Academic literature on the topic 'Weibel-type instabilities'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Weibel-type instabilities.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Weibel-type instabilities":

1

Lazar, M., R. Schlickeiser, R. Wielebinski, and S. Poedts. "COSMOLOGICAL EFFECTS OF WEIBEL-TYPE INSTABILITIES." Astrophysical Journal 693, no. 2 (March 5, 2009): 1133–41. http://dx.doi.org/10.1088/0004-637x/693/2/1133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

SUGIE, M., K. OGAWA, and T. OKADA. "DEVELOPMENT OF ELECTROMAGNETIC WEIBEL-TYPE INSTABILITIES IN ANISOTROPIC PLASMAS." International Journal of Modern Physics B 21, no. 03n04 (February 10, 2007): 637–41. http://dx.doi.org/10.1142/s0217979207042458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lazar, M., R. Schlickeiser, and T. Skoda. "Cosmological magnetic field seeds produced by the Weibel instabilities." Proceedings of the International Astronomical Union 6, S271 (June 2010): 387–88. http://dx.doi.org/10.1017/s1743921311017923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThe source of the cosmological magnetic field is still unknown because the widely invoked dynamo processes are only able to regenerate and amplify some initial magnetic field seeds. In the hot and highly ionized intergalactic matter such magnetic field seeds can easily be produced by the (electro-)magnetic instabilities of Weibel type. Here we discuss suplementary mechanisms that can make these Weibel created fields to evolve at large scales presently observed in galaxies and clusters and can also enhance these magnetic field seeds after the dissipation.
4

Inglebert, A., A. Ghizzo, T. Reveille, D. Del Sarto, P. Bertrand, and F. Califano. "A multi-stream Vlasov modeling unifying relativistic Weibel-type instabilities." EPL (Europhysics Letters) 95, no. 4 (July 28, 2011): 45002. http://dx.doi.org/10.1209/0295-5075/95/45002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LAZAR, M., A. SMOLYAKOV, R. SCHLICKEISER, and P. K. SHUKLA. "A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory." Journal of Plasma Physics 75, no. 1 (February 2009): 19–33. http://dx.doi.org/10.1017/s0022377807007015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractA comparative study of the electromagnetic instabilities in anisotropic unmagnetized plasmas is undertaken. The instabilities considered are the filamentation and Weibel instability, and their cumulative effect. Dispersion relations are derived and the growth rates are plotted systematically for the representative cases of non-relativistic counterstreaming plasmas with isotropic or anisotropic velocity distributions functions of Maxwellian type. The pure filamentation mode is attenuated by including an isotropic Maxwellian distribution function. Moreover, it is observed that counterstreaming plasmas can be fully stabilized by including bi-Maxellian distributions with a negative thermal anisotropy. This effect is relevant for fusion plasma experiments. Otherwise, for plasma streams with a positive anisotropy the filamentation and Weibel instabilities cumulate leading to a growth rate by orders of magnitude larger than that of a simple filamentation mode. This is noticeable for the quasistatic magnetic field generated in astrophysical sources, and which is expected to saturate at higher values and explain the non-thermal emission observed.
6

Skoutnev, V., A. Hakim, J. Juno, and J. M. TenBarge. "Temperature-dependent Saturation of Weibel-type Instabilities in Counter-streaming Plasmas." Astrophysical Journal 872, no. 2 (February 21, 2019): L28. http://dx.doi.org/10.3847/2041-8213/ab0556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sarrat, M., D. Del Sarto, and A. Ghizzo. "Fluid description of Weibel-type instabilities via full pressure tensor dynamics." EPL (Europhysics Letters) 115, no. 4 (August 1, 2016): 45001. http://dx.doi.org/10.1209/0295-5075/115/45001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

STOCKEM, A., M. LAZAR, P. K. SHUKLA, and A. SMOLYAKOV. "A comparative study of the filamentation and Weibel instabilities and their cumulative effect. II. Weakly relativistic beams." Journal of Plasma Physics 75, no. 4 (August 2009): 529–43. http://dx.doi.org/10.1017/s002237780800768x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractCounterstreaming plasma systems with intrinsic temperature anisotropies are unstable against the excitation of Weibel-type instabilities, namely, filamentation and Weibel instabilities, and their cumulative effect. Here, the analysis is extended to counterstreaming plasmas with weakly relativistic bulk velocities, while the thermal velocities are still considered to be non-relativistic. Such plasma systems are relevant for fusion plasma experiments and the more violent astrophysical phenomena, such as jets in gamma-ray burst sources. Simple analytical forms of the dispersion relations are derived in the limit of a small transverse temperature or a large temperature anisotropy of the beams. The aperiodic growing solutions are plotted systematically for the representative cases chosen in Paper I (Lazar et al. 2009 J. Plasma Phys. 75, in press). In the limit of slow non-relativistic plasma flows, the numerical solutions fit well with those obtained in Paper I, but for weakly relativistic streams an important deviation is found.
9

OKADA, T., I. SAJIKI, and K. SATOU. "Weibel instability by ultraintense laser pulses." Laser and Particle Beams 17, no. 3 (July 1999): 515–18. http://dx.doi.org/10.1017/s0263034699173191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Particle-in-cell (PIC) simulations show that an anisotropic electron velocity distribution is demonstrated by ultraintense laser pulses in underdense plasmas. Recently, it is reported that the anisotropy has been experimentally demonstrated in laser-produced plasmas. It is also pointed out that gigagauss magnetic fields are generated by ultraintense laser pulses. We have already published that the Weibel-type electromagnetic instabilities can be theoretically excited by electrons in a velocity distribution with anisotropic temperature. If these electromagnetic waves are excited, the target may have a possibility not only to give rise to a new type of energy loss mechanism but also to influence the implosion characteristics. In this work, we present PIC simulation of the interaction of ultraintense laser pulses with plasmas. Intense self-generated magnetic fields is produced by the mechanism of Weibel instability in underdense plasmas.
10

Inglebert, A., A. Ghizzo, T. Reveille, D. Del Sarto, P. Bertrand, and F. Califano. "Multi-stream Vlasov model for the study of relativistic Weibel-type instabilities." Plasma Physics and Controlled Fusion 54, no. 8 (May 30, 2012): 085004. http://dx.doi.org/10.1088/0741-3335/54/8/085004.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Weibel-type instabilities":

1

Sarrat, Mathieu. "Physique des instabilités de type Weibel." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0162/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les instabilités de type Weibel naissent si la distribution des vitesses du plasma présente une anisotropie. Elles entraînent la génération d’un champ magnétique dû à la formation de filaments de courant ainsi qu’une activité électrostatique importante. Ces phénomènes de base apparaissent dans de nombreuses situations, naturelles (vent solaire, jets relativistes) ou expérimentales (interaction laser-plasma) : les plasmas dans lesquels ils naissent peuvent être relativistes ou non, magnétisés ou non, collisionnels ou non, ce qui pose la question du choix du modèle à utiliser pour les décrire. La théorie cinétique est le cadre le plus complexe dans lequel nous travaillerons. De par sa complexité, il est intéressant de développer des modèles réduits. Un premier travail mené au cours de cette thèse est l’utilisation d’un modèle fluide incluant la dynamique du tenseur de pression pour modéliser la phase linéaire des instabilités de type Weibel. On discute le rôle essentiel joué par les composantes hors diagonale du tenseur dans la génération du champ magnétique, puis la capacité du modèle à reproduire quantitativement ou qualitativement les résultats cinétiques en introduisant la notion de limite hydrodynamique. La seconde partie de la thèse est ciblée sur le développement du code semi-lagrangien relativiste VLEM utilisant une méthode de décomposition de domaine : on présente les principales méthodes mathématiques utilisées dans le code, puis on aborde la problématique de la conservation de la charge à laquelle on apporte une réponse reposant sur une adaptation de la méthode d’Esirkepov. Le code est enfin validé grâce à plusieurs simulations d’instabilités de type Weibel
Weibel-type instabilities occurs when the velocity distribution function of the charged particles displays a pronounced anisotropy. A long-lasting magnetic field is generated due to the formation of current filaments, and it is accompanied by an important electrostatic activity. These ``basic’’ phenomena have been greatly investigated because of their involvement in many physical problems, natural (solar wind, relativistic jets) or experimental (laser-plasma interaction) : they occurs in plasmas which can be collisional or not, magnetised or not, relativistic or not. One needs to choose a suitable model for their description. The kinetic theory is the most complete and somewhat complex theoretical framework which we will consider. Due to its complexity, it may be interesting to develop reduced models. The first work realised during this thesis is the utilisation of a non-relativistic fluid description, including the dynamics of the pressure tensor, in order to model the linear Weibel-type instabilities. We put in evidence the effect of the non-diagonal components of the tensor on the magnetic field generation. We discuss the ability of the model to reproduce quantitatively or qualitatively the kinetic results by introducing the hydrodynamics limit. The second part of this thesis work is dedicated to the development of the relativistic semi-lagrangian code VLEM, using a domain decomposition scheme : we present the main mathematical tools used in the code, then we deal with the problem of the charge conservation and propose a solution for VLEM, based on an adaptation of the Esirkepov method. Finally, we validate the code through simulations of Weibel-type
2

Betar, Homam. "Kinetic Effects in Magnetic Reconnection." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les plasmas sont des systèmes gazeux d'ions et d'électrons qui interagissent avec les champs électromagnétiques et affichent des propriétés collectives. Parmi ceux-ci, il y a la notion de "connexion" de lignes magnétiques. Ceci exprime le fait que, dans des régimes dans lesquels les particules chargées s'enroulent suffisamment vite le long des lignes d'induction magnétique, ces dernières sont liées au mouvement du plasma massif et acquièrent une identité topologique qui leur interdit de se rompre, se croiser et se reconnecter. Cette identité topologique peut cependant être localement violée grâce à un certain nombre d'effets cinétiques, comme les collisions entre les particules, lorsque les courants dans le plasma sont suffisamment intenses : on parle de “reconnexion magnétique”. La reconnexion magnétique est un ingrédient important de l'auto-organisation du plasma et a une importance pour les plasmas spatiaux et de laboratoire, car elle est à la base de phénomènes naturels comme les éruptions solaires et les aurores polaires, ou de processus disruptifs dans les expériences de fusion thermonucléaire. Un problème de longue date dans l'étude des plasmas de laboratoire et astrophysiques est de comprendre les mécanismes d'accélération des électrons et des ions, lorsqu’un champ magnétique se reconnecte et libère de l'énergie. Dans ce travail, nous avons étudié les effets cinétiques sur les instabilités de reconnexion se développant spontanément dans les nappes de courant statique (modes de déchirement) et en combinaison avec une classe d'instabilités cinétiques (instabilités de Weibel) qui sont pertinentes à la fois pour les jets de plasma astrophysiques et pour les expériences d'interaction laser-plasma. Nous avons effectué cette étude en utilisant des modèles fluides réduits et cinétiques, et nous avons étudié la concurrence entre les modes de type déchirement et les instabilités de type Weibel au moyen de simulations cinétiques complètes avec codes semi-lagrangiennes Vlasov-Maxwell et de type “Particle-In-Cell“
Plasmas are gaseous systems of ions and electrons which interact via electromagnetic fields and display collective properties. Among these, is the notion of the magnetic line "connection". This expresses the fact that, in regimes in which charged particles spiral sufficiently fast along lines of magnetic induction, the latter is linked to the bulk plasma motion and acquire a topological identity which forbids them to break, intersect and reconnect. This topological identity, however, can be locally violated thanks to a number of kinetic effects, such as particle collisions, when the currents in the plasma are sufficiently intense: one speaks of "magnetic reconnection". Magnetic reconnection is an important ingredient of the plasma self-organization and has significance for both space and laboratory plasmas since it is at the basis of natural phenomena like solar flares and polar lights, or of disruptive processes in thermonuclear fusion experiments. A long-standing problem in the study of laboratory and astrophysical plasmas is to understand the mechanisms of acceleration of electrons and ions, as a magnetic field reconnect and release energy. In this work, we studied kinetic effects on reconnection instabilities developing spontaneously in static current sheets (tearing modes) and in combination with a class of kinetic instabilities (Weibel instabilities) that are relevant both to astrophysical plasma jets and to laser-plasma interaction experiments. We performed this study using reduced-fluid and kinetic models and we investigated the competition between tearing-type modes and Weibel-type instabilities by means of both semi-lagrangian full kinetic Vlasov-Maxwell simulations and particles in cell simulations
3

Inglebert, Aurélie. "Modèle Vlasov-Maxwell pour l'étude des instabilités de type Weibel." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0149/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'origine de champs magnétiques observés dans les plasmas de laboratoire et d'astrophysique est l'un des problèmes récurrents en physique des plasmas. À cet égard, les instabilités de type Weibel sont considérées d'une grande importance. Ces instabilités ont pour origine une anisotropie de température (instabilité de Weibel) et des moments des électrons (instabilité de filamentation de courant). L'objectif principal de cette thèse est l'étude théorique et numérique de ces instabilités dans un plasma non collisionnel en régime relativiste. Le premier aspect de ce travail est l'étude du régime non-linéaire de ces instabilités et du rôle des effets cinétiques et relativistes sur la structure des champs électromagnétiques auto-cohérents. Dans ce cadre, un problème essentiel pour les applications et la théorie, concerne l'identification et l'analyse des structures cohérentes développées spontanément dans le régime non-linéaire sur des échelles cinétiques. Un deuxième aspect du travail est le développement de techniques analytiques et numériques pour l'étude des plasmas non collisionnels. Le modèle mathématique de référence, à la base des études des plasmas chauds, est le modèle Vlasov-Maxwell, où l'équation de Vlasov (théorie des champs moyens) est couplée aux équations de Maxwell de façon auto-cohérente. Un modèle unidimensionnel, le modèle multi-faisceaux, a également été introduit durant cette thèse. Basé sur une technique de réduction en dimension, il est à la fois un modèle analytique "simple" présentant l'avantage de pouvoir résoudre une équation de Vlasov 1D pour chaque faisceau de particules, et un modèle numérique moins coûteux qu'un modèle complet
The origin of magnetic fields observed in laboratory and astrophysical plasmas is one ofthe most challenging problems in plasma physics. In this respect, the Weibel type instabilities are considered of key importance. These instabilities are caused by a temperature anisotropy (Weibel instability) and electron momentum (current filamentation instability). The main objective of this thesis is the theoretical and numerical study of these instabilities in a collisionless plasma in the relativistic regime. The first aspect of this work is to study the nonlinear regime of these instabilities and the role of kinetic and relativistic effects on the structure of self-consistent electromagnetic fields. In this context, a key problem for the theory and applications, is the identification and analysis of coherent structures developed spontaneously in the nonlinear regime of kinetic scales. A second aspect of the work is the development of analytical and numerical techniques for the study of collisionless plasmas. A mathematical model of reference is the Vlasov-Maxwell model, where the Vlasov equation (mean field theory) is coupled to the Maxwell equations in a self-consistent way. A one-dimensional model, the multi-stream model, is also introduced. Based on a dimensional reduction technique, it is both an analytical model "simple" having the advantage of being able to solve a 1D Vlasov equation for each particle beam, and a numerical model less expensive than a complete model
4

Tsai, Hsiang-Ming, and 蔡翔名. "A Preliminary Research on Alternative Lightwave Amplification Using Weibel-type Instabilities." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/6tszqg.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立虎尾科技大學
光電與材料科技研究所
99
Even though the field of EM wave amplification for microwaves has been rather mature and enjoying many available technologies, amplifying a lightwave already left the laser resonant cavity can be a tough problem with very little choice. Long before erbium-doped optic fiber amplifier (EDFA) has become a reality and mass produced, other lightwave amplification schemes have been considered, even realized, and tested. Among them, the most noticed are the Stimulated Raman Scattering (SRS) and the Stimulated Brillouin Scattering (SBS). Comparing with the EDFA, a major difference in them both is that in their lightwave amplification mechanisms, no atomic (molecular) energy levels are involved, and only pure plasma physics processes are relevant. However, up to this day, it has been concluded that both the SBS and SRS amplification effects are so much weaker than the gain that stimulated emission provides in a doped-fiber amplifier that Raman and Brillouin amplifiers tend to involve very long distances and very high pump powers. On the other hand, since the EDFA amplification approach is entirely limited by quantum transition physics among energy levels, even though it may at best provide 980 nm and 1490 nm spectrum intervals for communication purposes, overall, it fails to give a real wide-band, flat-top working spectrum. Furthermore, apparently EDFA can only amplify lightwaves guided by optic fibers, not those flying in the open space and of arbitrary wavelengths and amplitudes. Nevertheless, mankind in fact has been longing for a lightwave-enhancing technology that is essentially unrestricted by available atomic energy levels, and at the same time can be applied on lights propagating in free space or within optic fibers. In man-made plasma sources, and in fusion experimental machines (such as the Tokamak), we often witness the working of a plasma instability called Weibel EM instability. However, in these cases, Weibel instability is an undesirable path for system energy loss. In natural environments, Weibel instability also plays a major role in causing gamma ray bursts observed by satellites. Here, we intend to direct the application of Weibel instability to a new direction, viz., amplifying essentially lightwaves of arbitrary wavelengths and amplitudes in either open or fiber-confined space, in a fashion more like the aforementioned SRS and SBS. The approach adopted is using controlled “plasma”, in the form of vertically (with respect to the incident light) oscillating electrons, to trigger the Weibel instability to further cause exponential growth of the incident lightwave amplitude. This current research mainly aims to test the feasibility of such lightwave Weibel amplification theory as a preliminary step toward the ultimate goal of air-borne lightwave amplification.

Conference papers on the topic "Weibel-type instabilities":

1

Satou, Kazuhito, and Toshio Okada. "PIC code simulation and theoretical analysis on generation of Weibel-type instabilities." In Laser interaction and related plasma phenomena: 12th international conference. AIP, 1996. http://dx.doi.org/10.1063/1.50471.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography