Journal articles on the topic 'Wet chemical syntheses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Wet chemical syntheses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gilroy, Kyle D., Hsin-Chieh Peng, Xuan Yang, Aleksey Ruditskiy, and Younan Xia. "Symmetry breaking during nanocrystal growth." Chemical Communications 53, no. 33 (2017): 4530–41. http://dx.doi.org/10.1039/c7cc01121k.
Full textWang, Bingzhe, Verena Engelhardt, Alexandra Roth, Rüdiger Faust, and Dirk M. Guldi. "n- versus p-doping of graphite: what drives its wet-chemical exfoliation?" Nanoscale 9, no. 32 (2017): 11632–39. http://dx.doi.org/10.1039/c7nr03379f.
Full textPalmero, Paola. "Microstructural Tailoring of YAG and YAG-Containing Nanoceramics through Advanced Synthesis Routes." Advances in Science and Technology 62 (October 2010): 34–43. http://dx.doi.org/10.4028/www.scientific.net/ast.62.34.
Full textGuldi, Dirk Michael. "(Invited) Towards Understanding the Competition of Electron and Energy Transfer in “Molecular” Nanographenes on the Example of Hexa-Peri-Hexabenzocoronene." ECS Meeting Abstracts MA2024-01, no. 7 (August 9, 2024): 795. http://dx.doi.org/10.1149/ma2024-017795mtgabs.
Full textWang, Yumeng, and Zhenxing Yin. "Review of Wet Chemical Syntheses of Copper Nanowires and Their Recent Applications." Applied Science and Convergence Technology 28, no. 6 (November 30, 2019): 186–93. http://dx.doi.org/10.5757/asct.2019.28.6.186.
Full textBecker, Sidney, Jonas Feldmann, Stefan Wiedemann, Hidenori Okamura, Christina Schneider, Katharina Iwan, Antony Crisp, Martin Rossa, Tynchtyk Amatov, and Thomas Carell. "Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides." Science 366, no. 6461 (October 3, 2019): 76–82. http://dx.doi.org/10.1126/science.aax2747.
Full textPadmini, P., and T. R. Narayanan Kutty. "Wet chemical syntheses of ultrafine multicomponent ceramic powders through gel to crystallite conversion." Journal of Materials Chemistry 4, no. 12 (1994): 1875. http://dx.doi.org/10.1039/jm9940401875.
Full textIsobe, T. "Low-temperature wet chemical syntheses of nanocrystal phosphors with surface modification and their characterization." physica status solidi (a) 203, no. 11 (September 2006): 2686–93. http://dx.doi.org/10.1002/pssa.200669630.
Full textSportelli, Maria, Margherita Izzi, Annalisa Volpe, Maurizio Clemente, Rosaria Picca, Antonio Ancona, Pietro Lugarà, Gerardo Palazzo, and Nicola Cioffi. "The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials." Antibiotics 7, no. 3 (July 28, 2018): 67. http://dx.doi.org/10.3390/antibiotics7030067.
Full textCorreya, Adrine Antony, V. P. N. Nampoori, and A. Mujeeb. "Microwave assisted synthesis of bismuth titanate nanosheets and its photocatalytic effects." PeerJ Materials Science 5 (March 7, 2023): e26. http://dx.doi.org/10.7717/peerj-matsci.26.
Full textStride, John A., and Nam T. Tuong. "Controlled Synthesis of Titanium Dioxide Nanostructures." Solid State Phenomena 162 (June 2010): 261–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.162.261.
Full textRosa, Andriele L., Luana R. Farias, Vinicius P. Dias, Otávio B. Pacheco, Fernando D. P. Morisso, Luiz F. Rodrigues Junior, Michele R. Sagrillo, Aline Rossato, Luis A. L. Santos, and Tiago M. Volkmer. "Effect of synthesis temperature on crystallinity, morphology and cell viability of nanostructured hydroxyapatite via wet chemical precipitation method." International Journal of Advances in Medical Biotechnology - IJAMB 5, no. 1 (March 1, 2022): 29–35. http://dx.doi.org/10.52466/ijamb.v5i1.110.
Full textMann, Markus, Michael Küpers, Grit Häuschen, Martin Finsterbusch, Dina Fattakhova-Rohlfing, and Olivier Guillon. "Evaluation of Scalable Synthesis Methods for Aluminum-Substituted Li7La3Zr2O12 Solid Electrolytes." Materials 14, no. 22 (November 11, 2021): 6809. http://dx.doi.org/10.3390/ma14226809.
Full textWang, Liguo, Jianpeng Shang, Shimin Liu, Lequan Liu, Shiguo Zhang, and Youquan Deng. "Environmentally benign and effective syntheses of N-substituted carbamates via alcoholysis of disubstituted ureas over TiO2/SiO2 catalyst." Pure and Applied Chemistry 84, no. 3 (October 4, 2011): 461–71. http://dx.doi.org/10.1351/pac-con-11-05-06.
Full textSvec, Jiri, Eva Bartoníčková, Alžběta Jebavá, Jiří Másilko, and Petr Ptacek. "Synthesis of Layered Calcium Cobaltites Intended for Thermolectric Application." Materials Science Forum 851 (April 2016): 110–15. http://dx.doi.org/10.4028/www.scientific.net/msf.851.110.
Full textSousa Neto, Vicente de Oliveira, Gilberto Dantas Saraiva, A. J. Ramiro De Castro, Paulo de Tarso Cavalcante Freire, and Ronaldo Ferreira Do Nascimento. "Electrodeposition of One-Dimensional Nanostructures: Environmentally Friendly Method." Journal of Composites and Biodegradable Polymers 10 (December 28, 2022): 19–42. http://dx.doi.org/10.12974/2311-8717.2022.10.03.
Full textViet Ha, Chu, Hoang Thi Hang, Nguyen Thi Bich Ngoc, Ngo Thi Huong, Vu Thi Kim Lien, and Tran Hong Nhung. "SYNTHESIS OF CdSe/CdS AND CdSe/CdS/SiO2 NANOPARTICLES VIA WET CHEMICAL METHOD." Journal of Science, Natural Science 60, no. 7 (2015): 75–80. http://dx.doi.org/10.18173/2354-1059.2015-0035.
Full textde Oliveira Fortes, Vanessa Danielle, Wandeberg Aranha Diniz, Euler Araujo dos Santos, Cristiane Xavier Resende, Luiz Eduardo Almeida, and Zaine Teixeira. "Nanostructures of Hydroxyapatite in Pluronic F 127: Preparation and Structural Characterization." Key Engineering Materials 493-494 (October 2011): 31–36. http://dx.doi.org/10.4028/www.scientific.net/kem.493-494.31.
Full textEigler, Siegfried, Michael Enzelberger-Heim, Stefan Grimm, Philipp Hofmann, Wolfgang Kroener, Andreas Geworski, Christoph Dotzer, et al. "Wet Chemical Synthesis of Graphene." Advanced Materials 25, no. 26 (May 24, 2013): 3583–87. http://dx.doi.org/10.1002/adma.201300155.
Full textSelbach, Sverre M., Mari-Ann Einarsrud, Thomas Tybell, and Tor Grande. "Synthesis of BiFeO3by Wet Chemical Methods." Journal of the American Ceramic Society 90, no. 11 (November 2007): 3430–34. http://dx.doi.org/10.1111/j.1551-2916.2007.01937.x.
Full textOuhajji, Samia, Bas G. P. van Ravensteijn, Carla Fernández-Rico, Kanvaly S. Lacina, Albert P. Philipse, and Andrei V. Petukhov. "Wet-Chemical Synthesis of Chiral Colloids." ACS Nano 12, no. 12 (November 14, 2018): 12089–95. http://dx.doi.org/10.1021/acsnano.8b05065.
Full textTaylor, D. J., and H. M. Meyer. "Wet-chemical synthesis of zirconium oxyfluoride." Journal of Materials Science 40, no. 9-10 (May 2005): 2655–58. http://dx.doi.org/10.1007/s10853-005-2098-1.
Full textLiu, Lichun, Sang-Hoon Yoo, Sang A. Lee, and Sungho Park. "Wet-Chemical Synthesis of Palladium Nanosprings." Nano Letters 11, no. 9 (September 14, 2011): 3979–82. http://dx.doi.org/10.1021/nl202332x.
Full textGaki, A., Th Perraki, and G. Kakali. "Wet chemical synthesis of monocalcium aluminate." Journal of the European Ceramic Society 27, no. 2-3 (January 2007): 1785–89. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.05.006.
Full textSingh, Vartika S., C. P. Joshi, and S. V. Moharil. "Wet chemical synthesis of LiBaF3 phosphor." Journal of Alloys and Compounds 579 (December 2013): 165–68. http://dx.doi.org/10.1016/j.jallcom.2013.04.163.
Full textSINGH, AKANKSHA, CHANTAL KHAN MALEK, and SULABHA K. KULKARNI. "DEVELOPMENT IN MICROREACTOR TECHNOLOGY FOR NANOPARTICLE SYNTHESIS." International Journal of Nanoscience 09, no. 01n02 (February 2010): 93–112. http://dx.doi.org/10.1142/s0219581x10006557.
Full textJain, Titoo, Qingxin Tang, Thomas Bjørnholm, and Kasper Nørgaard. "Wet Chemical Synthesis of Soluble Gold Nanogaps." Accounts of Chemical Research 47, no. 1 (August 14, 2013): 2–11. http://dx.doi.org/10.1021/ar3002848.
Full textSingh, Vartika S., and S. V. Moharil. "Wet-chemical synthesis and luminescence of KCeF4." Materials Today: Proceedings 26 (2020): 1046–48. http://dx.doi.org/10.1016/j.matpr.2020.02.208.
Full textGuha, P., S. Gorai, D. Ganguli, and S. Chaudhuri. "Ammonia-mediated wet chemical synthesis of CuInS2." Materials Letters 57, no. 12 (March 2003): 1786–91. http://dx.doi.org/10.1016/s0167-577x(02)01069-8.
Full textSingh, Vartika S., C. P. Joshi, T. K. Gundu Rao, and S. V. Moharil. "Wet chemical synthesis of KMgF 3 phosphors." Journal of Alloys and Compounds 657 (February 2016): 848–54. http://dx.doi.org/10.1016/j.jallcom.2015.10.176.
Full textSingh, Vartika S., C. P. Joshi, and S. V. Moharil. "ChemInform Abstract: Wet Chemical Synthesis of LiBaF3Phosphor." ChemInform 44, no. 47 (November 4, 2013): no. http://dx.doi.org/10.1002/chin.201347199.
Full textUhlmann, D. R., B. J. J. Zelinski, G. Teowee, J. M. Boulton, and A. Koussa. "Wet chemical synthesis of bulk optical materials." Journal of Non-Crystalline Solids 129, no. 1-3 (March 1991): 76–92. http://dx.doi.org/10.1016/0022-3093(91)90082-h.
Full textDella Gaspera, Enrico. "Special Issue “Wet Chemical Synthesis of Functional Nanomaterials”." Nanomaterials 11, no. 4 (April 19, 2021): 1044. http://dx.doi.org/10.3390/nano11041044.
Full textRao, Rameshwar, C. Shilpa Chakra, and K. Venkateswara Rao. "Eco-Friendly Synthesis of Silver Nanoparticles Using Carica Papaya Extract for Anti Bacterial Applications." Advanced Materials Research 629 (December 2012): 279–83. http://dx.doi.org/10.4028/www.scientific.net/amr.629.279.
Full textSrdic, Vladimir, Ruzica Djenadic, Marija Milanovic, Nikolina Pavlovic, Ivan Stijepovic, Ljubica Nikolic, Evagelia Moshopoulous, Konstantinos Giannakopoulos, Jan Dusza, and Karel Maca. "Direct synthesis of nanocrystalline oxide powders by wet-chemical techniques." Processing and Application of Ceramics 4, no. 3 (2010): 127–34. http://dx.doi.org/10.2298/pac1003127s.
Full textSalma, Kristine, Liga Berzina-Cimdina, and Natalija Borodajenko. "Calcium phosphate bioceramics prepared from wet chemically precipitated powders." Processing and Application of Ceramics 4, no. 1 (2010): 45–51. http://dx.doi.org/10.2298/pac1001045s.
Full textSokolova, Marina, Andris Putnins, Imants Kreicbergs, and Janis Locs. "Scale-Up of Wet Precipitation Calcium Phosphate Synthesis." Key Engineering Materials 604 (March 2014): 216–19. http://dx.doi.org/10.4028/www.scientific.net/kem.604.216.
Full textNakashima, Kouichi, Ichiro Fujii, and Satoshi Wada. "Synthesis of BaZrO3 nanocrystals by wet chemical reaction." Transactions of the Materials Research Society of Japan 38, no. 1 (2013): 45–48. http://dx.doi.org/10.14723/tmrsj.38.45.
Full textLIU, Zhongxin. "Wet-chemical synthesis and characteristics of Au nanoshell." Science in China Series B 48, no. 5 (2005): 431. http://dx.doi.org/10.1360/042004-101.
Full textChaki, Sunil H., M. P. Deshpande, J. P. Tailor, K. S. Mahato, and M. D. Chaudhary. "Wet Chemical Synthesis and Characterization of MnS Nanoparticles." Advanced Materials Research 584 (October 2012): 243–47. http://dx.doi.org/10.4028/www.scientific.net/amr.584.243.
Full textOhashi, Masayoshi, Yasuo Iida, and Hisashi Morikawa. "Preparation of CuAlO2 Films by Wet Chemical Synthesis." Journal of the American Ceramic Society 85, no. 1 (December 20, 2004): 270–72. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00080.x.
Full textSamanta, Pijus Kanti, and Abhijit Saha. "Wet chemical synthesis of ZnO nanoflakes and photoluminescence." Optik 126, no. 23 (December 2015): 3786–88. http://dx.doi.org/10.1016/j.ijleo.2015.07.157.
Full textPfaff, G. "Wet chemical synthesis of BaSnO3 and Ba2SnO4 powders." Journal of the European Ceramic Society 12, no. 2 (January 1993): 159–64. http://dx.doi.org/10.1016/0955-2219(93)90137-g.
Full textWang, Shi-Wei, Xiao-Xian Huang, and Jing-Kun Guo. "Wet chemical synthesis of ZrO2-SiO2 composite powders." Journal of the European Ceramic Society 16, no. 10 (January 1996): 1057–61. http://dx.doi.org/10.1016/0955-2219(96)00035-0.
Full textChaki, Sunil H., M. P. Deshpande, Devangini P. Trivedi, Jiten P. Tailor, Mahesh D. Chaudhary, and Kanchan Mahato. "Wet chemical synthesis and characterization of SnS2 nanoparticles." Applied Nanoscience 3, no. 3 (April 27, 2012): 189–95. http://dx.doi.org/10.1007/s13204-012-0123-7.
Full textVázquez-Vázquez, C., S. Dosil-Caamaño, and M. A. López-Quintela. "Synthesis of La1-xCaxMnO3±δby wet chemical routes." Acta Crystallographica Section A Foundations of Crystallography 56, s1 (August 25, 2000): s383. http://dx.doi.org/10.1107/s0108767300028014.
Full textCaswell, K. K., Christopher M. Bender, and Catherine J. Murphy. "Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires." Nano Letters 3, no. 5 (May 2003): 667–69. http://dx.doi.org/10.1021/nl0341178.
Full textWei, Qinglian, and Jin Mu. "Synthesis of CuInS2Nanocubes by a Wet Chemical Process." Journal of Dispersion Science and Technology 26, no. 5 (September 2005): 555–58. http://dx.doi.org/10.1081/dis-200057631.
Full textYelten-Yilmaz, Azade, and Suat Yilmaz. "Wet chemical precipitation synthesis of hydroxyapatite (HA) powders." Ceramics International 44, no. 8 (June 2018): 9703–10. http://dx.doi.org/10.1016/j.ceramint.2018.02.201.
Full textSantos, L. P. S., E. R. Camargo, M. T. Fabbro, E. Longo, and E. R. Leite. "Wet-chemical synthesis of magnesium niobate nanoparticles powders." Ceramics International 33, no. 7 (September 2007): 1205–9. http://dx.doi.org/10.1016/j.ceramint.2006.04.006.
Full text