Academic literature on the topic 'WEB USAGE DATA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'WEB USAGE DATA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "WEB USAGE DATA"
Thakur, Bhawesh Kumar, Syed Qamar Abbas, and Mohd Rizwan Beg. "Web Personalization Using Clustering of Web Usage Data." International Journal in Foundations of Computer Science & Technology 4, no. 5 (September 30, 2014): 69–84. http://dx.doi.org/10.5121/ijfcst.2014.4507.
Full textGarcia, Jorge Esparteiro, and Ana C. R. Paiva. "Maintaining Requirements Using Web Usage Data." Procedia Computer Science 100 (2016): 626–33. http://dx.doi.org/10.1016/j.procs.2016.09.204.
Full textPatel, Ketul, and Dr A. R. Patel. "Process of Web Usage Mining to find Interesting Patterns from Web Usage Data." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 3, no. 1 (August 1, 2012): 144–48. http://dx.doi.org/10.24297/ijct.v3i1c.2767.
Full textJarukasemratana, Sorn, and Tsuyoshi Murata. "Web Caching Replacement Algorithm Based on Web Usage Data." New Generation Computing 31, no. 4 (October 2013): 311–29. http://dx.doi.org/10.1007/s00354-013-0404-z.
Full textMalik, Varun, Vikas Rattan, Jaiteg Singh, Ruchi Mittal, and Urvashi Tandon. "Performance Comparison of Data Mining Classifiers on Web Log Data." Journal of Computational and Theoretical Nanoscience 17, no. 11 (November 1, 2020): 5113–16. http://dx.doi.org/10.1166/jctn.2020.9349.
Full textPADMAKUMAR, SUJATHA, Dr PUNITHAVALLI Dr.PUNITHAVALLI, and Dr RANJITH Dr.RANJITH. "A Web Usage Mining Approach to User Navigation Pattern and Prediction in Web Log Data." International Journal of Scientific Research 3, no. 4 (June 1, 2012): 92–94. http://dx.doi.org/10.15373/22778179/apr2014/34.
Full textThiyagarajan, V. S. "Web Data mining-A Research area in Web usage mining." IOSR Journal of Computer Engineering 13, no. 1 (2013): 22–26. http://dx.doi.org/10.9790/0661-1312226.
Full textSandhyarani, Ramancha. "Construction of Community Web Directories based on Web usage Data." Advanced Computing: An International Journal 3, no. 2 (March 31, 2012): 41–48. http://dx.doi.org/10.5121/acij.2012.3205.
Full textPierrakos, Dimitrios, and George Paliouras. "Personalizing Web Directories with the Aid of Web Usage Data." IEEE Transactions on Knowledge and Data Engineering 22, no. 9 (September 2010): 1331–44. http://dx.doi.org/10.1109/tkde.2009.173.
Full textBirukou, Aliaksandr, Enrico Blanzieri, Vincenzo DAndrea, Paolo Giorgini, and Natallia Kokash. "Improving Web Service Discovery with Usage Data." IEEE Software 24, no. 6 (November 2007): 47–54. http://dx.doi.org/10.1109/ms.2007.169.
Full textDissertations / Theses on the topic "WEB USAGE DATA"
Winblad, Emanuel. "Visualization of web site visit and usage data." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110576.
Full textKhalil, Faten. "Combining web data mining techniques for web page access prediction." University of Southern Queensland, Faculty of Sciences, 2008. http://eprints.usq.edu.au/archive/00004341/.
Full textBayir, Murat Ali. "A New Reactive Method For Processing Web Usage Data." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12607323/index.pdf.
Full textSmart-SRA'
is introduced. Web usage mining is a type of web mining, which exploits data mining techniques to discover valuable information from navigations of Web users. As in classical data mining, data processing and pattern discovery are the main issues in web usage mining. The first phase of the web usage mining is the data processing phase including session reconstruction. Session reconstruction is the most important task of web usage mining since it directly affects the quality of the extracted frequent patterns at the final step, significantly. Session reconstruction methods can be classified into two categories, namely '
reactive'
and '
proactive'
with respect to the data source and the data processing time. If the user requests are processed after the server handles them, this technique is called as &lsquo
reactive&rsquo
, while in &lsquo
proactive&rsquo
strategies this processing occurs during the interactive browsing of the web site. Smart-SRA is a reactive session reconstruction techique, which uses web log data and the site topology. In order to compare Smart-SRA with previous reactive methods, a web agent simulator has been developed. Our agent simulator models behavior of web users and generates web user navigations as well as the log data kept by the web server. In this way, the actual user sessions will be known and the successes of different techniques can be compared. In this thesis, it is shown that the sessions generated by Smart-SRA are more accurate than the sessions constructed by previous heuristics.
Wu, Hao-cun, and 吳浩存. "A multidimensional data model for monitoring web usage and optimizing website topology." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29528215.
Full textWang, Long. "X-tracking the usage interest on web sites." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5107/.
Full textWegen des exponentiellen Ansteigens der Anzahl an Internet-Nutzern und Websites ist das WWW (World Wide Web) die wichtigste globale Informationsressource geworden. Das Web bietet verschiedene Dienste (z. B. Informationsveröffentlichung, Electronic Commerce, Entertainment oder Social Networking) zum kostengünstigen und effizienten erlaubten Zugriff an, die von Einzelpersonen und Institutionen zur Verfügung gestellt werden. Um solche Dienste anzubieten, werden weltweite, vereinzelte Websites als Basiseinheiten definiert. Aber die extreme Fragilität der Web-Services und -inhalte, die hohe Kompetenz zwischen ähnlichen Diensten für verschiedene Sites bzw. die breite geographische Verteilung der Web-Nutzer treiben einen dringenden Bedarf für Web-Manager und das Verfolgen und Verstehen der Nutzungsinteresse ihrer Web-Kunden. Die Arbeit zielt darauf ab, dass die Anforderung "X-tracking the Usage Interest on Web Sites" erfüllt wird. "X" hat zwei Bedeutungen. Die erste Bedeutung ist, dass das Nutzungsinteresse von verschiedenen Websites sich unterscheidet. Außerdem stellt die zweite Bedeutung dar, dass das Nutzungsinteresse durch verschiedene Aspekte (interne und externe, strukturelle und konzeptionelle) beschrieben wird. Tracking zeigt, dass die Änderungen zwischen Nutzungsmustern festgelegt und gemessen werden. Die Arbeit eine Methodologie dar, um das Nutzungsinteresse gekoppelt an drei Arten von Websites (Public Informationsportal-Website, E-Learning-Website und Social-Website) zu finden. Wir konzentrieren uns auf unterschiedliche Themen im Bezug auf verschieden Sites, die mit Usage-Interest-Mining eng verbunden werden. Education Informationsportal-Website ist das erste Implementierungsscenario für Web-Usage-Mining. Durch das Scenario können Nutzungsmuster gefunden und die Organisation von Web-Services optimiert werden. In solchen Fällen wird das Nutzungsmuster als häufige Pagemenge, Navigation-Wege, -Strukturen oder -Graphen modelliert. Eine notwendige Voraussetzung ist jedoch, dass man individuelle Verhaltensmuster aus dem Verlauf der Nutzung (Usage History) wieder aufbauen muss. Deshalb geben wir in dieser Arbeit eine systematische Studie zum Nachempfinden der individuellen Verhaltensweisen. Außerdem zeigt die Arbeit eine neue Strategie, dass auf Page-Paaren basierten Content-Clustering aus Nutzungssite aufgebaut werden. Der Unterschied zwischen solchen Clustern und der originalen Webstruktur ist der Abstand zwischen Zielen der Nutzungssite und Erwartungen der Designsite. Darüber hinaus erforschen wir Probleme beim Tracking der Änderungen von Nutzungsmustern in ihrem Lebenszyklus. Die Änderungen werden durch mehrere Aspekte beschrieben. Für internen Aspekt werden konzeptionelle Strukturen und Funktionen integriert. Der externe Aspekt beschreibt physische Eigenschaften. Für lokalen Aspekt wird die Differenz zwischen zwei Zeitspannen gemessen. Der globale Aspekt zeigt Tendenzen der Änderung entlang des Lebenszyklus. Eine Plattform "Web-Cares" wird entwickelt, die die Nutzungsinteressen findet, Unterschiede zwischen Nutzungsinteresse und Website messen bzw. die Änderungen von Nutzungsmustern verfolgen kann. E-Learning-Websites bieten Lernmaterialien wie z.B. Folien, erfaßte Video-Vorlesungen und Übungsblätter an. Wir konzentrieren uns auf die Erfoschung des Lerninteresses auf Streaming-Vorlesungen z.B. Real-Media, mp4 und Flash-Clips. Im Vergleich zum Informationsportal Website kapselt die Nutzung auf Streaming-Vorlesungen die Variablen wie Schauzeit und Schautätigkeiten während der Lernprozesse. Das Lerninteresse wird erfasst, wenn wir Antworten zu sechs Fragen gehandelt haben. Diese Fragen umfassen verschiedene Themen, wie Erforschung der Relation zwischen Teilen von Lehrveranstaltungen oder die Präferenz zwischen den verschiedenen Formen der Lehrveranstaltungen. Wir bevorzugen die Aufdeckung der Veränderungen des Lerninteresses anhand der gleichen Kurse aus verschiedenen Semestern. Der Differenz auf den Inhalt und die Struktur zwischen zwei Kurse beeinflusst die Änderungen auf das Lerninteresse. Ein Algorithmus misst die Differenz des Lerninteresses im Bezug auf einen Ähnlichkeitsvergleich zwischen den Kursen. Die Suchmaschine „Task-Moniminer“ wird entwickelt, dass die Lehrkräfte das Lerninteresse für ihre Streaming-Vorlesungen über das Videoportal tele-TASK abrufen können. Social Websites dienen als eine Online-Community, in den teilnehmenden Web-Benutzern die gemeinsamen Themen diskutieren und ihre interessanten Informationen miteinander teilen. Im Vergleich zur Public Informationsportal-Website und E-Learning Website bietet diese Art von Website reichhaltige Interaktionen zwischen Benutzern und Inhalten an, die die breitere Auswahl der inhaltlichen Qualität bringen. Allerdings bietet eine Social-Website mehr Möglichkeiten zur Modellierung des Nutzungsinteresses an. Wir schlagen ein Rahmensystem vor, die hohe Reputation für Artikel in eine Social-Website empfiehlt. Unsere Beobachtungen sind, dass die Reputation in globalen und lokalen Kategorien klassifiziert wird. Außerdem wird die Qualität von Artikeln mit hoher Reputation mit den Content-Funktionen in Zusammenhang stehen. Durch die folgenden Schritte wird das Rahmensystem im Bezug auf die Überwachungen implementiert. Der erste Schritt ist, dass man die Artikel mit globalen oder lokalen Reputation findet. Danach werden Artikel im Bezug auf ihre Content-Relationen in jeder Kategorie gesammelt. Zum Schluß werden die ausgewählten Artikel aus jedem basierend auf ihren Reputation-Ranking Cluster empfohlen.
Norguet, Jean-Pierre. "Semantic analysis in web usage mining." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210890.
Full textIndeed, according to organizations theory, the higher levels in the organizations need summarized and conceptual information to take fast, high-level, and effective decisions. For Web sites, these levels include the organization managers and the Web site chief editors. At these levels, the results produced by Web analytics tools are mostly useless. Indeed, most of these results target Web designers and Web developers. Summary reports like the number of visitors and the number of page views can be of some interest to the organization manager but these results are poor. Finally, page-group and directory hits give the Web site chief editor conceptual results, but these are limited by several problems like page synonymy (several pages contain the same topic), page polysemy (a page contains several topics), page temporality, and page volatility.
Web usage mining research projects on their part have mostly left aside Web analytics and its limitations and have focused on other research paths. Examples of these paths are usage pattern analysis, personalization, system improvement, site structure modification, marketing business intelligence, and usage characterization. A potential contribution to Web analytics can be found in research about reverse clustering analysis, a technique based on self-organizing feature maps. This technique integrates Web usage mining and Web content mining in order to rank the Web site pages according to an original popularity score. However, the algorithm is not scalable and does not answer the page-polysemy, page-synonymy, page-temporality, and page-volatility problems. As a consequence, these approaches fail at delivering summarized and conceptual results.
An interesting attempt to obtain such results has been the Information Scent algorithm, which produces a list of term vectors representing the visitors' needs. These vectors provide a semantic representation of the visitors' needs and can be easily interpreted. Unfortunately, the results suffer from term polysemy and term synonymy, are visit-centric rather than site-centric, and are not scalable to produce. Finally, according to a recent survey, no Web usage mining research project has proposed a satisfying solution to provide site-wide summarized and conceptual audience metrics.
In this dissertation, we present our solution to answer the need for summarized and conceptual audience metrics in Web analytics. We first described several methods for mining the Web pages output by Web servers. These methods include content journaling, script parsing, server monitoring, network monitoring, and client-side mining. These techniques can be used alone or in combination to mine the Web pages output by any Web site. Then, the occurrences of taxonomy terms in these pages can be aggregated to provide concept-based audience metrics. To evaluate the results, we implement a prototype and run a number of test cases with real Web sites.
According to the first experiments with our prototype and SQL Server OLAP Analysis Service, concept-based metrics prove extremely summarized and much more intuitive than page-based metrics. As a consequence, concept-based metrics can be exploited at higher levels in the organization. For example, organization managers can redefine the organization strategy according to the visitors' interests. Concept-based metrics also give an intuitive view of the messages delivered through the Web site and allow to adapt the Web site communication to the organization objectives. The Web site chief editor on his part can interpret the metrics to redefine the publishing orders and redefine the sub-editors' writing tasks. As decisions at higher levels in the organization should be more effective, concept-based metrics should significantly contribute to Web usage mining and Web analytics.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Luczak-Rösch, Markus [Verfasser]. "Usage-dependent maintenance of structured Web data sets / Markus Luczak-Rösch." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1068253827/34.
Full textVollino, Bruno Winiemko. "Descoberta de perfis de uso de web services." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/83669.
Full textDuring the life cycle of a web service, several changes are made in its interface, which possibly are incompatible with regard to current usage and may break client applications. Providers must make decisions about changes on their services, most often without insight on the effect these changes will have over their customers. Existing research and tools fail to input provider with proper knowledge about the actual usage of the service interface’s features, considering the distinct types of customers, making it impossible to assess the actual impact of changes. This work presents a framework for the discovery of web service usage profiles, which constitute a descriptive model of the usage patterns found in distinct groups of clients, concerning the usage of service interface features. The framework supports a user in the process of knowledge discovery over service usage data through semi-automatic and configurable tasks, which assist the preparation and analysis of usage data with the minimum user intervention possible. The framework performs the monitoring of web services interactions, loads pre-processed usage data into a unified database, and supports the generation of usage profiles. Data mining techniques are used to group clients according to their usage patterns of features, and these groups are used to build service usage profiles. The entire process is configured via parameters, which allows the user to determine the level of detail of the usage information included in the profiles, and the criteria for evaluating the similarity between client applications. The proposal is validated through experiments with synthetic data, simulated according to features expected in the use of a real service. The experimental results demonstrate that the proposed framework allows the discovery of useful service usage profiles, and provide evidences about the proper parameterization of the framework.
Özakar, Belgin Püskülcü Halis. "Finding And Evaluating Patterns In Wes Repository Using Database Technology And Data Mining Algorithms/." [s.l.]: [s.n.], 2002. http://library.iyte.edu.tr/tezler/master/bilgisayaryazilimi/T000130.pdf.
Full textKarlsson, Sophie. "Datainsamling med Web Usage Mining : Lagringsstrategier för loggning av serverdata." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9467.
Full textWeb applications complexity and the amount of advanced services increases. Logging activities can increase the understanding of users behavior and needs, but is used too much without relevant information. More advanced systems brings increased requirements for performance and logging becomes even more demanding for the systems. There is need of smarter systems, development within the techniques for performance improvements and techniques for data collection. This work will investigate how response times are affected when logging server data, according to the data collection phase in web usage mining, depending on storage strategies. The hypothesis is that logging may degrade response times even further. An experiment was conducted in which four different storage strategies are used to store server data with different table- and database structures, to see which strategy affects the response times least. The experiment proves statistically significant difference between the storage strategies with ANOVA. Storage strategy 4 proves the best effect for the performance average response time compared with storage strategy 2, which proves the most negative effect for the average response time. Future work would be interesting for strengthening the results.
Books on the topic "WEB USAGE DATA"
Web data mining: Exploring hyperlinks, contents, and usage data. 2nd ed. Heidelberg: Springer, 2011.
Find full textauthor, Roghani Ali, ed. Big data analytics for beginners. [India]: Crux Tech Limited, 2014.
Find full textTaniar, David, and Lukman Hakim Iwan. Exploring advances in interdisciplinary data mining and analytics: New trends. Hershey, PA: Information Science Reference, 2012.
Find full textZaïane, Osmar R., Jaideep Srivastava, Myra Spiliopoulou, and Brij Masand, eds. WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/b11784.
Full textDēta mainingu to shūgōchi: Kiso kara web, sōsharu media made = Data mining and collective intelligence from basics to web and social media. Tōkyō: Kyōritsu Shuppan, 2012.
Find full textDevelopments in data extraction, management, and analysis. Hershey, PA: Information Science Reference, 2012.
Find full textAbraham, Kandel, ed. Search engines, link analysis, and user's Web behavior: [a unifying Web mining approach]. Berlin: Springer, 2008.
Find full textservice), ScienceDirect (Online, ed. Cult of analytics: Driving online marketing strategies using Web analytics. Amsterdam: Elsevier/Butterworth-Heinemann, 2009.
Find full textUnderstanding user-Web interactions via Web analytics. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool Publishers, 2009.
Find full textAdvanced Web metrics with Google Analytics. 2nd ed. Indianapolis, Ind: Wiley, 2010.
Find full textBook chapters on the topic "WEB USAGE DATA"
Liu, Bing, Bamshad Mobasher, and Olfa Nasraoui. "Web Usage Mining." In Web Data Mining, 527–603. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19460-3_12.
Full textGanibardi, Amine, and Chérif Arab Ali. "Web Usage Data Cleaning." In Big Data Analytics and Knowledge Discovery, 193–203. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98539-8_15.
Full textda Silva, Alzennyr, Yves Lechevallier, Fabrice Rossi, and Francisco de Carvalho. "Clustering Dynamic Web Usage Data." In Innovative Applications in Data Mining, 71–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88045-5_4.
Full textL’Huillier, Gaston, and Juan D. Velásquez. "Web Usage Data Pre-processing." In Advanced Techniques in Web Intelligence-2, 11–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33326-2_2.
Full textTan, Pang-Ning, and Vipin Kumar. "Discovery of Indirect Associations from Web Usage Data." In Web Intelligence, 128–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05320-1_7.
Full textLu, Lin, Margaret Dunham, and Yu Meng. "Mining Significant Usage Patterns from Clickstream Data." In Advances in Web Mining and Web Usage Analysis, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11891321_1.
Full textRossi, Fabrice, Francisco De Carvalho, Yves Lechevallier, and Alzennyr Da Silva. "Dissimilarities for Web Usage Mining." In Studies in Classification, Data Analysis, and Knowledge Organization, 39–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34416-0_5.
Full textZaïane, Osmar R., Jiyang Chen, and Randy Goebel. "Mining Research Communities in Bibliographical Data." In Advances in Web Mining and Web Usage Analysis, 59–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00528-2_4.
Full textLi, Xiang-ying. "Data Preprocessing in Web Usage Mining." In The 19th International Conference on Industrial Engineering and Engineering Management, 257–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38391-5_27.
Full textGrčar, Miha, Dunja Mladenič, Blaž Fortuna, and Marko Grobelnik. "Data Sparsity Issues in the Collaborative Filtering Framework." In Advances in Web Mining and Web Usage Analysis, 58–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11891321_4.
Full textConference papers on the topic "WEB USAGE DATA"
Madiraju, Praveen, and Yanqing Zhang. "Web usage data mining agent." In AeroSense 2002, edited by Belur V. Dasarathy. SPIE, 2002. http://dx.doi.org/10.1117/12.460231.
Full textMehra, Jayanti. "Web Personalization Using Web Session for Web Usage Mining." In 2020 2nd International Conference on Data, Engineering and Applications (IDEA). IEEE, 2020. http://dx.doi.org/10.1109/idea49133.2020.9170665.
Full textBaeza-Yates, Ricardo, and Yoelle Maarek. "(Big) usage data in web search." In the 35th international ACM SIGIR conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2348283.2348531.
Full textBaeza-Yates, Ricardo, and Yoelle Maarek. "(big) usage data in web search." In the sixth ACM international conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2433396.2433501.
Full textSudheer Reddy, K., G. Partha Saradhi Varma, and S. Sai Satyanarayana Reddy. "Understanding the scope of web usage mining & applications of web data usage patterns." In 2012 International Conference on Computing, Communication and Applications (ICCCA). IEEE, 2012. http://dx.doi.org/10.1109/iccca.2012.6179230.
Full textKumari, Prachi, Alexander Pretschner, Jonas Peschla, and Jens-Michael Kuhn. "Distributed data usage control for web applications." In the first ACM conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1943513.1943526.
Full textRAJU, G. T., P. S. SATHYANARAYANA, and L. M. PATNAK. "KNOWLEDGE DISCOVERY FROM WEB USAGE DATA: SURVEY." In Proceedings of the 3rd Asian Applied Computing Conference. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2007. http://dx.doi.org/10.1142/9781860948534_0026.
Full textSuter, Philippe, and Erik Wittern. "Inferring Web API Descriptions from Usage Data." In 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb). IEEE, 2015. http://dx.doi.org/10.1109/hotweb.2015.19.
Full textDhandi, Monika, and Rajesh Kumar Chakrawarti. "A comprehensive study of web usage mining." In 2016 Symposium on Colossal Data Analysis and Networking (CDAN). IEEE, 2016. http://dx.doi.org/10.1109/cdan.2016.7570889.
Full textChaudhary, Kamika, and Santosh Kumar Gupta. "Prioritizing web links based on web usage and content data." In 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). IEEE, 2014. http://dx.doi.org/10.1109/icicict.2014.6781340.
Full textReports on the topic "WEB USAGE DATA"
McDougall, Robert, and Nico van Leeuwen. International MariBunkers: An Attempt to Assign its Usage to the Right Countries. GTAP Research Memoranda, September 2010. http://dx.doi.org/10.21642/gtap.rm20.
Full textEmery, Benjamin. National Sediment Placement Data Viewer users guide. Engineer Research and Development Center (U.S.), July 2022. http://dx.doi.org/10.21079/11681/44700.
Full textBoone, Jonathan, Bobby Sells, Matthew Davis, and Dan McDonald. Alternative analysis for construction progress data spatial visualization. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42166.
Full textElko, Nicole, Katherine Brutsché, Quin Robertson, Michael Hartman, and Zhifei Dong. USACE Navigation Sediment Placement : An RSM Program Database (1998 – 2019). Engineer Research and Development Center (U.S.), July 2022. http://dx.doi.org/10.21079/11681/44703.
Full textKraushaar, Judith, and Sabine Bohnet-Joschko. Prevalence and patterns of mobile device usage among physicians in clinical practice: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0087.
Full textHlushak, Oksana M., Svetlana O. Semenyaka, Volodymyr V. Proshkin, Stanislav V. Sapozhnykov, and Oksana S. Lytvyn. The usage of digital technologies in the university training of future bachelors (having been based on the data of mathematical subjects). [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3860.
Full textJung, Jacob, Richard Fischer, Chester McConnell, and Pam Bates. The use of US Army Corps of Engineers reservoirs as stopover sites for the Aransas–Wood Buffalo population of whooping crane. Engineer Research and Development Center (U.S.), August 2022. http://dx.doi.org/10.21079/11681/44980.
Full textBakhshaei, Mahsa, Angela Hardy, Aubrey Francisco, Sierra Noakes, and Judi Fusco. Fostering Powerful Use of Technology Through Instructional Coaching. Digital Promise, 2018. http://dx.doi.org/10.51388/20.500.12265/48.
Full textBernad, Ludovic, Yves Nsengiyumva, Benjamin Byinshi, Naphtal Hakizimana, and Fabrizio Santoro. Digital Merchant Payments as a Medium of Tax Compliance. Institute of Development Studies, March 2023. http://dx.doi.org/10.19088/ictd.2023.011.
Full textMascagni, Giulia, Roel Dom, and Fabrizio Santoro. The VAT in Practice: Equity, Enforcement and Complexity. Institute of Development Studies (IDS), January 2021. http://dx.doi.org/10.19088/ictd.2021.002.
Full text