Academic literature on the topic 'Wear'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wear.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wear"

1

Jiang, Ya Nan, Wei Hua Zhang, and Dong Li Song. "Study on the Law of Wheel Wear Based on Copula." Applied Mechanics and Materials 427-429 (September 2013): 246–51. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.246.

Full text
Abstract:
The law of wheel wear is the basis for making turning repair cycle, and is one of the most important guarantees for the safe and stable running of train. A statistical analysis of individual wheel wear parameter was carried out based on wheel profile data of CRH2. The change law of individual wear parameter with mileage showed that wear process of wheel could be divided into two periods: the run-in period and the stable wear period. The paper has realized to research on the correlation between nominal wheel diameter abrasion value and wheel flange thickness variation based on Copula, too. Frank Copula was selected to describe correlation of the two wear parameters, the correlation index (α) of Frank Copula was estimated and the joint distribution function considering dependence was given. The value of α indicated that there was a weak positive correlation between the two wears, which can be ignored for calculating the accumulative failure rate of wheel wear. So the two wear parameters can be regarded as independent random variables during failure analysis of wheel wear.
APA, Harvard, Vancouver, ISO, and other styles
2

WAKAMATSU, Yasushi, Kiyoshi KAKUTA, and Hideo OGURA. "Wear Test Combining Simulated Occiusal Wear and Toothbrush Wear." Dental Materials Journal 22, no. 3 (2003): 383–96. http://dx.doi.org/10.4012/dmj.22.383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ADACHI, Koshi, Koji KATO, and Ning CHEN. "Wear Map of Ceramics. 1st Report. Classification of Wear Mode-Mild Wear/Severe Wear." Transactions of the Japan Society of Mechanical Engineers Series C 63, no. 609 (1997): 1718–26. http://dx.doi.org/10.1299/kikaic.63.1718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Jun, Ming Pu Liu, and Hong Qi Sun. "Research on the Wear Process of High Speed Cutting Ni-Based Superalloy." Materials Science Forum 800-801 (July 2014): 102–6. http://dx.doi.org/10.4028/www.scientific.net/msf.800-801.102.

Full text
Abstract:
As the main method of high efficiency cutting Ni-based superalloy, high-speed cutting can not but intensify the cutting-tool wear for the high cutting force and cutting temperature. So, it is very necessary to study the process of cutting-tool wear and wear mechanism, especially, the effect of cutting-tool wear on the cutting force, cutting temperature and surface roughness of machined workpiece. In this paper, investigation of tool wear in high-speed cutting is proposed, the PCDTiAlN carbide insert is used in the experiment, the cutting-tool wear and the corresponding cutting force, cutting temperature and surface roughness of machined workpiece is detected. It indicates that the cutting force, cutting temperature and surface roughness of machined workpiece is changed corresponding the cutting-tool wear,the wear process of coated tool include the coated material wears and base material wears,the wear mechanism is complex. Key word: superalloy, high-speed cutting, tool wear, wear form ; .
APA, Harvard, Vancouver, ISO, and other styles
5

Woydt, M., A. Skopp, I. Dörfel, and K. Witke. "Wear engineering oxides/anti-wear oxides." Wear 218, no. 1 (June 1998): 84–95. http://dx.doi.org/10.1016/s0043-1648(98)00181-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wilson, R. D., and J. A. Hawk. "Impeller wear impact-abrasive wear test." Wear 225-229 (April 1999): 1248–57. http://dx.doi.org/10.1016/s0043-1648(99)00046-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Williams, John A. "Wear and wear particles—some fundamentals." Tribology International 38, no. 10 (October 2005): 863–70. http://dx.doi.org/10.1016/j.triboint.2005.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

OKABE, HEIHACHIRO. "Friction and wear. Friction, wear, lubrication." NIPPON GOMU KYOKAISHI 61, no. 5 (1988): 307–14. http://dx.doi.org/10.2324/gomu.61.307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ravikiran, A. "Wear Mechanism Based on Wear Anisotropy." Tribology Transactions 43, no. 2 (January 2000): 287–92. http://dx.doi.org/10.1080/10402000008982342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kato, Koji. "Micro-mechanisms of wear — wear modes." Wear 153, no. 1 (March 1992): 277–95. http://dx.doi.org/10.1016/0043-1648(92)90274-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Wear"

1

Young, William G. "Tooth wear /." [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17715.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Done, Vamshidhar. "Numerical modeling of dry wear : Experimental study of fretting wear, fretting wear simulations with debris entrapped and industrial applications of fretting wear models." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI137.

Full text
Abstract:
De nombreux modèles numériques sont proposés dans la littérature en utilisant des méthodes d'éléments finis et d'éléments finis discrets pour étudier l'usure par frottement, ils incluent à peine l'effet des débris d'usure. Ces modèles étant coûteux en termes de calcul, simuler un grand nombre de cycles d'usure par frottement n'est pas réalisable dans la pratique. Une nouvelle méthodologie est proposée qui ne nécessite que des propriétés de matériau en vrac comme les coefficients de frottement / usure et utilise des méthodes semi-analytiques pour simuler l'usure par frottement avec des débris piégés. Dans cette approche, les débris sont supposés être attachés à l'une des surfaces pendant le processus de fretting. Les résultats obtenus à partir de cette approche ont été comparés avec des expériences de fretting. La méthode proposée permet de saisir la profondeur d'usure et la largeur des cicatrices, et les résultats sont très proches de ceux observés dans les expériences. L'assemblage des soupapes des moteurs à combustion subit une usure par frottement en raison d'un phénomène complexe impliquant une rigidité structurelle et une tribologie de contact. L'usure des soupapes a de nombreux effets néfastes sur les performances du moteur. Il provoque une récession de la soupape entraînant des changements dans les connexions du mécanisme d'entraînement de la soupape, ce qui perturbe l'ouverture et la fermeture des soupapes. Avec des normes d'émission strictes, l'utilisation de lubrifiant pour réduire la friction au contact est limitée. Si l'usure à travers la circonférence n'est pas uniforme, il y aura une fuite de gaz et le moteur donne moins de puissance. Il est nécessaire de bien comprendre la raison de l'usure des soupapes et de développer un modèle numérique capable de prédire l'usure par frottement de la soupape pour le nombre d'heures de fonctionnement donné. Des expériences ont été réalisées pour comprendre le mécanisme d'usure et calculer les coefficients d'usure qui peuvent être utilisés dans le modèle numérique. Un modèle d'usure numérique est construit qui capture la rigidité structurelle de l'ensemble de soupape et le mécanisme d'usure au contact du siège
Many numerical models are proposed in the literature using finite element and finite discrete element methods to study fretting wear, they barely include the effect of wear debris. These models being computationally expensive, simulating large number of fretting wear cycles is not practically feasible. A new methodology is proposed which needs only bulk material properties like friction/wear coefficients and uses semi-analytical methods to simulate fretting wear with entrapped debris. In this approach, debris are assumed to be attached to one of the surfaces during the fretting process. The results obtained from this approach were compared with fretting experiments. The proposed method permits to capture the wear depth and scar width, and results are very close to that observed in the experiments. Valve assembly of combustion engines undergo fretting wear due to a complex phenomenon involving structural stiffness and contact tribology. Valve wear has many detrimental effects on the engine performance. It causes valve recession leading to changes in connections of valve drive train in turn disturbing the opening and closing of valves. With stringent emission norms, usage of lubricant to reduce friction at the contact is restricted. If the wear across the circumference is not uniform, there will be leakage of gas and the engine gives lesser power output. There is a need to thoroughly understand the reason for valve wear and develop a numerical model that can predict valve fretting wear for the given number of operating hours. Experiments were performed to understand the wear mechanism and derive wear coefficients that can be used in the numerical model. A numerical wear model is built that captures structural stiffness of the valve assembly and wear mechanism at seat contact
APA, Harvard, Vancouver, ISO, and other styles
3

Oosthuizen, Gert Adriaan. "Wear characterisation in milling of Ti6Al4V : a wear map approach." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5426.

Full text
Abstract:
Thesis (PhD (Industrial Engineering))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Information on the milling of Ti6Al4V is limited; with most studies concluding that it is not possible to obtain a significant increase in the material removal rate (Qw). Tool wear maps can be a diagnostic instrument for failure analysis. Cutting speed (vc), maximum un-deformed chip thickness (heMax) and the radial immersion percentage (ae/Ø %) are the key variables in understanding the milling of titanium alloys. The objective of this research study was to construct tool wear maps for the milling of Ti6Al4V. This will form the foundation of understanding the cutting demands on the tool, in order to analyse the main wear mechanisms. Remedial actions, which are developed by tool suppliers, can be considered and integrated via this understanding of the failure modes and related mechanisms. Firstly, experimental data from background studies, literature and industry on wear rates and wear mechanisms pertaining to the milling conditions was gathered to construct the tool wear map. Mathematical models describing the wear behaviour for these conditions were also investigated. Secondly, work piece failure maps have been superimposed onto the tool wear maps constructed to understand the global failure boundaries. Experimentation was carried out to validate the constructed maps. The tool wear map could then be used to discuss the observed effects and consider remedial actions. Cutting speed corresponds to the magnitude of the thermal load and heMax represents the mechanical load. The ae/Ø % defines the duration of the exposure to the thermal load at the edge of the cutting tool. This investigation has shown the following issues to be of importance when considering tool performance via the tool wear map approach: 1. The key to designing tool wear maps is to identify the most economic Scheduled Replacement Time (SRT) for the specific components. Knowing the correct SRT makes it possible to optimize the milling conditions so that the cutting tool wears gradually under the cutting conditions, and lasts longer than the economic SRT. 2. Increased vc will decrease tool life (TL). However, in low transverse rupture strength tools there may be a minimum vc below which mechanical overload may occur. Similarly, a local maximum TL (a sweet spot) may exist if there is a phase change in the work piece material. 3. Increased heMax will decrease TL. However, heMax must be kept below a maximum critical value to avoid mechanical overload, but above a minimum critical value to avoid work hardening. 4. Increased ae/Ø % will decrease TL. The best balance of high Qw and economic TL is found with ae/Ø between 30-40% for rough milling. In finish milling the radial cut is limited to 1 mm finishing stock of the work piece. This study revealed the following important factors when considering work piece failure in the milling of Ti6Al4V: 1. Increased vc will reduce the cutting resistance of the work piece and increase Qw. However, vc must be kept below a maximum critical value to avoid work piece material burn, but above a minimum critical value to avoid burring and poor surface finish, due to tool build-up and chip jamming. 2. Increased heMax will increase the cutting resistance of the work piece and increase Qw. The heMax must be kept below a maximum critical value to avoid poor surface finish, poor flatness and parallelism (due to work piece bending). Likewise, heMax must be kept above a minimum critical value to avoid work hardening and burring. The constructed tool wear maps are validated with experimental work. This research work identified safe zones to productively mill Ti6Al4V, while producing components with a sufficient surface integrity.
AFRIKAANSE OPSOMMING: Inligting rondom freeswerk van Ti6Al4V is beperk en volgens meeste studies is dit nie moontlik om ‗n wesenlike toename in die materiaal verwyderingstempo (Qw) te behaal nie. Snybeitel verwerings kaarte kan ‗n diagnostiese hulpmiddel wees tydens analisering van snybeitels. Snyspoed (vc), maksimum onvervormende spaanderdikte (heMax) en radiale snitdiepte persentasie (ae/Ø %) is die sleutel veranderlikes om die freeswerk van Ti6Al4V beter te kan verstaan. Die doel van die navorsingstudie was om snybeitel verweringskaarte vir die freeswerk van Ti6Al4V te bou. Die werk vorm ‗n fondasie om die eise van freeswerk op die snybeitel beter te verstaan. Sodoende kan die hoof verweringsmeganismes analiseer word. Regstellende aksies wat deur snybeitel vervaardigers ontwikkel is, was ondersoek en integreer met die huidige kennis rondom die falingstipe en verwerings meganismes. Aanvanklik was eksperimentele data van agtergrond studies, literatuur en industrie oor die verweringstempos en -meganismes rondom die freeswerk van Ti6Al4V versamel. Hiermee is verweringskaarte gebou. Wiskundige modelle wat die verwering kan beskryf was ook ondersoek. Daarna was werkstuk falingskaarte integreer met die ontwikkeling van die snybeitel verweringskaarte om sodoende die grense in geheel te verstaan. Eksperimentele werk was gedoen om die snybeitel verweringskaarte se uitleg te toets. Sodoende kon die snybeitel verweringskaarte gebruik word om die gedrag van die snybeitel te bespreek en regstellende aksies te ondersoek. Snyspoed (vc) stem ooreen met die grootte van die termiese lading en heMax verteenwoordig die grootte meganiese lading. Die ae/Ø % omskryf die tydperk van blootstelling aan die termiese lading op die snyrand. Die ondersoek het bewys dat die volgende faktore belangrik is wanneer snybeitel prestasie met die snybeitel verweringskaart evalueer word: 1. Die sleutel tot die ontwerp van snybeitel verweringskaarte is om die mees ekonomies beplande vervangingstyd (SRT) vir spesifieke komponente te identifiseer. Sodoende is dit moontlik om die frees toestande te optimaliseer, waaronder die snybeitels geleidelik sal verweer onder die eise en vir ‗n langer tydperk as die ekonomiese SRT sal kan sny. 2. Toename in vc sal snybeitelleeftyd (TL) laat afneem. Snybeitels met ‗n lae dwarsbreuksterkte, kan ‗n minimum vc hê waaronder meganiese oorlading plaasvind. Terselfdertyd, kan ‗n maksimum TL (‗n ―sweet spot‖) bestaan as daar ‗n fase verandering in die werkstuk materiaal plaasvind. 3. Toename in heMax sal TL laat afneem, maar moet laer as ‗n maksimum- en hoer as ‗n minimum kritiese waarde wees, om sodoende meganiese oorlading en werksverharding onderskeidelik te vermy. 4. Toename in ae/Ø % sal TL laat afneem. Die beste balans tussen TL en ae/Ø % is gevind met ae/Ø % tussen 30-40% vir growwe freeswerk. In afrondingsfreeswerk is die radiale snit beperk tot 1 mm van die oorblywende werkstuk. Die ondersoek het bewys dat die volgende faktore belangrik is wanneer werkstukfaling in ag geneem word met snybeitel verweringskaarte: 1. Toename in vc sal die werkstukweerstand geleidelik verminder en Qw laat toeneem. Ongelukkig is vc beperk tot ‗n maksimum kritiese waarde om werkstukfaling te voorkom weens ‗material burn‘. Die snyspoed moet ook hoër as ‗n kritiese waarde wees om werkstukklitsing en swak afronding weens spaander probleme te vermy. 2. Toename in heMax sal die werkstuk weerstand geleidelik vermeerder en Qw laat toeneem. Die heMax is beperk tot ‗n maksimum kritiese waarde om swak werkstuk afronding, weens die buiging van die werkstuk, te vermy. Terselfdertyd moet heMax hoër as ‗n kritiese waarde wees om werkstukverharding en -klitsing te voorkom. Die saamgestelde snybeitel verweringskaarte was bekragtig met eksperimentele werk. Die navorsingswerk het veiligheidsareas identifiseer om Ti6Al4V produktief te frees, sonder om die werkstukoppervlak krities te beïnvloed.
APA, Harvard, Vancouver, ISO, and other styles
4

Uusaro, Alexandra. "Analysis of wear life and mechanical stability for wear steel." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86927.

Full text
Abstract:
This thesis work is carried out in collaboration with Olofsfors AB. They manufacture steel products such as tracks and chains for forest machines and wear steel for plows and graders. The focus of this project is on wear steel. The aim with this project is to obtain a better understanding of mechanical stability and wear on different types of wear steel. This knowledge can then be used to prolong the life cycle in future products. This project was divided into two parts where the  first one concerns wear steel for plows. In this part a comparison between six different steels was conducted using mechanical tests. The steel type will not be specifed in this report but will instead be denoted with the letters A to F. The tests used were rubberwheel abrasion tests to investigate wear resistance, Charpy-V impact tests in cold temperatures to  find crack resistance and tensile tests in order to analyze tensile properties. Steel F was not a part of the rubber wheel abrasion test since a specimen with correct dimensions could not be manufactured from the product due to its special geometry. The second part of the project was for Olofsfors Bruxite grader edges. The objective with this part was to build a model to predict wear on edges using Numerical modeling. The multiphysics program LS-DYNA was used. The environment for the grader is a mining site giving a very rough gravel road. Discrete element method was used for computation of the granular material of the road and the  fnite element method was used on the grader. The wear calculations were made with Archard's wear law. The road was built up in two different ways, in the first model loose discrete element spheres were used. In the second model one layer of bonded discrete element spheres was used with a top layer of loose spheres.Different meshes and loads were also tested.
APA, Harvard, Vancouver, ISO, and other styles
5

Franklin, Francis James. "Modelling mild wear." Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yu-Chieh. "Versatile bridal wear." Thesis, Cape Peninsula University of Technology, 2010. http://hdl.handle.net/20.500.11838/1345.

Full text
Abstract:
Thesis (BTech (Fashion Design))--Cape Peninsula University of Technology, 2010
In the 19th and 20th Century, products were manufactured with little concerns for the environment. The result of this was an over flowing of low quality products and a high elimination rate, especially in the fashion industry where constant change is the nature of the business. Particularly in bridal wears, the sustainability is deficient and practicality is limited. bridal garments would only be worn once and are usually highly priced. The purpose of this research is to explore whether consumers are willing to contribute and make a difference to our environment by opting for versatile bridal wear. In order to obtain information regarding the bridal industry of Cape Town. a qualitative approach was applied to ensure that the end products will meet customer needs. Store visits and informal interviews were used as the primary methods. and Internet and magazines were used as secondary methods to gain relative information about the market. The information collected. regarding modem women's opinions on the concept of an interchangeable bridal range, current fashion trends and the concept of Slow Design, forms the foundation to the development of my range - versatile bridal wear. The entire range consists of 14 garment pieces that are interchangeable to form 6 or more looks. This allows the wearer to dress up according to their desires. As a result, these dresses are reusable and thus overcoming the problem of costly garments. which are only worn once.
APA, Harvard, Vancouver, ISO, and other styles
7

Kronqvist, J. (Joel). "Wear-resistant materials." Bachelor's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201604211527.

Full text
Abstract:
Materials used in wear-resistant applications are exposed to heavy loads and different environmental circumstances which generate mechanical wear and corrosion. By choosing the most suitable materials for the correct applications, you can affect the lifetime of the machine and create substantial cost savings. This thesis displays wear-resistant steels but also other wear-resistant materials, including irons, ceramics and polymers. Use of the materials is divided by the application. For dry applications with mechanical wear carbon steels are the optimal choice and for corrosion and tribo-chemical wear stainless steel is the correct material.
APA, Harvard, Vancouver, ISO, and other styles
8

Hilt, Devin O. "Wedding - To - Wear." Kent State University Honors College / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1493989886206976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bautista, Fernández Christian Hilario, Allende Angel Rafael Delgado, Trucíos Carolina Fuentes Rivera, and Franco Sarita Liliana Rentería. "INKA Sport Wear." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2018. http://hdl.handle.net/10757/624698.

Full text
Abstract:
En el Perú la práctica por la natación crece cada vez más, no solo por la afición que causa entre las personas que lo practican, sino también por los beneficios que ofrece, al ser uno de los deportes más completos que existe. Las diferentes academias y/o institutos deportivos no se encuentran exentas a este crecimiento, tomando en cuenta las nuevas tendencias como la práctica de natación en mujeres embarazadas. Ante ello, es necesario contar con una prenda que se adecue a las necesidades específicas de cada cliente tanto en talla como en diseño frente a la constante demanda. El mercado actual carece de esta diversidad al ofrecer tallas únicas y de costo elevado al que no todos pueden acceder, restringiendo la práctica de este deporte. En ese sentido, nace Inka Sport Wear, como una solución que busca satisfacer las necesidades de sus clientes a través de la comercialización de ropa de baño con diseños innovadores y personalizados a un precio asequible manteniendo la comodidad, calidad y durabilidad del producto.
In Peru, the practice of swimming is constantly increasing, not only as a hobby in their fans, but also for the benefits this sport offers as it is considered one of the more complete sports. The different sport academies and/or institutions are also part of this increase, considering the new tendency of swimming in pregnant. Therefore, it is necessary to have a swimming suit for facing the specific needs of each client both in size and design of the product caused by the constant demand. The current market lacks of this variety offering unique size and costly products not everyone may purchase which restricts its practice. In this sense, we launched Inka Sport Wear as an inexpensive solution to satisfy the different needs of their clients with innovative, customized swimming suit keeping comfort, quality and durability.
Trabajo de investigación
APA, Harvard, Vancouver, ISO, and other styles
10

Lim, S. C. "Wear mechanisms with particular reference to the wear of sintered materials." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372885.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Wear"

1

Fischer, Alfons, and Kirsten Bobzin, eds. Friction, Wear and Wear Protection. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. http://dx.doi.org/10.1002/9783527628513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Woodward, Sophie. Why women wear what they wear. Oxford: Berg, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Woodward, Sophie. Why women wear what they wear. Oxford: Berg, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International Symposium on Friction, Wear and Wear Protection (2008 Aachen, Germany). Friction, wear and wear protection: International Symposium on Friction, Wear and Wear Protection 2008, Aachen, Germany. Weinheim, Germany: Wiley-VCH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pluckrose, Henry. Wear it! New York: F. Watts, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eder, Andrew, and Maurice Faigenblum, eds. Tooth Wear. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86110-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oregon State University. Extension Service., Washington State University. Cooperative Extension., University of Idaho. Cooperative Extension Service., and United States. Dept. of Agriculture., eds. Bicycle wear. [Corvallis, Or.]: Oregon State University Extension Service, Washington State University Cooperative Extension Service, the University of Idaho Cooperative Extension Service and the U.S. Dept. of Agriculture, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Firm), Next. Evening wear. [London?]: Next, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pluckrose, Henry Arthur, and Henry Pluckrose. Wear it! New York, USA: F. Watts, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ludema, Kenneth C., and Oyelayo O. Ajayi. Friction, Wear, Lubrication. Second edition. | Boca Raton : Taylor & Francis, CRC Press,[2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429444715.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Wear"

1

Carter, A. D. S. "Wear and wear-out." In Mechanical Reliability and Design, 81–123. London: Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-14487-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

La Berge, M. "Wear." In Handbook of Biomaterial Properties, 364–405. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5801-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jin, Chunming, and Wei Wei. "Wear." In Biomedical Materials, 365–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tönshoff, Hans Kurt, and Berend Denkena. "Wear." In Lecture Notes in Production Engineering, 129–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33257-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arnell, R. D., P. B. Davies, J. Halling, and T. L. Whomes. "Wear." In Tribology, 66–95. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21387-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arnell, R. D., P. B. Davies, J. Halling, and T. L. Whomes. "Wear." In Tribology, 66–95. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4684-8974-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Popov, Valentin L. "Wear." In Contact Mechanics and Friction, 271–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10803-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jin, Chunming, and Wei Wei. "Wear." In Biomedical Materials, 183–99. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84872-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Briscoe, B. J., and S. K. Sinha. "Wear." In Polymer Science and Technology Series, 270–77. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9231-4_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bonneau, Dominique, Aurelian Fatu, and Dominique Souchet. "Wear." In Mixed Lubrication in Hydrodynamic Bearings, 155–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119004905.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Wear"

1

Hill, William C., James D. Hollan, Dave Wroblewski, and Tim McCandless. "Edit wear and read wear." In the SIGCHI conference. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/142750.142751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Zhen. "Abrasive Wear and Fatigue Wear." In 2016 2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA-16). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/wartia-16.2016.238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"ADHESIVE WEAR AND PARTICLE EMISSION: TRANSITIONS BETWEEN LEAST WEAR, MILD WEAR AND SEVERE WEAR." In Perspektivnye materialy s ierarkhicheskoy strukturoy dlya novykh tekhnologiy i nadezhnykh konstruktsiy, Khimiya nefti i gaza. Tomsk State University, 2018. http://dx.doi.org/10.17223/9785946217408/8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scherrer, Camille, and Julien Pilet. "Happy wear." In ACM SIGGRAPH ASIA 2009 Art Gallery & Emerging Technologies: Adaptation. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1665137.1665170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jin, Haojian, Jingxian Wang, Zhijian Yang, Swarun Kumar, and Jason Hong. "RF-Wear." In UbiComp '18: The 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3267305.3267567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Santagati, G. Enrico, and Tommaso Melodia. "U-Wear." In MobiSys'15: The 13th Annual International Conference on Mobile Systems, Applications, and Services. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2742647.2742655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brady, Brian G. "Fretting Wear." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/901786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kanebako, Junichi, Naoya Watabe, Miki Yamamura, Haruki Nakamura, Keisuke Shuto, and Hiroko Uchiyama. "Sympathetic wear." In SIGGRAPH '22: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3532837.3534955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Osman, Omer Alnoor, Necar Merah, Robello Samuel, Meshari Alshalan, and Amjad Alshaarawi. "Casing Wear Tests for Precise Wear Factor Evaluation." In IADC/SPE International Drilling Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/208775-ms.

Full text
Abstract:
Abstract The increasing complexities of wellbore geometry imply an increasing potential of damage resulting from downhole casing wear. The present method of using old wear factors results in unreliable predictions. The main objective of the present work is to develop new casing wear factors for drillpipes and casings to improve the accuracy of wear prediction. The paper focuses on design, manufacturing, control and measurements of important parameters contributing to casing wear as well as wear volume evaluation. A new casing wear testing facility is designed and built by repurposing and automating an old lathe machine. Real drillpipes with tool joints and casing sections made of different materials are used. The lathe spindle controls the mandrill rotational speed on which the DP is tightly mounted. The versatile casing section holder is fixed on a sliding system comprising a dynamometer and a step-motor with a microcontroller allowing for the control and measurement of the side loadings and lateral displacements. A slurry fluid pump system is designed to feed water-based or oil-based muds at the contact surfaces. The as-received drillpipes and casing materials were analyzed by microscope and optical emission spectrometry (OES) to determine their microstructure and chemical composition. The hardness of both casing and DP materials was also measured. The lathe main spindle was able to provide stable rotating speeds varying from 100 to 1000 rpm. Though the irregular tool joint hard-facing surface was machined to allow for better control of the side loadings, the measured radial load shows variations of +/− 15%. The designed pumping system was able to provide a continuous stream of water-based and oil-based mud, at the contact surface, during testing. The wear depth is measured both directly using a 3D optical profilometer and indirectly by the lateral sliding displacement, thus allowing for the establishment of a calibration curve that can be used for in-situ measurement of the wear depth and wear volume evaluation. The initial set of tests has shown that the designed system is performing satisfactorily. More tests are being performed to confirm the robustness of the design.
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Kyung-Hee, and Patrick Y. Kwon. "Flank Wear of Multi-Layer Coated Tool and Wear Prediction Using Abrasion Wear Model." In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84100.

Full text
Abstract:
In this paper, we have combined experimental and numerical approaches to understand the flank wear and its evolution of the multi-layer (TiCN/Al2O3/TiCN) coated carbide insert after continuous turning of AISI 1045 steels. In addition using advanced microscope techniques such as scanning electron microscope, confocal laser scanning microscope, etc., we have captured the three dimensional images of flank wear. Using the wavelet filtering, the roughness profiles and groove sizes on the flank surface were analyzed and compared. Both 2-body and 3-body abrasion models were used as the basis to predict flank wear lands, which are then compared with the experimentally observed wear images. Finite Element (FE) models were developed to simulate the changes on the interfacial conditions as the flank wear progresses during cutting.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Wear"

1

Wakenell, J. F., S. G. Fritz, and J. A. Schwalb. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/10123688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hudson, Joel B. Beret Wear Policy. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada402249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ashby, M. F. Wear-mechanism modelling. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/6447701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bracuti, A. J., and R. Field. Wear Reducing Additives. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada410070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Black, Catherine. Women’s Wear Daily. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/itaa_proceedings-180814-554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wakenell, J. F., S. G. Fritz, and J. A. Schwalb. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5552534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schwalb, J. A. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/5552551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schwalb, J. A., and T. W. Ryan. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5637939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schwalb, J. A. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/10123538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jewsbury, P. The WAFTER (Wear and Friction Tester): A Versatile Wear and Friction Tester. Fort Belvoir, VA: Defense Technical Information Center, June 1987. http://dx.doi.org/10.21236/ada187596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography