Academic literature on the topic 'Wearable technology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wearable technology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wearable technology"
Prasad, Sabarinath, Sivakumar Arunachalam, Thomas Boillat, Ahmed Ghoneima, Narayan Gandedkar, and Samira Diar-Bakirly. "Wearable Orofacial Technology and Orthodontics." Dentistry Journal 11, no. 1 (January 10, 2023): 24. http://dx.doi.org/10.3390/dj11010024.
Full textKim, Taejung, and Weisheng Chiu. "Consumer acceptance of sports wearable technology: the role of technology readiness." International Journal of Sports Marketing and Sponsorship 20, no. 1 (February 4, 2019): 109–26. http://dx.doi.org/10.1108/ijsms-06-2017-0050.
Full textRutherford, Jesse Jayne. "Wearable Technology." IEEE Engineering in Medicine and Biology Magazine 29, no. 3 (May 2010): 19–24. http://dx.doi.org/10.1109/memb.2010.936550.
Full textCranny-Francis, Anne, and Cathy Hawkins. "Wearable technology." Visual Communication 7, no. 3 (August 2008): 267–70. http://dx.doi.org/10.1177/1470357208092319.
Full textKalinauckas, A. "Wearable Technology." Engineering & Technology 10, no. 4 (May 1, 2015): 36–43. http://dx.doi.org/10.1049/et.2015.0416.
Full textKunwar, Tarun. "Wearable technology." OR Nurse 9, no. 6 (November 2015): 12–13. http://dx.doi.org/10.1097/01.orn.0000472829.04681.93.
Full textTham, Jason Chew Kit. "Wearable Writing." Journal of Technical Writing and Communication 47, no. 1 (August 1, 2016): 22–55. http://dx.doi.org/10.1177/0047281616641923.
Full textDemir, Elif Buğra Kuzu, Kadir Demir, Sanem Odabaşı, and Ferhan Odabaşı. "A challenge for higher education: Wearable technology for fashion design departments." World Journal on Educational Technology 8, no. 1 (May 2, 2016): 69. http://dx.doi.org/10.18844/wjet.v8i1.503.
Full textNelson, Elizabeth C., Anneke M. Sools, Miriam M. R. Vollenbroek-Hutten, Tibert Verhagen, and Matthijs L. Noordzij. "Embodiment of Wearable Technology: Qualitative Longitudinal Study." JMIR mHealth and uHealth 8, no. 11 (November 3, 2020): e16973. http://dx.doi.org/10.2196/16973.
Full textAroganam, Gobinath, Nadarajah Manivannan, and David Harrison. "Review on Wearable Technology Sensors Used in Consumer Sport Applications." Sensors 19, no. 9 (April 28, 2019): 1983. http://dx.doi.org/10.3390/s19091983.
Full textDissertations / Theses on the topic "Wearable technology"
Jansson, Daniel. "nuSense : Wearable technology to prototype and create new senses." Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-105774.
Full textOverhage, Dennis. "Wearable Proprioception: Designing wearable technology for improving postural instability in Parkinson's Disease." Thesis, Malmö högskola, Fakulteten för kultur och samhälle (KS), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-23250.
Full textWatson, Amanda Annette. "Wearable Technology For Healthcare And Athletic Performance." W&M ScholarWorks, 2020. https://scholarworks.wm.edu/etd/1593091706.
Full textLindamood, Jr Stephen Douglas. "Revolutionizing The Run: A Wearable Technology Study." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/49541.
Full textMaster of Science
Baumann, Lindsey Michelle. "The Story of Wearable Technology: A Framing Analysis." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71790.
Full textMaster of Arts
Olguín, Olguín Daniel. "Sociometric badges : wearable technology for measuring human behavior." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42169.
Full textIncludes bibliographical references (p. 137-144).
We present the design, implementation and deployment of a wearable computing research platform for measuring and analyzing human behavior in a variety of settings and applications. We propose the use of wearable sociometric badges capable of automatically measuring the amount of face-to-face interaction, conversational time, physical proximity to other people, and physical activity levels using social signals derived from vocal features, body motion, and relative location to capture individual and collective patterns of behavior. Our goal is to be able to understand how patterns of behavior shape individuals and organizations. We attempt to use on-body sensors in large groups of people for extended periods of time in naturalistic settings for the purpose of identifying, measuring, and quantifying social interactions, information flow, and organizational dynamics. We deployed this research platform in a group of 22 employees working in a real organization over a period of one month. Using these automatic measurements we were able to predict employees' self-assessment of productivity, job satisfaction, and their own perception of group interaction quality. An initial exploratory data analysis indicates that it is possible to automatically capture patterns of behavior using this wearable platform.
by Daniel Olguín Olguín.
S.M.
Moustafa, Ahmed, and Johan Danmo. "Wearable Sensors in Prosthetic Socket." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263928.
Full textDet finns ett stort intresse bland forskade och läkare att kunna övervaka tryckfördelningen inuti en benprotes. En sådan lösning kan möjliggöra bedömningen om användarens komfort och identifiera problematiska områden i benprotesen som bör åtgärdas. En sensor som kan användas i en sådan lösning kallas Force Sensitive Resistor (FSR). Detta mastersarbete har jämfört och testat två typer av FSR. Den första sensorn är en prototyp och kommer från företaget, Quantum Technology Supersensor (QTSS) och den andra sensorn säljs kommersiellt och kommer från företaget, Interlink. Sensorerna utsattes för statiska och dynamiska trycktester för att jämföra egenskaper som hysteres, drift och repeterbarhet. Sensorerna placerades även på två typer av underlag vid dessa tester. Det första underlaget var silikon med en hårdhet på 20 A och det andra var plexiglas. Detta gjordes för att dokumentera effekten av materialets hårdhet som omgav sensorerna vid testerna. QTSS sensorn nådde 109,5 % i statisk drift på silikon med ett tryck på 185 kPa. Procentantalet minskar betydligt vid högre vikt och med plexiglas som material, vilket resulterade i 5,4 % statisk drift med ett tryck på 348 kPa. Sensorn från Interlink presterade dock relativt bra vid båda testerna. Den högsta uppmätta statiska driften var 3,2 % och inträffade då sensorn placerades på silikon med ett tryck på 185 kPa. Vidare visade det sig att sensorn från QTSS presterade bättre när den inte tilläts vila mellan testerna. Med ett tryck på 348 kPa på plexiglas hade sensorn från QTSS en statisk drift på 3,1 %. Sensorn från QTSS presterade sämre vid hysteres- och repeterbarhettesterna än sensorn från Interlink. Vidare tillverkades en sensormatris, som sensorn från QTSS var integrerad i, för att kunna studera tryckfördelningen i en benprotes. I brist på tid och utrustning kunde tester på en artificiell benprotes inte utföras. Sensorn placerades därför på undersidan av en sko för att avgöra ifall det finns ett mönster i tryckfördelningen när en testperson går med denna sko. Resultatet var lovande, då det var möjligt att identifiera minst 3 faser i en gångcykel. En viktig sidoflik är att sensorn från QTSS som användes i detta masterarsbete är en tidig prototyp och att många modifikationer har gjorts på denna typ av sensor sedan starten av denna studie. Det är därför viktigt att en ny studie bör utföras med en senare version av denna sensor innan slutsatser kan dras om sensorns prestanda.
Ananthabhotla, Ishwarya. "System specific power reduction techniques for wearable navigation technology." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105938.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (page 73).
As a result of advances in computer vision, mapping, and controls, wearable technology for visually-impaired individuals has become a growing space of research within Assistive Technology. A team at the MIT Energy Ecient Circuits Group has made an important stride forward by presenting a wearable navigation prototype in a fully integrated hardware form factor, but one of biggest barriers to usability of the device is its excessive power consumption. As such, the goal of this work is, broadly, to- (1) Understand the largest sources of power consumption in the initial navigation proto- type system, and expose relevant features for control; (2) Develop a set of algorithms that can capitalize on the motion of a user, the motion of the environment around a user, and the proximity of obstacles within the environment to the user, in order to dynamically tune the exposed parameters to scale power as necessary; and (3) Lay the foundation for the next generation wearable navigation prototype by translating critical software operations and the power scaling algorithms into a hardware architecture capable of working with a smaller and less power intensive depth camera. The first portion of this work focuses on the wearable navigation prototype built around Texas Instrument's OPT9220/9221 Time of Flight chipset. Illumination voltage, frame rate, and integration duty cycle are identied as key control features, and a step rate estimation algorithm, scene statistics algorithm, and frame skipping controller to tune these features are built and tested. The latter half the work focuses on the newer OPT8320 evaluation platform, for which a Bluespec System Verilog implementation of these power algorithms and the point cloud generation operation is presented and tested. Overall, the work demonstrates the critical concept that simple, system specific, fully integrated algorithms can effectively be used to reduce analog power system-wide.
by Ishwarya Ananthabhotla.
M. Eng.
AFEWORK, YARED, and MAGNUS VALTERSSON. "Guiding Shirt : Aiding the Visually Impaired Using Wearable Technology." Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192068.
Full textSyftet bakom denna uppsats är att forska i hur kroppsnära teknik placerad på dess användares överkropp kan stödja de som är synskadade, framförallt i deras förmåga att röra sig i världen. Projektet delades upp i två delar: den första med fokus på hur de skulle kunna undvika hinder, den andra med fokus på hur de skulle kunna ledas till ett specifikt mål med hjälp av ett vägledningssystem. Den första delen består av en uppsättning ultraljudsavståndsmätare, som alla parats ihop med vibrationsmotorer. Vibrationsmotorerna används för att förmedla känselbaserad återkoppling till användaren. Vibrationsmotorernas styrka är proportionell mot de avstånd som är uppmätta av de korresponderande ultraljudsavståndsmätarna, vilket ger användaren en intuitiv förståelse för avstånden till de olika objekten i rymden runt omkring. Den andra delen består av en GPS-modul, en magnetometer och en samling sparade GPS-koordinater. Genom att jämföra användarens aktuella position med de sparade GPS-koordinaterna tas en vägledande gradriktning samt ett avståndsvärde till den specifika målkoordinaten fram. Avståndsvärdet används för att bestämma när en ny målkoordinat ska läsas in. Magnetometern används som en kompass och jämförs med den vägledande gradriktningen för att ta fram en felsignal i grader. Den kommer i sin tur användas för att vibrationsmotorerna ska ge en känselbaserad återkoppling till användaren om hur de bör vrida sin kropp för att röra sig mot rätt håll.
Goodwin, Jami, Rayan A. Elkattah, and Martin Olsen. "Wearable Technology In Obstetrical Emergency Simulation: A Pilot Study." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/ijhse/vol2/iss2/3.
Full textBooks on the topic "Wearable technology"
McCann, J., and D. Bryson. Smart clothes and wearable technology. Oxford: Woodhead Publishing, 2009.
Find full textWearable robots. Chicago, IL: Norwood House Press, 2016.
Find full textRicks, Becca. Mediating the Body: Wearable Tech and Disembodied Reality. [Cambridge, MA?]: Becca Ricks, 2016.
Find full textXu, Yangsheng. Intelligent wearable interfaces. Hoboken, N.J: John Wiley, 2008.
Find full textFang, Bin, Fuchun Sun, Huaping Liu, Chunfang Liu, and Di Guo. Wearable Technology for Robotic Manipulation and Learning. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5124-6.
Full textXiaoming, Tao, and Textile Institute, eds. Wearable electronics and photonics. Cambridge: Woodhead, 2003.
Find full textAhram, Tareq Z., and Christianne S. Falcão, eds. Advances in Usability, User Experience, Wearable and Assistive Technology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80091-8.
Full textAhram, Tareq, and Christianne Falcão, eds. Advances in Usability, User Experience, Wearable and Assistive Technology. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51828-8.
Full textSeymour, Sabine. Fashionable technology: The intersection of design, fashion, science, and technology. Wien: Springer, 2009.
Find full textFashionable technology: The intersection of design, fashion, science, and technology. Wien: Springer, 2008.
Find full textBook chapters on the topic "Wearable technology"
Rong, Miao, and Qu Ximei. "Wearable Technology." In Perspectives on Rethinking and Reforming Education, 113–23. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9439-3_7.
Full textMadanian, Samaneh, Hoa Hong Nguyen, and Farhaan Mirza. "Wearable Technology." In Encyclopedia of Gerontology and Population Aging, 1–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69892-2_459-1.
Full textRice, Joshua, Damian Kovacevic, Alex Calder, and Joel Carter. "Wearable technology." In Peak Performance for Soccer, 165–88. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003200420-7.
Full textMadanian, Samaneh, Hoa Hong Nguyen, and Farhaan Mirza. "Wearable Technology." In Encyclopedia of Gerontology and Population Aging, 5388–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-22009-9_459.
Full textSeymour, Sabine. "Wearable Explorations." In Fashionable Technology, 110–37. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-79592-7_6.
Full textKawamoto, Hiroaki. "Wearable Robot Technology." In Cybernics, 21–39. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54159-2_2.
Full textPrzegalinska, Aleksandra. "Wearable Technology: Summary." In Wearable Technologies in Organizations, 67–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00907-6_7.
Full textWilson, Denise. "Wearable and Portable Technology." In Wearable Solar Cell Systems, 105–24. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429399596-8.
Full textGueorguiev, David, Bernard Javot, Adam Spiers, and Katherine J. Kuchenbecker. "Larger Skin-Surface Contact Through a Fingertip Wearable Improves Roughness Perception." In Haptics: Science, Technology, Applications, 171–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_20.
Full textSaa, Pablo, Oswaldo Moscoso-Zea, and Sergio Lujan-Mora. "Wearable Technology, Privacy Issues." In Proceedings of the International Conference on Information Technology & Systems (ICITS 2018), 518–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73450-7_49.
Full textConference papers on the topic "Wearable technology"
Ugur, Secil, Monica Bordegoni, S. G. A. Wensveen, Raffaella Mangiarotti, and Marina Carulli. "Embodiment of Emotions Through Wearable Technology." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47845.
Full text"Wearable technology." In 2015 8th International Conference on Human System Interactions (HSI). IEEE, 2015. http://dx.doi.org/10.1109/hsi.2015.7170659.
Full textJayapal, Cynthia, S. Kritya Shree, R. Lokesh Kumar, and Shivali Muthukumar. "Challenges in Wearable Technology." In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA). IEEE, 2021. http://dx.doi.org/10.1109/icaeca52838.2021.9675758.
Full textBonato, P. "Clinical applications of wearable technology." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333997.
Full textCanina, Marita. "Wearable Devices: A Design Approach Through Biodesign and Ergonomics." In Applied Human Factors and Ergonomics Conference (2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001242.
Full textBeigl, Michael, and Paul Lukowicz. "Relative positioning technology." In 2008 12th IEEE International Symposium on Wearable Computers. IEEE, 2008. http://dx.doi.org/10.1109/iswc.2008.4911607.
Full textGuida, Dario, Artie Basukoski, and Performance Database. "Weightbit: An Advancement in Wearable Technology." In 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2017. http://dx.doi.org/10.1109/cbms.2017.85.
Full textVishkaie, Rojin. "Can Wearable Technology Improve Children's Creativity?" In UbiComp '18: The 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3267305.3267564.
Full textDaniels, Reginald. "Wearable computer technology for dismounted applications." In SPIE Defense, Security, and Sensing, edited by Bahram Javidi, Jung-Young Son, John T. Thomas, and Daniel D. Desjardins. SPIE, 2010. http://dx.doi.org/10.1117/12.849256.
Full textAvila, Mauro, and Thomas Kubitza. "Assistive Wearable Technology for Visually Impaired." In MobileHCI '15: 17th International Conference on Human-Computer Interaction with Mobile Devices and Services. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2786567.2794311.
Full textReports on the topic "Wearable technology"
Koo, Helen, Susan Rivera, Kim Gaul, and Tingrui Pan. Development of Wearable Technology for Autism Spectrum Disorder. Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1581.
Full textJames, Daniel, James Lee, Yuji Ohgi, Charlene Willis, Nicola Petrone, Brendon Ferrier, Tomohito Wada, Mohammad Al-Rawi, and Jeff Parker. STEM educational engagement through coopetition, sport and wearable technology. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317560.
Full textRogers, Kristi E., and Juyeon Park. DIY Consumers and Wearable Electronics: What Factors Affect Technology Adoption? Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1345.
Full textHwang, Chanmi. Consumers' acceptance of wearable technology: Antecedents in a technology acceptance model (MS - 2nd place). Ames: Iowa State University, Digital Repository, November 2015. http://dx.doi.org/10.31274/itaa_proceedings-180814-1125.
Full textSalahuddin, Mir, and Young-A. Lee. Quality Features of Wearable Technology Embedded Products Using the Kano Model. Ames (Iowa): Iowa State University. Library, January 2019. http://dx.doi.org/10.31274/itaa.8784.
Full textRolling, Virginia, and Lushan Sun. The Perceptions of Wearable Accessory Designers in Applying 3D Printing Technology. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1901.
Full textXiang, Liangliang, A. Wang, Y. Gu, V. Shim, and J. Fernandez. Machine learning progress in lower limb running biomechanics with wearable technology. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2022. http://dx.doi.org/10.37766/inplasy2022.1.0083.
Full textRaj, Deepika, and Jung Ha-Brookshire. Love or Arranged? Relationship of "Wearable" and "Technology" from 2014 to 2016. Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1570.
Full textJia, Xiao, and Jihyun Kim. Development of a Conceptual Model to Understand the Adoption of Wearable Technology. Ames: Iowa State University, Digital Repository, November 2015. http://dx.doi.org/10.31274/itaa_proceedings-180814-18.
Full textHowell, Adrienne, Jenna Matson, Chaise Zahrt, Ellen Carol McKinney, David Bis, Sameul R. Vande Loo, and Colin Willenborg. A Starry Starry Night: Integrating Hand-Painted Textile Surface Design With Wearable Technology. Ames (Iowa): Iowa State University. Library, January 2019. http://dx.doi.org/10.31274/itaa.8398.
Full text