Academic literature on the topic 'Wet processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wet processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wet processes"
Gαsiorowski, H. "Wheat wet fractionation processes." Food / Nahrung 29, no. 9 (1985): 879–84. http://dx.doi.org/10.1002/food.19850290913.
Full textCavusoglu, Hayrunnisa, and Mustafa Sahin Gulaboglu. "Wet flue gas desulfurization processes." Pamukkale University Journal of Engineering Sciences 19, no. 4 (2013): 187–94. http://dx.doi.org/10.5505/pajes.2013.66376.
Full textTardif, F., J. Palleau, T. Lardin, O. Demolliens, A. Vincent, and J. Torres. "Wet cleanings adapted to backend processes." Microelectronic Engineering 33, no. 1-4 (January 1997): 195–201. http://dx.doi.org/10.1016/s0167-9317(96)00045-7.
Full textSUGIMURA, Hiroyuki, and Osamu TAKAI. "New Developments in Chemical Wet Processes. Microfabrication Based on Self-assembled Monolayer Resists and Wet-chemical Processes." Hyomen Kagaku 22, no. 6 (2001): 364–69. http://dx.doi.org/10.1380/jsssj.22.364.
Full textLyngfelt, A., and P. Stenberg. "Wet Peat Power Processes: A Thermodynamic Study." Journal of Engineering for Gas Turbines and Power 110, no. 2 (April 1, 1988): 155–60. http://dx.doi.org/10.1115/1.3240094.
Full textPipia, Francesco, Annamaria Votta, Alice C. Elbaz, Salvo Grasso, Enrica Ravizza, Simona Spadoni, and Mauro Alessandri. "Cu Surface Characterization after Wet Cleaning Processes." Solid State Phenomena 145-146 (January 2009): 371–75. http://dx.doi.org/10.4028/www.scientific.net/ssp.145-146.371.
Full textTSUNEKAWA, Masami, Kunihiro HORI, Naoki HIROYOSHI, and Mayumi ITO. "Technological Developments in Wet Gravity Separation Processes." Shigen-to-Sozai 121, no. 10/11 (2005): 467–73. http://dx.doi.org/10.2473/shigentosozai.121.467.
Full textSaurbier, K., J. W. Schultze, and J. Geke. "Inhibition of Corrosive Processes in Wet Atmosphere." Materials Science Forum 111-112 (January 1992): 73–84. http://dx.doi.org/10.4028/www.scientific.net/msf.111-112.73.
Full textLam, Y. L., C. W. Kan, and C. W. M. Yuen. "Application of Catalyst in Textile Wet Processes." Research Journal of Textile and Apparel 16, no. 1 (February 2012): 10–23. http://dx.doi.org/10.1108/rjta-16-01-2012-b002.
Full textLevec, Janez, and Albin Pintar. "Catalytic wet-air oxidation processes: A review." Catalysis Today 124, no. 3-4 (June 2007): 172–84. http://dx.doi.org/10.1016/j.cattod.2007.03.035.
Full textDissertations / Theses on the topic "Wet processes"
Rance, Peter Jonathan Watson. "The photoactivation of wet oxidation processes." Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/273027.
Full textGarcía, Molina Verónica. "Wet oxidation processes for water pollution remediation." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/1526.
Full textRegarding Chlorophenols, special attention was drawn to the degradation of 4-chlorophenol by means of wet oxidation and wet peroxide oxidation. This aromatic compound was taken into investigation due to its harmful properties against the environment and due to its wide presence in the environment. Once it was clear that it could be degraded by these technologies, a research focused on the influence of the operating conditions in the result of the oxidation was carried out. The influence on the wet peroxide oxidation and wet oxidation reactions of the following parameters, initial concentration of the pollutant, temperature and amount of oxidizing agent (oxygen or hydrogen peroxide depending on the process) has been taken under study.
The identification and quantification of the intermediate compounds involved in the wet oxidation of 4-chlorophenol, together with a suggested mechanistic pathway, allowed the obtaining of a kinetic model, which appeared to be a useful tool for the prediction of these compounds throughout the reactions. The evolution of the free chlorine released to the solution from the degraded chlorophenol was also a useful tool when determining the kinetic pathway of the reaction.
Another objective of the work comprised the investigation of the variations of the biodegradability of the samples during the process. The knowledge of evolution of this parameter during the wet oxidation was thought to be of major importance, since high biodegradability enhancements allow the combination of a wet oxidation unit with a biological post-treatment, which is an effective and inexpensive technology to couple the oxidation.
The establishment of a comparison between wet oxidation and the wet peroxide oxidation for the removal of 4-chlorophenol was investigated as well.
Concerning wastewaters from pulp and paper mills, debarking and termo-mechanical pulp process wastewater have been treated by wet oxidation. Both waters were concentrated before oxidation in order to favor the economy of the process. Debarking wastewater was concentrated by evaporation and pulp process water by nanofiltration. The influence of the operating conditions, such as temperature and partial pressure of oxygen, on the results achieved at the end of the wet oxidation were studied and evaluated in order to find the optimum working conditions for each type of wastewater. Special attention was drawn to the evolution of Lipophilic Wood Extractive Compounds throughout the reactions. In addition, kinetic models suggested in the literature were tested to find a suitable one, which allowed the prediction of for instance, the organic load, over the duration of the reactions.
Due to the fact that wet oxidation is more economically viable when the initial waste stream is highly concentrated, a final chapter dedicated to a emerging technique, i.e., membrane technology has been included in this thesis. An investigation regarding the parameters affecting its performance, as well as the general aspects of the process has been conducted.
Terrill, E. L. "Mathematical modelling of some spinning processes." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280001.
Full textDey, Michael John. "Optimisation of wet massing and related processes for extruision-spheronisation." Thesis, Open University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236300.
Full textTourdot, Justin M. "A comparison of wet manual cleaning processes to carbon dioxide cleaning processes in the semiconductor industry." Online version, 2001. http://www.uwstout.edu/lib/thesis/2001/2001tourdotj.pdf.
Full textMukepe, Kahilu Moise. "Identification and control of wet grinding processes: application to the Kolwezi concentrator." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209562.
Full textThe present thesis focuses on an industrial application, namely the Kolwezi concentrator (KZC) double closed-loop wet grinding circuit. As any industrial wet grinding process, this process offers complex and challenging control problems due to its configuration and to the requirements on the product characteristics. In particular, we are interested in the modelling of the process and in proposing a control strategy to maximize the product flow rate while meeting requirements on the product fineness and density.
A mathematical model of each component of the circuit is derived. Globally, the KZC grinding process is described by a dynamic nonlinear distributed parameter model. Within this model, we propose a mathematical description to exhibit the increase of the breakage efficiency in wet operating condition. In addition, a relationship is proposed to link the convection velocity to the feed ore rate for material transport within the mills.
All the individual models are identified from measurements taken under normal process operation or from data obtained through new specific experiments, notably using the G41 foaming as a tracer to determine material transport dynamics within the mills. This technique provides satisfactory results compared to previous studies.
Based on the modelling and the circuit configuration, both steady-state and dynamic simulators are developed. The simulation results are found to be in agreement with the experimental data. These simulation tools should allow operator training and they are used to analyse the system and to design the suitable control strategy.
As the KZC wet grinding process is a Multi-Input Multi-Output (MIMO) system, we propose a decentralized control scheme for its simplicity of implementation. To overcome all the control issues, a Double Internal Model Control (DIMC) scheme is proposed. This strategy is a feedforward-feedback structure based on the use of both a modified Disturbance Observer (DOB) and a Proportional-Integral Smith-Predictor (PI-SP). A duality between the DOB and PI-SP is demonstrated in design method. The latter is exploited to significantly simplify the design procedure. The designed decentralized controllers are validated in simulation on the process linearized model. A progressive implementation of the control strategy is proposed in the context of the KZC grinding circuit where instrumentation might not be obvious to acquire./
Améliorer les techniques de traitement de minerais est un défi permanent dans l'industrie des minéraux et des métaux. En effet, pour satisfaire aux exigences du produit fini (métal ) fixées par le marché de consommation, la commande automatique est souvent appliquée à l'usine du traitement de minerais dont le produit, le concentré, constitue la matière première de la métallurgie extractive. Une attention particulière est donc dévolue aux unités de traitement de minerais et en particulier aux concentrateurs. Comme le processus de réduction des dimensions granulométriques du minerai est l'étape critique d'un concentrateur, il s'avère que la commande d'un circuit de broyage est cruciale, car ce stade représente près de 50 % des dépenses totales de l' usine de concentration. De plus, la dimension granulométrique du produit de l'étape de broyage influe sur le taux de récupération des minéraux utiles ainsi que sur le volume des rejets du processus ultérieur.
La présente thèse porte sur une application industrielle, à savoir le concentrateur de Kolwezi (KZC qui est un circuit de broyage humide à double boucle fermée. Comme tout processus industriel de broyage humide, ce procédé présente une problématique de commande complexe et difficile en raison de sa configuration et des exigences relatives aux caractéristiques du produit. En particulier, nous nous intéressons à la modélisation de ce procédé et à proposer une stratégie adéquate de commande dans le but de maximiser le débit de production tout en respectant les exigences quant à la finesse et à la densité de la pulpe produite.
Un modèle mathématique de chaque composant du circuit a été déterminé. Globalement, le processus de broyage de KZC est décrit par un modèle dynamique non linéaire à paramètres distribués. Dans ce modèle, une description mathématique de l'augmentation de l'efficacité du broyage en milieu humide est proposée. En outre, nous avons proposé une relation liant la vitesse de convection au débit d'alimentation de minerais dans le modèle du transport de la matière à l'intérieur des broyeurs.
Tous les modèles mathématiques ont été identifiés à partir de mesures prises sur le procédé en fonctionnement d'équilibre stable ou à partir des données obtenues grâce à des nouvelles expériences spécifiques, notamment en utilisant le moussant G41 comme traceur pour déterminer la dynamique de transport de la matière dans les broyeurs. Cette technique a produit des résultats cohérents par rapport aux études antérieurs réalisées au moyen du traceur colorant ou radioactif.
Les simulateurs statique et dynamique ont été développés sur la base de la modélisation mathématique et de la configuration du circuit. Les résultats des simulations sont en accord avec les données expérimentales. Ces outils de simulation devraient permettre la formation des opérateurs et ont été utilisés pour analyser le système et concevoir la stratégie de commande la plus appropriée.
Comme le processus de broyage humide de KZC est un système à plusieurs grandeurs d'entrée et plusieurs grandeurs de sortie, nous avons proposé une structure de commande décentralisée en raison de sa simplicité de mise en œuvre .Afin de surmonter tous les problèmes de commande, un schéma de commande à double modèle interne (CDMI) est proposée. Cette stratégie est une structure à anticipation - rétroaction basée sur l'utilisation d'un observateur de perturbations (OBP) et d'un Prédicteur de Smith doté d'un régulateur Proportionnel-Intégral (PS-PI). Une dualité entre l'OBP et le PS-PI est démontrée dans la méthode de conception. Cette propriété est exploitée pour simplifier considérablement la procédure de conception. Les régulateurs décentralisés ainsi conçus sont validés en simulation sur le modèle linéarisé du procédé. Une mise en œuvre progressive de la stratégie de commande est proposée dans le contexte du circuit de broyage de KZC où l'instrumentation peut ne pas être évidente à acquérir.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Onggar, Toty, Shayed Mohammad Abu, Rolf-Dieter Hund, and Chokri Cherif. "Silvering of three-dimensional polyethylene terephthalate textile material by means of wet-chemical processes." Sage, 2015. https://tud.qucosa.de/id/qucosa%3A35399.
Full textMistkawi, Nabil George. "Fundamental Studies in Selective Wet Etching and Corrosion Processes for High-Performance Semiconductor Devices." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/6.
Full textMullins, Benjamin James, and n/a. "Study of Capture, Fibre Wetting and Flow Processes in Wet Filtration and Liquid Aerosol Filtration." Griffith University. School of Environmental Engineering, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040919.124658.
Full textMullins, Benjamin James. "Study of Capture, Fibre Wetting and Flow Processes in Wet Filtration and Liquid Aerosol Filtration." Thesis, Griffith University, 2004. http://hdl.handle.net/10072/365591.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environmental Engineering
Faculty of Environmental Sciences
Full Text
Books on the topic "Wet processes"
Diguet, S. Intensification of wet air oxidation processes. Manchester: UMIST, 1993.
Find full textBlanchard, Paul Harwood. Technology of corn wet milling and associated processes. Amsterdam: Elsevier, 1992.
Find full textSergio, Albeverio, Blanchard Philippe, Streit Ludwig 1938-, and Bielefeld-Bochum Research Center Stochastics, eds. Stochastic processes, mathematics and physics: Proceedings of the 1st BiBos-Symposium, held in Bielefeld, West Germany, September 10-15, 1984. Berlin: Springer-Verlag, 1986.
Find full textSergio, Albeverio, Blanchard Philippe, and Streit Ludwig 1938-, eds. Stochastic processes--mathematics and physics II: Proceedings of the 2nd BiBoS Symposium held in Bielefeld, West Germany, April 15-19, 1985. Berlin: Springer-Verlag, 1987.
Find full textBiBoS-Symposium (2nd 1985 Bielefeld, Germany). Stochastic processes--mathematics and physics II: Proceedings of the 2nd BiBoS Symposium held in Bielefeld, West Germany, April 15-19, 1985. Berlin: Springer-Verlag, 1987.
Find full textSaad, Gaby George. Multivariable control of web processes. Ottawa: National Library of Canada, 2000.
Find full textN, Huhns Michael, ed. Service-oriented computing: Semantics, processes, agents. Chichester: Wiley, 2005.
Find full textCardoso, Jorge, and Amit P. Sheth, eds. Semantic Web Services, Processes and Applications. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-34685-4.
Full textNielsen, T. Signal processing for web-forming processes. Manchester: UMIST, 1995.
Find full text1959-, Cox Andrew, ed. Portals: People, processes and technology. London: Facet, 2006.
Find full textBook chapters on the topic "Wet processes"
Hapgood, Karen P., and James D. Litster. "Wet Granulation Processes." In Chemical Engineering in the Pharmaceutical Industry, 757–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470882221.ch39.
Full textHapgood, Karen P., and James D. Litster. "WET GRANULATION PROCESSES." In Chemical Engineering in the Pharmaceutical Industry, 147–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119600800.ch56.
Full textJodai, Kazuo. "Wet Etching Processes and Equipment." In Flat Panel Display Manufacturing, 311–18. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119161387.ch14_01.
Full textJorgensen, Neal A., and Richard G. Koeg. "Wet Fractionation Processes and Products." In Agronomy Monographs, 553–66. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr29.c18.
Full textOmbaba, Mathew, Salman B. Inayat, and M. Saif Islam. "Wet Chemical and Electrochemical Etching Processes." In Encyclopedia of Nanotechnology, 1–9. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_431-2.
Full textOmbaba, Mathew, Salman B. Inayat, and M. Saif Islam. "Wet Chemical and Electrochemical Etching Processes." In Encyclopedia of Nanotechnology, 4373–80. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_431.
Full textBurns, David W. "MEMS Wet-Etch Processes and Procedures." In MEMS Reference Shelf, 457–665. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-47318-5_8.
Full textPeethala, Cornelius Brown, James J. Kelly, Donald F. Canaperi, Mahadevaiyer Krishnan, and Takeshi Nogami. "Wet Chemical Processes for BEOL Technology." In Springer Handbook of Semiconductor Devices, 219–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79827-7_6.
Full textTanner, Roger L. "Chemical Instrumentation of Atmospheric Wet Deposition Processes." In ACS Symposium Series, 289–302. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0349.ch025.
Full textEyupoglu, Seyda, and Nigar Merdan. "Eco-friendly Production Methods in Textile Wet Processes." In Textile Science and Clothing Technology, 31–65. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8491-1_2.
Full textConference papers on the topic "Wet processes"
Chavez, Anton, Iou-Sheng Ke, Sabrina Wong, and Shintaro Yamada. "Improving wet etch resistance of organic underlayers." In Advances in Patterning Materials and Processes XXXIX, edited by Douglas Guerrero and Daniel P. Sanders. SPIE, 2022. http://dx.doi.org/10.1117/12.2612350.
Full textLiang, Yichen, Andrea M. Chacko, Samantha Oelklaus, Ethan Lowrey, Veerle Van Driessche, Sedlacek R. Ivan, Ming Luo, Stephen M. Grannemann, and Douglas J. Guerrero. "Improvement of EUV Si hardmask performance through wet chemistry functionalization." In Advances in Patterning Materials and Processes XXXVII, edited by Roel Gronheid and Daniel P. Sanders. SPIE, 2020. http://dx.doi.org/10.1117/12.2551671.
Full textRuben, Kimberly A., Tony D. Flaim, and Chenghong Li. "Polymeric protective coatings for MEMS wet-etch processes." In Micromachining and Microfabrication, edited by Mary A. Maher and Jerome F. Jakubczak. SPIE, 2004. http://dx.doi.org/10.1117/12.523965.
Full textNii, Hajime, Hiroo Kinoshita, Takeo Watanabe, Y. Matsuo, and Y. Sugie. "EUV mask cleaning by dry and wet processes." In Photomask and Next Generation Lithography Mask Technology VIII, edited by Hiroichi Kawahira. SPIE, 2001. http://dx.doi.org/10.1117/12.438368.
Full textAlahyane, L., H. Kirou, El Houcine El Hamri, A. Elfanaoui, E. H. Ihalane, K. Bouabid, L. Laanab, and A. Ihlal. "Wet processes for the preparation of CZTS thin films." In 2013 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2013. http://dx.doi.org/10.1109/irsec.2013.6529720.
Full textSpencer, Mary, Kim Ruben, Chenghong Li, Paul Williams, and Tony D. Flaim. "Polymer protective coating for wet deep silicon etching processes." In Micromachining and Microfabrication, edited by John A. Yasaitis, Mary Ann Perez-Maher, and Jean Michel Karam. SPIE, 2003. http://dx.doi.org/10.1117/12.472717.
Full textRotstein, Israel, and Eitan N. Shauly. "Yield enhancement by modification of wet oxide strip processes." In Microelectronic Manufacturing, edited by Barbara Vasquez and Hisao Kawasaki. SPIE, 1994. http://dx.doi.org/10.1117/12.186745.
Full textMin, Jeong-guk, Sang-ho Rha, Tai-kyung Kim, Ui-hui Kwon, Ju-seon Goo, Young-kwan Park, and Jeong-taek Kong. "Modeling of stress-dependent wet etch characteristic for P-SOG STI process." In 2006 International Conference on Simulation of Semiconductor Processes and Devices. IEEE, 2006. http://dx.doi.org/10.1109/sispad.2006.282885.
Full textNgai, T., and U. Ghoshal. "Wet etching of Bi2Te3 thin films compatible with microelectronic fabrication processes." In 2007 26th International Conference on Thermoelectrics (ICT 2007). IEEE, 2007. http://dx.doi.org/10.1109/ict.2007.4569415.
Full textFukumoto, S., T. Matsumae, Y. Kurashima, H. Takagi, H. Umezawa, M. Hayase, and E. Higurashi. "Direct bonding of GaN and Si substrates using wet cleaning processes." In 2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). IEEE, 2021. http://dx.doi.org/10.1109/ltb-3d53950.2021.9598359.
Full textReports on the topic "Wet processes"
Mueller, Mitch, Danny Rellergert, Mike Preston, Jess VanWagoner, and Marc Turner. TECHNO-ECONOMIC ANALYSIS AND EVALUATION OF WET FGD WASTEWATER TREATMENT PROCESSES AT EXISTING PLANTS. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1565922.
Full textMistkawi, Nabil. Fundamental Studies in Selective Wet Etching and Corrosion Processes for High-Performance Semiconductor Devices. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6.
Full textDhooge, P. M., and L. B. Hakim. Development studies for a novel wet oxidation process. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10142448.
Full textTajiri, H., T. Nakayama, and M. Kuroishi. Power generation characteristics of tubular type SOFC by wet process. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460192.
Full textWindler, Gary, Ernest Hartline, Claudine Armenta, Kathryn Berchtold, Cynthia Bolme, Adam Golder, John Matteson, et al. New PBX 9501 Dynamic Mock Candidates via the Wet Slurry Process. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1845238.
Full textFrame, B. J. Process study of polycyanate resin for wet-filament wound high-strength composites. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/565223.
Full textGerber, Bernard V., and Herbert A. Hoffman. Laboratory Investigations Prerequisite to the Pilot Production of Wet- Process, Gas-Aerosol Material. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada250160.
Full textSchuck-Zöller, Susanne, Sebastian Bathiany, Markus Dressel, Juliane El Zohbi, Elke Keup-Thiel, Diana Rechid, and Suhari Mirko. Developing criteria of successful processes in co-creative research. A formative evaluation scheme for climate services. Fteval - Austrian Platform for Research and Technology Policy Evaluation, April 2022. http://dx.doi.org/10.22163/fteval.2022.541.
Full textIdrisova, Zh V., L. S. Idigova, and M. I. Kudusova. INTRODUCTION OF WEB TECHNOLOGIES IN THE EDUCATIONAL PROCESS. Ljournal, 2019. http://dx.doi.org/10.18411/6645-3567-6535-53565.
Full textDakin, B., C. Backman, M. Hoeschele, and A. German. West Village Community. Quality Management Processes and Preliminary Heat Pump Water Heater Performance. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1219813.
Full text