10.1088/0031-9120/35/6/310.
Full textKalogeropoulou, S., C. Rado, and N. Eustathopoulos. "Mechanisms of reactive wetting: the wetting to non-wetting case." Scripta Materialia 41, no. 7 (August 1999): 723–28. http://dx.doi.org/10.1016/s1359-6462(99)00207-9.
Full textde Gennes, P. G. "Wetting." Revue de Physique Appliquée 23, no. 6 (1988): 974. http://dx.doi.org/10.1051/rphysap:01988002306097400.
Full textBlokhuis, Edgar M., and Benjamin Widom. "Wetting." Current Opinion in Colloid & Interface Science 1, no. 3 (June 1996): 424–29. http://dx.doi.org/10.1016/s1359-0294(96)80143-9.
Full textLeermakers, Frans A. M., Gustavo S. Luengo, Nawel Baghdadli, Christian Mazilier, Anne Potter, and Fabien Léonforte. "Turning autophobic wetting on biomimetic surfaces into complete wetting by wetting additives." Soft Matter 16, no. 20 (2020): 4823–39. http://dx.doi.org/10.1039/d0sm00129e.
Full textTAKAHASHI, Gennosuke. "Wetting Dispersant." Journal of the Japan Society of Colour Material 67, no. 1 (1994): 44–51. http://dx.doi.org/10.4011/shikizai1937.67.44.
Full textRapp, Michael, and William A. Ducker. "Enantiospecific Wetting." Journal of the American Chemical Society 132, no. 51 (December 29, 2010): 18051–53. http://dx.doi.org/10.1021/ja109598z.
Full textVerberck, Bart. "Lattice wetting." Nature Physics 12, no. 2 (February 2016): 111. http://dx.doi.org/10.1038/nphys3664.
Full textDissertations / Theses on the topic "Wetting"
Ding, Ailin. "Particle Assisted Wetting." Doctoral thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200701494.
Full textWetting and de-wetting of surfaces by a liquid are fascinating and important phenomena in science and technology. Recently, it was discovered that particles can assist the wetting of a water surface by an oil, and a theory describing the principle behind particle assisted wetting was developed. In this thesis, the theory was experimentally investigated qualitatively and quantitatively by using two series of silica particles. The influence of the surface hydrophobicity of the particles on particle assisted wetting was investigated by a series of irregular shaped particles with varying hydrophobicity. By applying mixtures of particles and oil to a water surface, it was found that for the most hydrophilic particles, only lenses of pure oil formed, with the particles being submerged into the aqueous phase. The most hydrophobic particles helped to form patches of stable homogenous mixed layers composed of oil and particles. For particles with intermediate hydrophobicity, lenses and patches of mixed layers were observed. These three different observations verified that the hydrophobicity of the particle surface determines the wetting behaviour of the oil at the water surface. For the irregular shaped particles with unknown contact angles with liquid interfaces, no direct comparison to the theory was possible. To test the theory quantitatively, a series of spherical particles was synthesized and their surfaces were modified by ten kinds of silane coupling agents; then the experimental results were compared with the corresponding theoretical phase diagram. It indicated that the theory agrees at large with the experimental results. All scenarios of wetting layers taken into account in the theoretical description were observed. In the fine print, deviations from the theory were also observed. If the particles have similar affinities to air/oil and oil/water interfaces, the experimentally observed morphology of the wetting layers depends in addition on the surface pressure. It might therefore be necessary to extend the simple theoretical picture to take these observations into accounts
Burgess, Ian Bruce. "Wetting in Color." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10524.
Full textEngineering and Applied Sciences
Lee, Khai S. "Kinetics of wetting." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/33866.
Full textWålinder, Magnus. "Wetting phenomena on wood." Doctoral thesis, KTH, Production Systems, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2908.
Full textCarlson, Andreas. "Capillarity and dynamic wetting." Doctoral thesis, KTH, Strömningsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91329.
Full textQC 20120313
Modaressi-Esfeh, Hedieh. "Wetting on heterogeneous surfaces." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38084.
Full textDynamic wetting on paper followed a power law model with a lower rate than wetting on a smooth surface. The chemical composition of the paper surface did not affect the wetting dynamics, which was mainly affected by surface roughness in a micron scale. The super-hydrophobic properties of the sized papers were due to air entrapment in the micron-scale roughness on the surface.
Wetting and absorption of water droplets on sized paper occurred in different time scales. A pseudo-equilibrium contact angle was reached at the end of wetting just before absorption of water droplets. Increasing the surface coverage of the hydrophobic domains on paper by sizing increased the pseudo-equilibrium contact angle and delayed absorption into paper. This delay was related to partial dissolution of the surface sizing polymers in the water droplets on the surface.
The equilibrium contact angle of water droplets on partially hydrophobized glass slides was a linear function of a characteristic dimension of the hydrophobic domains and the length of the three phase contact line.
The dynamic rise of water in partially hydrophobized vertical capillaries followed two mechanisms. First, capillary rise was a function of the dynamic contact angle, changing with the velocity of the contact line. Second, local changes of the advancing contact angle due to the heterogeneities on the capillary walls lowered the capillary rise velocity. The stick (pause) and jump of the contact line was another effect of the hydrophobic domains. Capillary rise dynamics was a function of the advancing contact angle of water droplets measured on a flat glass slide with the same coverage of hydrophobic domains.
Aqil, Sanaa. "Wetting of microstructured surfaces." Thesis, Nottingham Trent University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431843.
Full textMarczewski, Dawid. "Membranes via particle assisted wetting." Doctoral thesis, Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901190.
Full textSpreitet man Mischungen eines Öls mit geeigneten Kieselgelpartikeln auf eine Wasseroberfläche, führt dies zur Bildung gemischter Schichten, in denen die Partikel auf der Ober- und Unterseite aus dem Öl herausragen. Härtet man das Öl aus und entfernt die Partikel, erhält man poröse Membranen mit einheitlichen Poren. Dabei hängen die Porenweiten und Membrandicken von der Partikelgröße ab und betragen üblicherweise 70 – 80 % von deren Durchmesser. Oft sind freitragende poröse Membranen zu zerbrechlich um mit ihnen Druckfiltration ohne Stützstruktur durchzuführen. Um die mechanische Stabilität von porösen Membranen zu erhöhen spreitet man eine Mischung aus Kieselgelpartikeln und einem Öl auf einem Vliesstoff, der mit Wasser getränkt ist. Das Aushärten des Öls und die Entfernung der Partikel führt zu einer porösen Membran, die an die Fasern der Stützstruktur angeheftet ist. Durch die inhomogene Oberfläche des Vliesgewebes sind die daran angehefteten Membranen gewellt. Um eine ebene Stützstruktur zu erhalten, werden Mischungen aus dem Öl und Glaskugeln mit einem Durchmesser von 75 μm verwendet. Das Aushärten des Öls und die Entfernung der Partikel führt zu ebenen porösen Membranen mit Porendurchmessern im Mikrometerbereich. Ein weiteres Konzept, um die mechanische Stabilität zu erhöhen, ist die Herstellung asymmetrischer Membranen mit Hilfe des Spreitens einer Mischung zweier Partikelsorten mit unterschiedlichen Oberflächeneigenschaften mit dem Öl auf die Wasseroberfläche. Nach dem Aushärten des Öls und der Entfernung der Partikel erhält man eine asymmetrische Membran mit kleinen Porenweiten an der Oberseite und großen Porenweiten an der Unterseite. Durch langsames Entfernen der Kieselgelpartikel aus der gemischten Schicht, die auf der Wasseroberfläche schwimmt, kann man in einem Zwischenstadium Kieselgelringe erhalten. Kompositmembranen (mixed matrix membranes) mit eingebetteten Kohlenstoffmolekularsieben werden in einem gleichen Prozess wie oben beschrieben hergestellt, indem man Kohlenstoffpartikel anstatt der Kieselgelpartikel verwendet. Die Kohlenstoffmolekularsiebe ragen auf der Ober- und Unterseite aus der Polymermatrix heraus. Die theoretisch vorhersagten Durchlässigkeiten und Selektivitäten solcher Membranen sind wesentlich höher als bei Membranen, in denen die Partikel kleiner als der Membrandicke sind
Cowan, Nicola. "Wetting and Spreading of Mucus." Thesis, Heriot-Watt University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490937.
Full textKang, Suk Chae. "Fundamentals of solder interconnect wetting." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/16391.
Full textBooks on the topic "Wetting"
Law, Kock-Yee, and Hong Zhao. Surface Wetting. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25214-8.
Full textDe Coninck, Joël, and François Dunlop, eds. Wetting Phenomena. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52338-3.
Full textLu, Gui. Dynamic Wetting by Nanofluids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48765-5.
Full textde Gennes, Pierre-Gilles, Françoise Brochard-Wyart, and David Quéré. Capillarity and Wetting Phenomena. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21656-0.
Full textAsh, Michael. Emulsifiers and wetting agents. London: Edward Arnold, 1988.
Find full textHosseini, Majid, and Ioannis Karapanagiotis, eds. Materials with Extreme Wetting Properties. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59565-4.
Full textWaqi, Alam, ed. Wettability. Houston, TX: Gulf Pub. Company, 2008.
Find full textB, Probst Hubert, and United States. National Aeronautics and Space Administration., eds. Effects of crucible wetting during solidification of immiscible Pb-Zn. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full text1945-, Mittal K. L., ed. Contact angle, wettability and adhesion. Leiden: VSP, 2006.
Find full textYakimov, Audrey-Olga. Wetting kinetics and polypropylene-aluminum bond strength. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Find full textBook chapters on the topic "Wetting"
Starov, Victor. "Wetting." In Encyclopedia of Colloid and Interface Science, 1399–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_45.
Full textGooch, Jan W. "Wetting." In Encyclopedic Dictionary of Polymers, 810. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12808.
Full textLaw, Kock-Yee, and Hong Zhao. "Background." In Surface Wetting, 1–6. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_1.
Full textLaw, Kock-Yee, and Hong Zhao. "Contact Angle Measurements and Surface Characterization Techniques." In Surface Wetting, 7–34. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_2.
Full textLaw, Kock-Yee, and Hong Zhao. "Wetting on Flat and Smooth Surfaces." In Surface Wetting, 35–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_3.
Full textLaw, Kock-Yee, and Hong Zhao. "Wetting on Rough Surfaces." In Surface Wetting, 55–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_4.
Full textLaw, Kock-Yee, and Hong Zhao. "What Do Contact Angles Measure?" In Surface Wetting, 99–121. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_5.
Full textLaw, Kock-Yee, and Hong Zhao. "Terminologies and Definitions." In Surface Wetting, 123–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_6.
Full textLaw, Kock-Yee, and Hong Zhao. "Determination of Solid Surface Tension by Contact Angle." In Surface Wetting, 135–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_7.
Full textLaw, Kock-Yee, and Hong Zhao. "Summary and Final Remarks." In Surface Wetting, 149–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_8.
Full textConference papers on the topic "Wetting"
Busek, D., M. Placek, and D. Ruzicka. "Wetting balance test — Comparison of solder alloys wetting." In 2017 40th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2017. http://dx.doi.org/10.1109/isse.2017.8000923.
Full textSmyth, Katherine, Adam Paxon, Hyuk-min Kwon, Tao Deng, and Kripa K. Varanasi. "Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis." In 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2010. http://dx.doi.org/10.1109/itherm.2010.5501329.
Full textMoyer, Jerome, and Weiming Zhang. "Solder wetting measurement of back contact paste using a wetting balance." In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411516.
Full textGnecchi, Jose Antonio Gutierrez, Philippe Lobit, Fernando Landeros Paramo, Adriana Tellez Anguiano, and Arturo Mendez Patino. "Automated wetting front detector." In 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference (CERMA 2011). IEEE, 2011. http://dx.doi.org/10.1109/cerma.2011.59.
Full textWang, Tao, Xuegong Hu, Chaohong Guo, Xuelei Nie, and Ningning Xie. "Theoretical Study on the Wetting Length in Triangle Wetting Region of Rectangular Microgrooves." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58096.
Full textCheng, Rong, Kewei Jiang, and Xinxin Li. "Electro-wetting enhanced bonding strength." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969481.
Full textAllier, C. P., V. Poher, J. G. Coutard, G. Hiernard, and J. M. Dinten. "Thin wetting film lensless imaging." In SPIE BiOS, edited by Robert J. Nordstrom and Gerard L. Coté. SPIE, 2011. http://dx.doi.org/10.1117/12.874876.
Full textChen, Tailian. "Heat transfer to wetting and non-wetting liquid droplets deposited onto a heated microgroove surface." In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016. http://dx.doi.org/10.1109/itherm.2016.7517653.
Full textDusek, Karel, Petr Vesely, Denis Fros, Martin Kozak, Kristina Sorokina, Zbynek Plachy, David Busek, et al. "A Weakness of Wetting Balance Method during the Diagnostic of Connector Pins with Wetting Issue." In 2022 45th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2022. http://dx.doi.org/10.1109/isse54558.2022.9812772.
Full textYao, Erdong, Jie Wang, Yanpeng Xue, Fujian Zhou, Le Zhang, and Yafei Li. "Evaluation Adaptability of Nano Wetting Fluid for Releasing Tight Sandstone Gas Reservoir Water Locking Effect." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95402.
Full textReports on the topic "Wetting"
Webb, Edmund Blackburn, III, ), Christopher Jay Bourdon, Anne Mary Grillet, Philip A. Sackinger, Gary Stephen Grest, John Allen Emerson, et al. Elucidating the mysteries of wetting. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/875609.
Full textRothman, A. Wick wetting experiments for copper vapor lasers. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/7120617.
Full textPaolinelli, Luciano, and Srdjan Nesic. PR646-173609-Z01 Water Wetting Prediction Tool for Pipeline Integrity. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2021. http://dx.doi.org/10.55274/r0012111.
Full textvan Swol, Frank. Predictive modeling of reactive wetting and metal joining. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1104763.
Full textLOEHMAN, RONALD E. Wetting and Reaction of Monazite (LaPO4) by Aluminum. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/786624.
Full textYost, F. G., E. J. O`Toole, P. A. Sackinger, and T. P. Swiler. Model determination and validation for reactive wetting processes. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/564079.
Full textWapner, Phillip, Kengqing Jian, Yuming Gao, Gregory Crawford, Robert Hurt, and Wesley Hoffman. Pitch Wetting on Model Basal and Edge-Plane Surfaces. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada443495.
Full textPorro, I. Hydrologic Behavior of Two Engineered Barriers Following Extreme Wetting. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/799880.
Full textG.Q. Tang and N.R. Morrow. WETTING BEHAVIOR OF SELECTED CRUDE OIL/BRINE/ROCK SYSTEMS. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/772382.
Full textBrooks, Carlton, F., Michael J. Brooks, Alan Lyman Graham, David F. Noble, )), Patrick K. Notz, Matthew Morgan Hopkins, et al. Wetting and free surface flow modeling for potting and encapsulation. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909911.
Full text