Academic literature on the topic 'Wavelets (Mathematics) – Data processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wavelets (Mathematics) – Data processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wavelets (Mathematics) – Data processing"
Ahmadi, H., G. Dumont, F. Sassani, and R. Tafreshi. "Performance of Informative Wavelets for Classification and Diagnosis of Machine Faults." International Journal of Wavelets, Multiresolution and Information Processing 01, no. 03 (September 2003): 275–89. http://dx.doi.org/10.1142/s0219691303000189.
Full textAMINGHAFARI, MINA, and JEAN-MICHEL POGGI. "FORECASTING TIME SERIES USING WAVELETS." International Journal of Wavelets, Multiresolution and Information Processing 05, no. 05 (September 2007): 709–24. http://dx.doi.org/10.1142/s0219691307002002.
Full textTANAKA, NOBUATSU. "A SIMPLE BUT EFFICIENT PRECONDITIONING FOR CONJUGATE GRADIENT POISSON SOLVER USING HAAR WAVELET." International Journal of Wavelets, Multiresolution and Information Processing 04, no. 02 (June 2006): 273–84. http://dx.doi.org/10.1142/s0219691306001233.
Full textČASTOVÁ, NINA, DAVID HORÁK, and ZDENĚK KALÁB. "DESCRIPTION OF SEISMIC EVENTS USING WAVELET TRANSFORM." International Journal of Wavelets, Multiresolution and Information Processing 04, no. 03 (September 2006): 405–14. http://dx.doi.org/10.1142/s0219691306001336.
Full textDeVore, Ronald A., and Bradley J. Lucier. "Wavelets." Acta Numerica 1 (January 1992): 1–56. http://dx.doi.org/10.1017/s0962492900002233.
Full textPRABAKARAN, S., R. SAHU, and S. VERMA. "A WAVELET APPROACH FOR CLASSIFICATION OF MICROARRAY DATA." International Journal of Wavelets, Multiresolution and Information Processing 06, no. 03 (May 2008): 375–89. http://dx.doi.org/10.1142/s0219691308002409.
Full textMAITY, SANTI P., and MALAY K. KUNDU. "PERFORMANCE IMPROVEMENT IN SPREAD SPECTRUM IMAGE WATERMARKING USING WAVELETS." International Journal of Wavelets, Multiresolution and Information Processing 09, no. 01 (January 2011): 1–33. http://dx.doi.org/10.1142/s0219691311003931.
Full textAZAD, SARITA, R. NARASIMHA, and S. K. SETT. "MULTIRESOLUTION ANALYSIS FOR SEPARATING CLOSELY SPACED FREQUENCIES WITH AN APPLICATION TO INDIAN MONSOON RAINFALL DATA." International Journal of Wavelets, Multiresolution and Information Processing 05, no. 05 (September 2007): 735–52. http://dx.doi.org/10.1142/s0219691307002026.
Full textJIANG, QINGTANG. "BIORTHOGONAL WAVELETS WITH SIX-FOLD AXIAL SYMMETRY FOR HEXAGONAL DATA AND TRIANGLE SURFACE MULTIRESOLUTION PROCESSING." International Journal of Wavelets, Multiresolution and Information Processing 09, no. 05 (September 2011): 773–812. http://dx.doi.org/10.1142/s0219691311004316.
Full textBrysina, Iryna Victorivna, and Victor Olexandrovych Makarichev. "GENERALIZED ATOMIC WAVELETS." RADIOELECTRONIC AND COMPUTER SYSTEMS, no. 1 (February 23, 2018): 23–31. http://dx.doi.org/10.32620/reks.2018.1.03.
Full textDissertations / Theses on the topic "Wavelets (Mathematics) – Data processing"
Cena, Bernard Maria. "Reconstruction for visualisation of discrete data fields using wavelet signal processing." University of Western Australia. Dept. of Computer Science, 2000. http://theses.library.uwa.edu.au/adt-WU2003.0014.
Full textChen, Shuo. "MALDI-TOF MS data processing using wavelets, splines and clustering techniques." [Johnson City, Tenn. : East Tennessee State University], 2004. http://etd-submit.etsu.edu/etd/theses/available/etd-1112104-113123/unrestricted/ChenS121404f.pdf.
Full textTitle from electronic submission form. ETSU ETD database URN: etd-1112104-113123 Includes bibliographical references. Also available via Internet at the UMI web site.
Jung, Uk. "Wavelet-based Data Reduction and Mining for Multiple Functional Data." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5084.
Full textLeite, Ricardo Barroso 1984. "Compressão de imagens digitais combinando técnicas wavelet e wedgelet no ambiente de comunicações móveis." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260074.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-18T18:35:20Z (GMT). No. of bitstreams: 1 Leite_RicardoBarroso_M.pdf: 4189561 bytes, checksum: 31cbbc85c9fa0ec77e54c0fdfac29e3f (MD5) Previous issue date: 2011
Resumo: Os avanços em telecomunicações e o desenvolvimento dos equipamentos digitais impulsionaram diversas áreas de pesquisa relacionadas à codificação e compressão de imagens. Dentre as áreas de atuação destacam-se as aplicações para dispositivos móveis (celulares, smartphones, iPhones, iPads entre outros), que se caracterizam por baixas taxas de transmissão de dados. Entretanto, imagens codificadas com os padrões atualmente em estado-da-arte apresentam artefatos visuais característicos, como efeito de bloco e ringing. Para contornar a inabilidade das transformadas ortogonais em lidar com a geometria, é proposto na literatura o uso de dicionários wedgelet e da decomposição cartoon-textura. Nesse contexto, propõe-se um método de codificação híbrido wedgelet-wavelet inédito que preserva componentes de cartoon e textura, superando em qualidade visual ao uso de dicionários isolados e se aproximando do desempenho de sistemas de codificação completos, tais como o padrão JPEG 2000. Os ganhos de desempenho, principalmente em qualidade visual das imagens reconstruídas para baixas taxas de dados, indicam que a metodologia apresentada pode vir a ser incluída em sistemas de transmissão com restrições de largura de banda, como por exemplo a TV digital móvel
Abstract: Advances in telecommunications and the development of digital equipments have improved several research areas related to coding and image compression. Among these application fields are the mobile devices (cellphones, smartphones, iPhones, iPad, and others), characterized by low data transmission rates. However, images encoded by state-of-the-art standards present characteristic visual artifacts, like blocking and ringing effects. To surpass the disadvantages of orthogonal transforms in dealing with geometry, wedgelets dictionaries and cartoon-texture decomposition are proposed in literature. In this context, a new hybrid wedgelet-wavelet coding method that preserves cartoon and texture components is proposed, achieving better visual quality than the use of isolated dictionaries, approaching the performance of complete codification systems, such as the JPEG 2000. The performance gains, especially concerning visual quality of the reconstructed images using low data rates, show that this methodology might be adopted in restricted bandwidth transmission systems, such as the digital mobile TV
Mestrado
Telecomunicações e Telemática
Mestre em Engenharia Elétrica
Hua, Li. "Vector wavelet transforms for the coding of static and time-varying vector fields." Diss., Mississippi State : Mississippi State University, 2003. http://library.msstate.edu/etd/show.asp?etd=etd-05062003-120341.
Full textDe, Voir Christopher S. "Wavelet Based Feature Extraction and Dimension Reduction for the Classification of Human Cardiac Electrogram Depolarization Waveforms." PDXScholar, 2005. https://pdxscholar.library.pdx.edu/open_access_etds/1740.
Full textSilva, Carlos Alexandre Moreira da 1984. "Aplicação de tecnologias analíticas de processo e inteligência artificial para monitoramento e controle de processo de recobrimento de partículas em leito fluidizado." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266036.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-27T00:40:14Z (GMT). No. of bitstreams: 1 Silva_CarlosAlexandreMoreirada_D.pdf: 33350422 bytes, checksum: 046e0a2c090474593621166c81042136 (MD5) Previous issue date: 2015
Resumo: As indústrias química, alimentícia e farmacêutica têm empregado extensivamente a operação de fluidização em inúmeros processos, devido às suas características bastante atrativas, que possibilitam um contato efetivo entre a fase sólida e fluida, o que reflete na geração de altas taxas de transferência de calor e de massa. No entanto, o regime de fluidização borbulhante, o qual é condição de partida dos processos que envolvem esta operação, frequentemente é afetado pelas condições operacionais. As temperaturas elevadas, o conteúdo de umidade excessivo das partículas e a introdução de líquidos no leito fluidizado podem conduzir a instabilidades no regime fluidodinâmico e provocar o colapso parcial ou total do leito, reduzindo a eficiência do processo. A manutenção de condições estáveis do regime de fluidização durante processos de recobrimento de partículas em leitos fluidizados é de fundamental importância para garantir uma eficiência de recobrimento favorável e evitar a formação de zonas sem movimentação e aglomeração das partículas no leito, pois estes fatores indesejáveis comprometem a mistura entre as fases e conseqüentemente a qualidade do produto final. Dentro deste contexto, a utilização de um sistema de monitoramento e controle em tempo real de processos de recobrimento de partículas é extremamente desejável para permitir a operação de regimes de fluidização estáveis e garantir um filme de recobrimento uniforme e boas condições de escoabilidade dos sólidos. A presente proposta de tese de doutorado tem por objetivo aplicar a metodologia de análise espectral Gaussiana dos sinais de flutuação de pressão (Parise et al. (2008)), para o desenvolvimento de sistemas de controle baseados em inteligência artificial (Lógica Fuzzy), visando monitorar a estabilidade do regime de fluidização em processo de recobrimento de partículas. Comparações entre as condições fluidodinâmicas dos processos com e sem controle foram analisadas para operações em leito fluidizado em escala de laboratorio. Para avaliar a qualidade das partículas foi utilizada uma sonda de monitoramento in-line (Parsum IPP70), onde se pôde verificar os instantes iniciais da aglomeração indesejada. Com a aplicação desde sistema automatizado foi possível associar a estabilidade da fluidização em função do elevado grau de aglomeração. O ponto de parada do processo pôde ser definido em 420 µm (inicial em 360 µm) e a partir deste o mecanismo de recobrimento acontece simultaneamente com o de aglomeração. Os parâmetros de monitoramento do regime conseguiram não somente identificar a fase inicial da defluidização, como também foi possível a partir deles, controlar o processo por Lógica Fuzzy-PI e estabilizar a operação para altas taxas de suspensão atomizadas
Abstract: The chemical, food and pharmaceutical industries have extensively used fluidization operation in many cases, due to its very attractive features that enable effective contact between the solid and fluid phase, which reflects the generation of high heat and mass transfer rates. However, the bubbling fluidization regime, which is the starting condition of the processes involved in this operation is often affected by operating conditions. Elevated temperatures, excessive moisture content of the particles and introduction of liquid into the fluidized bed may lead to instabilities in the fluid-dynamic regime and cause partial or total collapse of the bed, reducing the process efficiency. The maintenance of stable conditions of the fluidization regime for particle coating processes in fluidized beds is of fundamental importance to ensure a favorable coating efficiency and to avoid zones without movement and agglomeration of particles in the bed, because these undesirable factors compromise the mixing between the phases and therefore the quality of the final product. Within this context, the use of a monitoring system and real-time control of particle coating processes is highly desirable to allow operation in stable fluidization regimes and to ensure a uniform coating film and good condition of flowability of the solids. This doctoral thesis aims to apply the Gaussian spectral analysis methodology of the pressure fluctuation signals (Parise et al. (2008)) , for the development of control systems based on artificial intelligence (Fuzzy Logic), to monitor the stability of fluidization regime particle coating process. Comparisons between the fluid dynamic conditions of the processes with and without control were analyzed for operations in fluidized bed laboratory scale. To assess early stages of unwanted agglomeration, a monitoring in-line probe (Parsum IPP70) was used. With the application of this automated system, it was possible to associate the stability of fluidization with a high degree of agglomeration. The process stopping point could be set at 420 µm (initial in 360 µm) and after, the coating mechanism takes place simultaneously with the agglomeration one. The monitoring parameters of the system were able to identify the initial phase of defluidization, as well as it was possible to control the process by using Fuzzy Logic and to stabilize the operation for high rates of the coating suspension atomized onto the bed
Doutorado
Engenharia de Processos
Doutor em Engenharia Química
Zhao, Fangwei. "Multiresolution analysis of ultrasound images of the prostate." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0028.
Full textShah, Vijay Pravin. "A wavelet-based approach to primitive feature extraction, region-based segmentation, and identification for image information mining." Diss., Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-07062007-134150.
Full textHloupis, Georgios. "Seismological data acquisition and signal processing using wavelets." Thesis, Brunel University, 2009. http://bura.brunel.ac.uk/handle/2438/3470.
Full textBooks on the topic "Wavelets (Mathematics) – Data processing"
Starck, J. L. Image processing and data analysis: The multiscale approach. Cambridge, U.K: Cambridge University Press, 1998.
Find full textHong-Ye, Gao, ed. Applied wavelet analysis with S-plus. New York: Springer, 1996.
Find full text1963-, Kunoth Angela, and SpringerLink (Online service), eds. Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.
Find full textBrenner, Martin J. On-line robust modal stability prediction using wavelet processing. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 1998.
Find full textP, Dikshit H., and Micchelli Charles A, eds. Proceedings of the Conference on Advances in Computational Mathematics: New Delhi, India, January 5-9, 1993. Singapore: World Scientific, 1994.
Find full textGlabisz, Wojciech. Pakietowa analiza falkowa w zagadnieniach mechaniki. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2004.
Find full textResnikoff, Howard L. Wavelet Analysis: The Scalable Structure of Information. New York, NY: Springer New York, 1998.
Find full textE, Newland D., and Newland D. E, eds. An introduction to random vibrations, spectral and wavelet analysis. 3rd ed. Harlow, Essex, England: Longman Scientific & Technical, 1993.
Find full textXiaomo, Jiang, ed. Intelligent infrastructure: Neural networks, wavelets, and chaos theory for intelligent transportation systems and smart structures. Boca Raton, FL: CRC Press, 2008.
Find full textComputational signal processing with wavelets. Boston: Birkhäuser, 1998.
Find full textBook chapters on the topic "Wavelets (Mathematics) – Data processing"
Acevedo, Liesner, Victor M. Garcia, Antonio M. Vidal, and Pedro Alonso. "Partial Data Replication as a Strategy for Parallel Computing of the Multilevel Discrete Wavelet Transform." In Parallel Processing and Applied Mathematics, 51–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14390-8_6.
Full textDyke, Phil. "Wavelets and Signal Processing." In Springer Undergraduate Mathematics Series, 175–208. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6395-4_7.
Full textMoraru, Luminița, Simona Moldovanu, Salam Khan, and Anjan Biswas. "Digital Image Processing Using Wavelets." In Applied Machine Learning for Smart Data Analysis, 71–96. First edition. | New York, NY : CRC Press/Taylor & Francis Group, 2019. | Series: Computational Intelligence in Engineering Problem Solving: CRC Press, 2019. http://dx.doi.org/10.1201/9780429440953-4.
Full textMizohata, Kiyoshi. "The Analysis of Big Data by Wavelets." In Trends in Mathematics, 589–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48812-7_74.
Full textGorawski, Marcin, and Pawel Marks. "Resumption of Data Extraction Process in Parallel Data Warehouses." In Parallel Processing and Applied Mathematics, 478–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11752578_58.
Full textGorawski, Marcin, and Rafal Malczok. "Distributed Spatial Data Warehouse." In Parallel Processing and Applied Mathematics, 676–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24669-5_88.
Full textKwedlo, Wojciech. "Parallelizing Evolutionary Algorithms for Clustering Data." In Parallel Processing and Applied Mathematics, 430–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11752578_52.
Full textSłota, Renata, Darin Nikolow, Marcin Kuta, Mariusz Kapanowski, Kornel Skałkowski, Marek Pogoda, and Jacek Kitowski. "Replica Management for National Data Storage." In Parallel Processing and Applied Mathematics, 184–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14403-5_20.
Full textFox, Geoffrey C., Mehmet S. Aktas, Galip Aydin, Hasan Bulut, Harshawardhan Gadgil, Sangyoon Oh, Shrideep Pallickara, Marlon E. Pierce, Ahmet Sayar, and Gang Zhai. "Grids for Real Time Data Applications." In Parallel Processing and Applied Mathematics, 320–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11752578_39.
Full textCai, Min, Istvan Jonyer, and Marcin Paprzycki. "Improving Parallelism in Structural Data Mining." In Parallel Processing and Applied Mathematics, 455–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11752578_55.
Full textConference papers on the topic "Wavelets (Mathematics) – Data processing"
Babin, Andrey V., and Elena D. Kotina. "Mathematical data processing of gated spect myocardial perfusion imaging with using wavelet analysis." In 2014 International Conference on Computer Technologies in Physical and Engineering Applications (ICCTPEA). IEEE, 2014. http://dx.doi.org/10.1109/icctpea.2014.6893254.
Full textDunaeva, Ksenia, and Olga Sagaidachnya. "Building of special wavelets for processing of seismic data." In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2793031.
Full textWang, Qingzheng, Xiaokang Yang, Huixin Wu, and Xuemei Liu. "Anisotropic Data-Specific Wavelets for Structure-aware Image Processing." In 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). IEEE, 2020. http://dx.doi.org/10.1109/icsip49896.2020.9339397.
Full textOltean, Marius, and Miranda Nafornita. "Efficient Pulse Shaping and Robust Data Transmission Using Wavelets." In 2007 IEEE International Symposium on Intelligent Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/wisp.2007.4447628.
Full textKishore, P. V. V., A. S. C. S. Sastry, C. B. S. Vamsi Krishna, Y. Vikas, and C. S. D. Aneesh. "Hyperspectral face data reduction and classification with multiresolution wavelets." In 2015 International Conference on Signal Processing And Communication Engineering Systems (SPACES). IEEE, 2015. http://dx.doi.org/10.1109/spaces.2015.7058261.
Full textSofi, Shabir Ahmad, and Roohie Naaz. "Data compression in Wireless visual Sensor networks using wavelets." In 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, 2016. http://dx.doi.org/10.1109/wispnet.2016.7566344.
Full textGentilhomme, T., T. Mannseth, D. Oliver, G. Caumon, and R. Moyen. "Smooth Multi-scale Parameterization for Integration of Seismic and Production Data Using Second-generation Wavelets." In ECMOR XIII - 13th European Conference on the Mathematics of Oil Recovery. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20143175.
Full textNusantari, Diah Oga, Deni Nasir Ahmad, and Ihwan Zulkarnain. "Community Service: Processing Data Statistically." In SEMANTIK Conference of Mathematics Education (SEMANTIK 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200827.108.
Full textSchwarz, Gottfried, and Mihai P. Datcu. "Wavelets: a universal tool for the processing of remote sensing data?" In Aerospace Remote Sensing '97, edited by Jacky Desachy and Shahram Tajbakhsh. SPIE, 1997. http://dx.doi.org/10.1117/12.295630.
Full textMichielin, F., G. Calvagno, P. Sartor, and O. Erdler. "A wavelets based de-ringing technique for DCT based compressed visual data." In 2013 20th IEEE International Conference on Image Processing (ICIP). IEEE, 2013. http://dx.doi.org/10.1109/icip.2013.6738227.
Full textReports on the topic "Wavelets (Mathematics) – Data processing"
Stirman, Charles. Applications of Wavelets to Radar Data Processing. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada239297.
Full text