Academic literature on the topic 'Wear-in'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wear-in.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wear-in"
Perez, Elmer, Masaki Tanaka, and Takashi Sugawara. "Wear of Stainless Steels - Wear Characteristics of Cold Drawn Stainless Steel Bars in Dry Sliding Conditions." Marine Engineering 48, no. 4 (2013): 546–53. http://dx.doi.org/10.5988/jime.48.546.
Full textVuong, T. T., and P. A. Meehan. "Wear transitions in a wear coefficient model." Wear 266, no. 9-10 (April 2009): 898–906. http://dx.doi.org/10.1016/j.wear.2008.12.006.
Full textLEE, A., L. H. HE, K. LYONS, and M. V. SWAIN. "Tooth wear and wear investigations in dentistry." Journal of Oral Rehabilitation 39, no. 3 (September 16, 2011): 217–25. http://dx.doi.org/10.1111/j.1365-2842.2011.02257.x.
Full textAli, Emad. "Condition Monitoring of Wear Progress in Hydrostatic Pumps." International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (October 31, 2018): 139–42. http://dx.doi.org/10.31142/ijtsrd18407.
Full textSHIMIZU, K., T. KIMURA, T. MOMONO, T. KAMOTA, H. MATSUMOTO, and S. KAMOTA. "P18: Development of Material Wear-property in Homogenizer and Wear Characteristic Evaluation(SHORT ORAL PRESENTATION FOR POSTERS I)." Proceedings of the JSME Materials and Processing Conference (M&P) 2005 (2005): 18–19. http://dx.doi.org/10.1299/jsmeintmp.2005.18_7.
Full textHuang, Yanliang, Xiaoxia Jiang, and Sizuo Li. "Pure mechanical wear loss measurement in corrosive wear." Bulletin of Materials Science 23, no. 6 (January 2000): 539–42. http://dx.doi.org/10.1007/bf02903897.
Full textWassell, Robert W., John F. McCabe, and Angus W. G. Walls. "Wear characteristics in a two-body wear test." Dental Materials 10, no. 4 (July 1994): 269–74. http://dx.doi.org/10.1016/0109-5641(94)90073-6.
Full textDykha, A., V. Dytyniuk, and M. Dykha. "Investigation of slippage and wear in rolling bearings of machines." Problems of tribology 98, no. 4 (December 27, 2020): 50–58. http://dx.doi.org/10.31891/2079-1372-2020-98-4-50-58.
Full textWeissman, Barry A., and Bartly J. Mondino. "Is Daily Wear Better than Extended Wear? Arguments in Favor of Daily Wear." Cornea 9, Supplement (1990): S28. http://dx.doi.org/10.1097/00003226-199010001-00011.
Full textWang, S. Q., M. X. Wei, F. Wang, X. H. Cui, and C. Dong. "Transition of Mild Wear to Severe Wear in Oxidative Wear of H21 Steel." Tribology Letters 32, no. 2 (October 8, 2008): 67–72. http://dx.doi.org/10.1007/s11249-008-9361-y.
Full textDissertations / Theses on the topic "Wear-in"
Oosthuizen, Gert Adriaan. "Wear characterisation in milling of Ti6Al4V : a wear map approach." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5426.
Full textENGLISH ABSTRACT: Information on the milling of Ti6Al4V is limited; with most studies concluding that it is not possible to obtain a significant increase in the material removal rate (Qw). Tool wear maps can be a diagnostic instrument for failure analysis. Cutting speed (vc), maximum un-deformed chip thickness (heMax) and the radial immersion percentage (ae/Ø %) are the key variables in understanding the milling of titanium alloys. The objective of this research study was to construct tool wear maps for the milling of Ti6Al4V. This will form the foundation of understanding the cutting demands on the tool, in order to analyse the main wear mechanisms. Remedial actions, which are developed by tool suppliers, can be considered and integrated via this understanding of the failure modes and related mechanisms. Firstly, experimental data from background studies, literature and industry on wear rates and wear mechanisms pertaining to the milling conditions was gathered to construct the tool wear map. Mathematical models describing the wear behaviour for these conditions were also investigated. Secondly, work piece failure maps have been superimposed onto the tool wear maps constructed to understand the global failure boundaries. Experimentation was carried out to validate the constructed maps. The tool wear map could then be used to discuss the observed effects and consider remedial actions. Cutting speed corresponds to the magnitude of the thermal load and heMax represents the mechanical load. The ae/Ø % defines the duration of the exposure to the thermal load at the edge of the cutting tool. This investigation has shown the following issues to be of importance when considering tool performance via the tool wear map approach: 1. The key to designing tool wear maps is to identify the most economic Scheduled Replacement Time (SRT) for the specific components. Knowing the correct SRT makes it possible to optimize the milling conditions so that the cutting tool wears gradually under the cutting conditions, and lasts longer than the economic SRT. 2. Increased vc will decrease tool life (TL). However, in low transverse rupture strength tools there may be a minimum vc below which mechanical overload may occur. Similarly, a local maximum TL (a sweet spot) may exist if there is a phase change in the work piece material. 3. Increased heMax will decrease TL. However, heMax must be kept below a maximum critical value to avoid mechanical overload, but above a minimum critical value to avoid work hardening. 4. Increased ae/Ø % will decrease TL. The best balance of high Qw and economic TL is found with ae/Ø between 30-40% for rough milling. In finish milling the radial cut is limited to 1 mm finishing stock of the work piece. This study revealed the following important factors when considering work piece failure in the milling of Ti6Al4V: 1. Increased vc will reduce the cutting resistance of the work piece and increase Qw. However, vc must be kept below a maximum critical value to avoid work piece material burn, but above a minimum critical value to avoid burring and poor surface finish, due to tool build-up and chip jamming. 2. Increased heMax will increase the cutting resistance of the work piece and increase Qw. The heMax must be kept below a maximum critical value to avoid poor surface finish, poor flatness and parallelism (due to work piece bending). Likewise, heMax must be kept above a minimum critical value to avoid work hardening and burring. The constructed tool wear maps are validated with experimental work. This research work identified safe zones to productively mill Ti6Al4V, while producing components with a sufficient surface integrity.
AFRIKAANSE OPSOMMING: Inligting rondom freeswerk van Ti6Al4V is beperk en volgens meeste studies is dit nie moontlik om ‗n wesenlike toename in die materiaal verwyderingstempo (Qw) te behaal nie. Snybeitel verwerings kaarte kan ‗n diagnostiese hulpmiddel wees tydens analisering van snybeitels. Snyspoed (vc), maksimum onvervormende spaanderdikte (heMax) en radiale snitdiepte persentasie (ae/Ø %) is die sleutel veranderlikes om die freeswerk van Ti6Al4V beter te kan verstaan. Die doel van die navorsingstudie was om snybeitel verweringskaarte vir die freeswerk van Ti6Al4V te bou. Die werk vorm ‗n fondasie om die eise van freeswerk op die snybeitel beter te verstaan. Sodoende kan die hoof verweringsmeganismes analiseer word. Regstellende aksies wat deur snybeitel vervaardigers ontwikkel is, was ondersoek en integreer met die huidige kennis rondom die falingstipe en verwerings meganismes. Aanvanklik was eksperimentele data van agtergrond studies, literatuur en industrie oor die verweringstempos en -meganismes rondom die freeswerk van Ti6Al4V versamel. Hiermee is verweringskaarte gebou. Wiskundige modelle wat die verwering kan beskryf was ook ondersoek. Daarna was werkstuk falingskaarte integreer met die ontwikkeling van die snybeitel verweringskaarte om sodoende die grense in geheel te verstaan. Eksperimentele werk was gedoen om die snybeitel verweringskaarte se uitleg te toets. Sodoende kon die snybeitel verweringskaarte gebruik word om die gedrag van die snybeitel te bespreek en regstellende aksies te ondersoek. Snyspoed (vc) stem ooreen met die grootte van die termiese lading en heMax verteenwoordig die grootte meganiese lading. Die ae/Ø % omskryf die tydperk van blootstelling aan die termiese lading op die snyrand. Die ondersoek het bewys dat die volgende faktore belangrik is wanneer snybeitel prestasie met die snybeitel verweringskaart evalueer word: 1. Die sleutel tot die ontwerp van snybeitel verweringskaarte is om die mees ekonomies beplande vervangingstyd (SRT) vir spesifieke komponente te identifiseer. Sodoende is dit moontlik om die frees toestande te optimaliseer, waaronder die snybeitels geleidelik sal verweer onder die eise en vir ‗n langer tydperk as die ekonomiese SRT sal kan sny. 2. Toename in vc sal snybeitelleeftyd (TL) laat afneem. Snybeitels met ‗n lae dwarsbreuksterkte, kan ‗n minimum vc hê waaronder meganiese oorlading plaasvind. Terselfdertyd, kan ‗n maksimum TL (‗n ―sweet spot‖) bestaan as daar ‗n fase verandering in die werkstuk materiaal plaasvind. 3. Toename in heMax sal TL laat afneem, maar moet laer as ‗n maksimum- en hoer as ‗n minimum kritiese waarde wees, om sodoende meganiese oorlading en werksverharding onderskeidelik te vermy. 4. Toename in ae/Ø % sal TL laat afneem. Die beste balans tussen TL en ae/Ø % is gevind met ae/Ø % tussen 30-40% vir growwe freeswerk. In afrondingsfreeswerk is die radiale snit beperk tot 1 mm van die oorblywende werkstuk. Die ondersoek het bewys dat die volgende faktore belangrik is wanneer werkstukfaling in ag geneem word met snybeitel verweringskaarte: 1. Toename in vc sal die werkstukweerstand geleidelik verminder en Qw laat toeneem. Ongelukkig is vc beperk tot ‗n maksimum kritiese waarde om werkstukfaling te voorkom weens ‗material burn‘. Die snyspoed moet ook hoër as ‗n kritiese waarde wees om werkstukklitsing en swak afronding weens spaander probleme te vermy. 2. Toename in heMax sal die werkstuk weerstand geleidelik vermeerder en Qw laat toeneem. Die heMax is beperk tot ‗n maksimum kritiese waarde om swak werkstuk afronding, weens die buiging van die werkstuk, te vermy. Terselfdertyd moet heMax hoër as ‗n kritiese waarde wees om werkstukverharding en -klitsing te voorkom. Die saamgestelde snybeitel verweringskaarte was bekragtig met eksperimentele werk. Die navorsingswerk het veiligheidsareas identifiseer om Ti6Al4V produktief te frees, sonder om die werkstukoppervlak krities te beïnvloed.
Dahlström, Alexander. "Wear mechanisms in austenitic stainless steel drilling : A comprehensive wear study." Thesis, KTH, Materialteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175771.
Full textDe, Villiers Danielle. "Accelerated wear protocols for understanding clinical wear in modern hip prostheses." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/7981.
Full textOdelros, Stina. "Tool wear in titanium machining." Thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-176944.
Full textGåård, Anders. "Wear in sheet metal forming." Licentiate thesis, Karlstad University, Faculty of Technology and Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-1592.
Full textThe general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures.
Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials.
Paulls, Andrew. "Wear mechanisms in screw presses." Thesis, University of Hull, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395505.
Full textRobb, Nigel Douglas. "Epidemiological studies in tooth wear." Thesis, King's College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308314.
Full textGåård, Anders. "Wear in sheet metal forming /." Karlstad : Faculty of Technology and Science, Materials Engineering, Karlstad University, 2008. http://www.diva-portal.org/kau/abstract.xsql?dbid=1592.
Full textWatkins, Shaun Gareth. "Wear fatigue in nickel superalloys." Thesis, Swansea University, 2015. https://cronfa.swan.ac.uk/Record/cronfa43108.
Full textJungedal, m. "Mild impact wear in a concrete mixer : An evaluation of wet abrasive wear." Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161557.
Full textBetongblandare är en applikation som är utsatt för ett abrasivt slitage under både torra och våta miljöer. Genom att uppgradera materialet inuti trumman till ett slitstarkt stål kan livslängden förlängas och vikten på trumman reduceras. En ny testutrustning utformades för att simulera slitaget och miljöerna inuti en betongbil. Slitstyrkan undersöktes genom att mäta det relativa slitaget för totalt 30 stycken stålsorter. Tre stycken slitagetester genomfördes med en blandning av krossad granit, av storleken 16-25 mm, och vatten. Testerna fokuserade på att simulera både ett glidande slitage och ett lätt stötslitage. Innan testet påbörjades analyserades samtliga stålsorter med avseende på hårdhetsprofilen, mikrostrukturen och kemisk sammansättning. Materialförlusten undersöktes genom vägning före testet, under testet och efter testet. Efter testet analyserades provernas slityta i SEM och hårdheten i tvärsnittet på Swerea Kimab. Ett samband mellan hårdhet och slitstyrka kunde ses över en viss hårdhetsnivå. Testerna visade att en högre hårdhet ger en bättre slitstyrka samt att formen och nötningen av de abrasiva materialet påverkade nötningshastigheten.
Books on the topic "Wear-in"
Friction and wear transitions of materials: Break-in, run-in, wear-in. Park Ridge, N.J., U.S.A: Noyes Publications, 1989.
Find full textUnit, Tyne and Wear County-Wide Research and Intelligence. Earnings in Tyne & Wear. Newcastle upon Tyne: Tyne and Wear County-Wide Research and Intellig ence Unit, 1992.
Find full textBahadur, S., and JH Magee, eds. Wear Processes in Manufacturing. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1998. http://dx.doi.org/10.1520/stp1362-eb.
Full textRaask, Erich. Erosion wear in coal utilization. Washington [D.C.]: Hemisphere Pub. Corp., 1988.
Find full textTyne and Wear County-Wide Research and Intelligence Unit. Employment in Tyne and Wear. Newcastle upon Tyne: Tyneand Wear County-Wide Research and Intellig ence Unit, 1994.
Find full textPechmann, Cornelia. Advertising repetition: A critical review of wear-in and wear-out. Cambridge, Mass: Marketing Science Institute, 1990.
Find full textThe eye in contact lens wear. 2nd ed. Oxford: Butterworth-Heinemann, 1997.
Find full textLarke, J. R. The eye in contact lens wear. 2nd ed. Boston: Butterworth-Heinemann, 1996.
Find full textPeck, Frank. Manufacturing linkages in Tyne and Wear. Newcastle upon Tyne: Tyne and Wear County-Wide Research and IntelligenceUnit, 1988.
Find full textThe eye in contact lens wear. London: Butterworths, 1985.
Find full textBook chapters on the topic "Wear-in"
Kahraman, Ahmet, and Huali Ding. "Wear in Gears." In Encyclopedia of Tribology, 3993–4001. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_661.
Full textTimsit, Roland S. "Wear Mechanisms in Electrical Contacts: Abrasive Wear." In Encyclopedia of Tribology, 4012–14. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_423.
Full textTimsit, Roland S. "Wear Mechanisms in Electrical Contacts: Fretting Wear." In Encyclopedia of Tribology, 4022–28. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_424.
Full textTimsit, Roland S. "Wear Mechanisms in Electrical Contacts: Adhesive Wear." In Encyclopedia of Tribology, 4014–22. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_426.
Full textJourdan, Franck. "Wear Modelling in Biomechanics." In Mechanics, Models and Methods in Civil Engineering, 279–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24638-8_18.
Full textFehsenfeld, C., P. Fehsenfeld, A. Kleinrahm, P. Berlet, and Ph Erhard. "Online Wear Measurements in Advanced Lubricated Systems." In Friction, Wear and Wear Protection, 446–52. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch56.
Full textAndersson, Sören. "Wear Simulation with a Focus on Mild Wear in Rolling and Sliding Contacts." In Friction, Wear and Wear Protection, 1–19. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch1.
Full textHegadekatte, V., O. Kraft, and N. Huber. "Modelling and Simulation of Wear in Micro-machines." In Friction, Wear and Wear Protection, 347–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch43.
Full textCarvalho, Thiago S., Adrian Lussi, Thomas Jaeggi, and Dein L. Gambon. "Erosive Tooth Wear in Children." In Monographs in Oral Science, 262–78. Basel: S. KARGER AG, 2014. http://dx.doi.org/10.1159/000360712.
Full textBandorf, R., F. Pape, H. H. Gatzen, and G. Bräuer. "Wear Behavior in Microactuator Interfaces." In Design and Manufacturing of Active Microsystems, 69–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12903-2_5.
Full textConference papers on the topic "Wear-in"
Kaminski, Jan, Michal Sypula, Jaroslaw Chlebowski, and Tomasz Nowakowski. "Research in rake tines wear." In 17th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture, 2018. http://dx.doi.org/10.22616/erdev2018.17.n077.
Full textSilva, Gabriel. "Wear Generation in Hydraulic Pumps." In International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/901679.
Full textChen, Y. J., and N. Huber. "Transient simulation of wear in a lobe pump using the wear processor." In TRIBOLOGY AND DESIGN 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/td100051.
Full textTakeuchi, Takahiro, and Shinji Kioka. "Wear Amount of Steel Structure in Ice-Infested Sea by Sliding Wear Test." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95654.
Full textHall, R. W., Ali Garkasi, Greg Deskins, and John Vozniak. "Recent Advances in Casing Wear Technology." In IADC/SPE Drilling Conference. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/27532-ms.
Full textVaughan, N. D., D. G. Tilley, and P. E. Pomeroy. "Erosive Wear Measurement in Spool Valves." In Earthmoving Industry Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/931178.
Full textKawakubo, Youichi, Shinichi Kobatake, Shunichi Miyazawa, and Shinichi Nakazawa. "Head Wear in Contact Recording Systems." In STLE/ASME 2003 International Joint Tribology Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/2003-trib-339.
Full textLICCIARDELLO, RICCARDO, GABRIELE MALAVASI, STEFANO RICCI, and PIETRO VITALI. "WEAR RATES IN URBAN RAIL SYSTEMS." In URBAN TRANSPORT 2017. Southampton UK: WIT Press, 2017. http://dx.doi.org/10.2495/ut170481.
Full textTanner, Danelle M., and Michael T. Dugger. "Wear Mechanisms in a Reliability Methodology." In Micromachining and Microfabrication, edited by Rajeshuni Ramesham and Danelle M. Tanner. SPIE, 2003. http://dx.doi.org/10.1117/12.476345.
Full textVitiaz, P., A. Verstak, T. Azarova, T. Talako, and E. Lugscheider. "Titanium Carbide in Wear Resistant Coatings." In ITSC 1996, edited by C. C. Berndt. ASM International, 1996. http://dx.doi.org/10.31399/asm.cp.itsc1996p0169.
Full textReports on the topic "Wear-in"
Wakenell, J. F., S. G. Fritz, and J. A. Schwalb. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/10123688.
Full textWakenell, J. F., S. G. Fritz, and J. A. Schwalb. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5552534.
Full textSchwalb, J. A. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/5552551.
Full textSchwalb, J. A., and T. W. Ryan. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5637939.
Full textSchwalb, J. A. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/10123538.
Full textSchwalb, J. A., and T. W. Ryan. Wear mechanism and wear prevention in coal-fueled diesel engines. Final report. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/10123155.
Full textBoyle, E. J., and W. A. Rogers. Wear prediction in a fluidized bed. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10163609.
Full textLam, P. S., and T. M. Adams. Wear Testing of Stainless Steels in Hydrogen (U). Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/1440408.
Full textArmini, A. J., and S. N. Bunker. Wear Measurement of Ceramic Bearings in Gas Turbines. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada227505.
Full textYust, C. S. Reciprocating sliding wear of in-situ reinforced silicon nitride. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/110749.
Full text