Academic literature on the topic 'Weighted Discontinuous Galerkin method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Weighted Discontinuous Galerkin method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Weighted Discontinuous Galerkin method"
Zhang, Rongpei, Xijun Yu, Jiang Zhu, Abimael F. D. Loula, and Xia Cui. "Weighted Interior Penalty Method with Semi-Implicit Integration Factor Method for Non-Equilibrium Radiation Diffusion Equation." Communications in Computational Physics 14, no. 5 (November 2013): 1287–303. http://dx.doi.org/10.4208/cicp.190612.010313a.
Full textZhang, Rongpei, Xijun Yu, Mingjun Li, and Zhen Wang. "A semi-implicit integration factor discontinuous Galerkin method for the non-linear heat equation." Thermal Science 23, no. 3 Part A (2019): 1623–28. http://dx.doi.org/10.2298/tsci180921232z.
Full textHe, Xijun, Dinghui Yang, and Hao Wu. "A weighted Runge–Kutta discontinuous Galerkin method for wavefield modelling." Geophysical Journal International 200, no. 3 (January 24, 2015): 1389–410. http://dx.doi.org/10.1093/gji/ggu487.
Full textLiu, Yun-Long, Chi-Wang Shu, and A.-Man Zhang. "Weighted ghost fluid discontinuous Galerkin method for two-medium problems." Journal of Computational Physics 426 (February 2021): 109956. http://dx.doi.org/10.1016/j.jcp.2020.109956.
Full textRustum, Ibrahim M., and ElHadi I. Elhadi. "Totally Volume Integral of Fluxes for Discontinuous Galerkin Method (TVI-DG) I-Unsteady Scalar One Dimensional Conservation Laws." Al-Mukhtar Journal of Sciences 32, no. 1 (June 30, 2017): 36–45. http://dx.doi.org/10.54172/mjsc.v32i1.124.
Full textQiu, Chujun, Dinghui Yang, Xijun He, and Jingshuang Li. "A weighted Runge-Kutta discontinuous Galerkin method for reverse time migration." GEOPHYSICS 85, no. 6 (October 21, 2020): S343—S355. http://dx.doi.org/10.1190/geo2019-0193.1.
Full textNoels, L., and R. Radovitzky. "Alternative Approaches for the Derivation of Discontinuous Galerkin Methods for Nonlinear Mechanics." Journal of Applied Mechanics 74, no. 5 (July 17, 2006): 1031–36. http://dx.doi.org/10.1115/1.2712228.
Full textZhu, Jun, and Jianxian Qiu. "Runge-Kutta Discontinuous Galerkin Method Using Weno-Type Limiters: Three-Dimensional Unstructured Meshes." Communications in Computational Physics 11, no. 3 (March 2012): 985–1005. http://dx.doi.org/10.4208/cicp.300810.240511a.
Full textBassonon, Yibour Corentin, and Arouna Ouedraogo. "Discontinuous Galerkin method for linear parabolic equations with L^1-data." Gulf Journal of Mathematics 16, no. 2 (April 12, 2024): 122–34. http://dx.doi.org/10.56947/gjom.v16i2.1874.
Full textZhang, Fan, Tiegang Liu, and Moubin Liu. "A third-order weighted variational reconstructed discontinuous Galerkin method for solving incompressible flows." Applied Mathematical Modelling 91 (March 2021): 1037–60. http://dx.doi.org/10.1016/j.apm.2020.10.011.
Full textDissertations / Theses on the topic "Weighted Discontinuous Galerkin method"
Johansson, August. "Duality-based adaptive finite element methods with application to time-dependent problems." Doctoral thesis, Umeå : Institutionen för matematik och matematisk statistik, Umeå universitet, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-33872.
Full textMarcati, Carlo. "Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS349.
Full textIn this thesis, we study elliptic eigenvalue problems with singular potentials, motivated by several models in physics and quantum chemistry, and we propose a discontinuous Galerkin hp finite element method for their solution. In these models, singular potentials occur naturally (associated with the interaction between nuclei and electrons). Our analysis starts from elliptic regularity in non homogeneous weighted Sobolev spaces. We show that elliptic operators with singular potential are isomorphisms in those spaces and that we can derive weighted analytic type estimates on the solutions to the linear eigenvalue problems. The isotropically graded hp method provides therefore approximations that converge with exponential rate to the solution of those eigenproblems. We then consider a wide class of nonlinear eigenvalue problems, and prove the convergence of numerical solutions obtained with the symmetric interior penalty discontinuous Galerkin method. Furthermore, when the non linearity is polynomial, we show that we can obtain the same analytic type estimates as in the linear case, thus the numerical approximation converges exponentially. We also analyze under what conditions the eigenvalue converges at an increased rate compared to the eigenfunctions. For both the linear and nonlinear case, we perform numerical tests whose objective is both to validate the theoretical results, but also evaluate the role of sources of errors not considered previously in the analysis, and to help in the design of hp/dG graded methods for more complex problems
Gürkan, Ceren. "Extended hybridizable discontinuous Galerkin method." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/664035.
Full textEsta tesis propone una nueva técnica numérica: eXtended Hybridizable Discontinuous Galerkin (X-HDG), para resolver eficazmente problemas incluyendo fronteras en movimiento e interfaces. Su objetivo es superar las limitaciones de los métodos disponibles y mejorar los resultados, heredando propiedades del método Hybridizable Discontinuous Galerkin method (HDG), junto con una definición de interfaz explícita. X-HDG combina el método HDG con la filosofía de eXtended Finite Element method (X-FEM), con una descripción level-set de la interfaz, para obtener un método numérico hp convergente de orden superior sin ajuste de la malla a la interfaz o frontera. HDG supera a otros métodos de DG para los problemas implícitos con operadores autoadjuntos, debido a sus propiedades de hibridación y superconvergencia. El proceso de hibridación reduce drásticamente el número de grados de libertad en el problema discreto, similar a la condensación estática en el contexto de Continuous Galerkin (CG) de alto orden. Por otro lado, HDG se basa en una formulación mixta que, a diferencia de CG u otros métodos DG, es estable incluso cuando todas las variables (incógnitas primitivas y derivadas) se aproximan con polinomios del mismo grado k. Como resultado, la convergencia de orden k + 1 en la norma L2 se demuestra no sólo para la incógnita primal sino también para sus derivadas. Por lo tanto, un simple post-proceso elemento-a-elemento de las derivadas conduce a una aproximación superconvergente de las variables primales, con convergencia de orden k+2 en la norma L2. X-HDG hereda estas propiedades. Por otro lado, gracias a la descripción level-set de la interfaz, se evita caro remallado tratando las interfaces móviles. Este trabajo demuestra que X-HDG mantiene la convergencia óptima y la superconvergencia de HDG sin la necesidad de ajustar la malla a la interfaz. En los capítulos 2 y 3, se deduce e implementa el método X-HDG para resolver la ecuación de Laplace estacionaria en un dominio donde la interfaz separa un solo material del vacío y donde la interfaz separa dos materiales diferentes. La precisión y convergencia de X-HDG se prueba con ejemplos de soluciones fabricadas y se demuestra que X-HDG supera las propuestas anteriores mostrando convergencia óptima y superconvergencia de alto orden, junto con una reducción del tamaño del sistema gracias a su naturaleza híbrida, pero sin ajuste de la malla. En los capítulos 4 y 5, el método X-HDG se desarrolla e implementa para resolver el problema de interfaz de Stokes para interfaces vacías y bimateriales. Con X-HDG, de nuevo se muestra una convergencia de alto orden en mallas no adaptadas, para problemas de flujo incompresible. X-HDG para interfaces móviles se discute en el Capítulo 6. Se considera un problema térmico transitorio, donde el término dependiente del tiempo es discretizado usando el método de backward Euler. Un ejemplo de una interfaz circulas que se reduce, junto con el problema de Stefan de dos fases, se discute en la sección de ejemplos numéricos. Se demuestra que X-HDG ofrece un alto grado de convergencia óptima para problemas dependientes del tiempo. Además, con el problema de Stefan, usando un grado polinomial k, se demuestra una aproximación más exacta de la posición de la interfaz contra X-FEM, gracias a la aproximación del gradiente convergente k + 1 de X-HDG. Una vez más, se mejoran los resultados obtenidos por las propuestas anteriores
Kaufmann, Willem. "Extended Hydrodynamics Using the Discontinuous-Galerkin Hancock Method." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42672.
Full textToprakseven, Suayip. "Error Analysis of Extended Discontinuous Galerkin (XdG) Method." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1418733307.
Full textElfverson, Daniel. "Discontinuous Galerkin Multiscale Methods for Elliptic Problems." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960.
Full textGalbraith, Marshall C. "A Discontinuous Galerkin Chimera Overset Solver." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1384427339.
Full textLui, Ho Man. "Runge-Kutta Discontinuous Galerkin method for the Boltzmann equation." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39215.
Full textIncludes bibliographical references (p. 85-87).
In this thesis we investigate the ability of the Runge-Kutta Discontinuous Galerkin (RKDG) method to provide accurate and efficient solutions of the Boltzmann equation. Solutions of the Boltzmann equation are desirable in connection to small scale science and technology because when characteristic flow length scales become of the order of, or smaller than, the molecular mean free path, the Navier-Stokes description fails. The prevalent Boltzmann solution method is a stochastic particle simulation scheme known as Direct Simulation Monte Carlo (DSMC). Unfortunately, DSMC is not very effective in low speed flows (typical of small scale devices of interest) because of the high statistical uncertainty associated with the statistical sampling of macroscopic quantities employed by this method. This work complements the recent development of an efficient low noise method for calculating the collision integral of the Boltzmann equation, by providing a high-order discretization method for the advection operator balancing the collision integral in the Boltzmann equation. One of the most attractive features of the RKDG method is its ability to combine high-order accuracy, both in physical space and time, with the ability to capture discontinuous solutions.
(cont.) The validity of this claim is thoroughly investigated in this thesis. It is shown that, for a model collisionless Boltzmann equation, high-order accuracy can be achieved for continuous solutions; whereas for discontinuous solutions, the RKDG method, with or without the application of a slope limiter such as a viscosity limiter, displays high-order accuracy away from the vicinity of the discontinuity. Given these results, we developed a RKDG solution method for the Boltzmann equation by formulating the collision integral as a source term in the advection equation. Solutions of the Boltzmann equation, in the form of mean velocity and shear stress, are obtained for a number of characteristic flow length scales and compared to DSMC solutions. With a small number of elements and a low order of approximation in physical space, the RKDG method achieves similar results to the DSMC method. When the characteristic flow length scale is small compared to the mean free path (i.e. when the effect of collisions is small), oscillations are present in the mean velocity and shear stress profiles when a coarse velocity space discretization is used. With a finer velocity space discretization, the oscillations are reduced, but the method becomes approximately five times more computationally expensive.
(cont.) We show that these oscillations (due to the presence of propagating discontinuities in the distribution function) can be removed using a viscosity limiter at significantly smaller computational cost.
by Ho Man Lui.
S.M.
Bala, Chandran Ram. "Development of discontinuous Galerkin method for nonlocal linear elasticity." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41730.
Full textIncludes bibliographical references (p. 75-81).
A number of constitutive theories have arisen describing materials which, by nature, exhibit a non-local response. The formulation of boundary value problems, in this case, leads to a system of equations involving higher-order derivatives which, in turn, results in requirements of continuity of the solution of higher order. Discontinuous Galerkin methods are particularly attractive toward this end, as they provide a means to naturally enforce higher interelement continuity in a weak manner without the need of modifying the finite element interpolation. In this work, a discontinuous Galerkin formulation for boundary value problems in small strain, non-local linear elasticity is proposed. The underlying theory corresponds to the phenomenological strain-gradient theory developed by Fleck and Hutchinson within the Toupin-Mindlin framework. The single-field displacement method obtained enables the discretization of the boundary value problem with a conventional continuous interpolation inside each finite element, whereas the higher-order interelement continuity is enforced in a weak manner. The proposed method is shown to be consistent and stable both theoretically and with suitable numerical examples.
by Ram Bala Chandran.
S.M.
Ekström, Sven-Erik. "A vertex-centered discontinuous Galerkin method for flow problems." Licentiate thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284321.
Full textBooks on the topic "Weighted Discontinuous Galerkin method"
Dolejší, Vít, and Miloslav Feistauer. Discontinuous Galerkin Method. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3.
Full textHarold, Atkins, Keyes David, and Langley Research Center, eds. Parallel implementation of the discontinuous Galerkin method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textCockburn, B. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Hampton, VA: ICASE, NASA Langley Research Center, 2000.
Find full textChi-Wang, Shu, and Institute for Computer Applications in Science and Engineering., eds. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Hampton, VA: ICASE, NASA Langley Research Center, 2000.
Find full text1967-, Ern Alexandre, ed. Mathematical aspects of discontinuous galerkin methods. Berlin: Springer, 2012.
Find full textUnited States. National Aeronautics and Space Administration., ed. An HP-adaptive discontinuous Galerkin method for hyperbolic conservation laws. [Austin, Texas]: The University of Texas at Austin ; [Washington, DC, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. An HP-adaptive discontinuous Galerkin method for hyperbolic conservation laws. [Austin, Texas]: The University of Texas at Austin ; [Washington, DC, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. An HP-adaptive discontinuous Galerkin method for hyperbolic conservation laws. [Austin, Texas]: The University of Texas at Austin ; [Washington, DC, 1994.
Find full textLiu, Jianguo. A high order discontinuous Galerkin method for 2D incompressible flows. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textCockburn, B. The Runge-Kutta discontinuous Galerkin method for convection-dominated problems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Find full textBook chapters on the topic "Weighted Discontinuous Galerkin method"
Zunino, Paolo. "Mortar and Discontinuous Galerkin Methods Based on Weighted Interior Penalties." In Lecture Notes in Computational Science and Engineering, 321–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75199-1_38.
Full textDolejší, Vít, and Miloslav Feistauer. "Introduction." In Discontinuous Galerkin Method, 1–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_1.
Full textDolejší, Vít, and Miloslav Feistauer. "Fluid-Structure Interaction." In Discontinuous Galerkin Method, 521–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_10.
Full textDolejší, Vít, and Miloslav Feistauer. "DGM for Elliptic Problems." In Discontinuous Galerkin Method, 27–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_2.
Full textDolejší, Vít, and Miloslav Feistauer. "Methods Based on a Mixed Formulation." In Discontinuous Galerkin Method, 85–115. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_3.
Full textDolejší, Vít, and Miloslav Feistauer. "DGM for Convection-Diffusion Problems." In Discontinuous Galerkin Method, 117–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_4.
Full textDolejší, Vít, and Miloslav Feistauer. "Space-Time Discretization by Multistep Methods." In Discontinuous Galerkin Method, 171–222. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_5.
Full textDolejší, Vít, and Miloslav Feistauer. "Space-Time Discontinuous Galerkin Method." In Discontinuous Galerkin Method, 223–335. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_6.
Full textDolejší, Vít, and Miloslav Feistauer. "Generalization of the DGM." In Discontinuous Galerkin Method, 337–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_7.
Full textDolejší, Vít, and Miloslav Feistauer. "Inviscid Compressible Flow." In Discontinuous Galerkin Method, 401–75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_8.
Full textConference papers on the topic "Weighted Discontinuous Galerkin method"
Xijun, He, Yang Dinghui, and Zhou Yanjie. "A weighted Runge-Kutta discontinuous Galerkin method for wavefield modeling." In SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0579.1.
Full textThompson, Lonny L. "Implementation of Non-Reflecting Boundaries in a Space-Time Finite Element Method for Structural Acoustics." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-3841.
Full textPeyret, Christophe, and Philippe Delorme. "Discontinuous Galerkin Method for Computational Aeroacoustics." In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-2568.
Full textKim, Cheolwan, H. Chang, and Jang Yeon Lee. "Compact Higher-order Discontinuous Galerkin Method." In 11th AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-2824.
Full textLe Bouteiller, P., M. Ben Jemaa, H. Chauris, L. Métivier, B. Tavakoli F., M. Noble, and J. Virieux. "Discontinuous Galerkin Method for TTI Eikonal Equation." In 79th EAGE Conference and Exhibition 2017. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701253.
Full textdas Gupta, Arnob, and Subrata Roy. "Discontinuous Galerkin Method for Solving Magnetohydrodynamic Equations." In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1616.
Full textWukie, Nathan A., Paul D. Orkwis, and Christopher R. Schrock. "A Chimera-based, zonal discontinuous Galerkin method." In 23rd AIAA Computational Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-3947.
Full textHirsch, Charles, Andrey Wolkov, and Benoit Leonard. "Discontinuous Galerkin Method on Unstructured Hexahedral Grids." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-177.
Full textPeyret, Christophe, and Ph Delorme. "hp Discontinuous Galerkin Method for Computational Aeroacoustics." In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-3475.
Full textClément, J. B., F. Golay, M. Ersoy, and D. Sous. "Adaptive Discontinuous Galerkin Method for Richards Equation." In Topical Problems of Fluid Mechanics 2020. Institute of Thermomechanics, AS CR, v.v.i., 2020. http://dx.doi.org/10.14311/tpfm.2020.004.
Full textReports on the topic "Weighted Discontinuous Galerkin method"
Qiu, Jing-Mei, and Chi-Wang Shu. Convergence of High Order Finite Volume Weighted Essentially Non-Oscillatory Scheme and Discontinuous Galerkin Method for Nonconvex Conservation Laws. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada468107.
Full textLin, Guang, and George E. Karniadakis. A Discontinuous Galerkin Method for Two-Temperature Plasmas. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada458981.
Full textShu, Chi-Wang. Final Technical Report: High Order Discontinuous Galerkin Method and Applications. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1499046.
Full textGreene, Patrick T., Samuel P. Schofield, and Robert Nourgaliev. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1260506.
Full textRomkes, A., S. Prudhomme, and J. T. Oden. A Posteriori Error Estimation for a New Stabilized Discontinuous Galerkin Method. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada438102.
Full textNourgaliev, R., H. Luo, S. Schofield, T. Dunn, A. Anderson, B. Weston, and J. Delplanque. Fully-Implicit Orthogonal Reconstructed Discontinuous Petrov-Galerkin Method for Multiphysics Problems. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1178386.
Full textLaeuter, Matthias, Francis X. Giraldo, Doerthe Handorf, and Klaus Dethloff. A Discontinuous Galerkin Method for the Shallow Water Equations in Spherical Triangular Coordinates. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada486030.
Full textBui-Thanh, Tan, and Omar Ghattas. Analysis of an Hp-Non-conforming Discontinuous Galerkin Spectral Element Method for Wave. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada555327.
Full textWang, Wei, Xiantao Li, and Chi-Wang Shu. The Discontinuous Galerkin Method for the Multiscale Modeling of Dynamics of Crystalline Solids. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada472151.
Full textLieberman, Evan, Xiaodong Liu, Nathaniel Ray Morgan, Darby Jon Luscher, and Donald E. Burton. A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics and reactive materials. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1492638.
Full text