Academic literature on the topic 'Wavelet coefficients'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wavelet coefficients.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wavelet coefficients"
DEBNATH, LOKENATH, and SARALEES NADARAJAH. "POPULAR WAVELET MODELS." International Journal of Wavelets, Multiresolution and Information Processing 05, no. 04 (July 2007): 655–66. http://dx.doi.org/10.1142/s0219691307001951.
Full textLEWALLE, JACQUES. "FIELD RECONSTRUCTION FROM SINGLE SCALE CONTINUOUS WAVELET COEFFICIENTS." International Journal of Wavelets, Multiresolution and Information Processing 07, no. 01 (January 2009): 131–42. http://dx.doi.org/10.1142/s0219691309002738.
Full textLiu, Chenhua, and Anhong Wang. "State-Aware High-Order Diffusion Method for Edge Detection in the Wavelet Domain." Symmetry 15, no. 4 (March 25, 2023): 803. http://dx.doi.org/10.3390/sym15040803.
Full textJiang, Tian Hua, and Jing Rong Peng. "Digital Simulation of Bridge Wind Fields Based on Wavelet Method." Advanced Materials Research 201-203 (February 2011): 2532–35. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.2532.
Full textCattani, Carlo. "Shannon Wavelets Theory." Mathematical Problems in Engineering 2008 (2008): 1–24. http://dx.doi.org/10.1155/2008/164808.
Full textJansen, Maarten. "Non-equispaced B-spline wavelets." International Journal of Wavelets, Multiresolution and Information Processing 14, no. 06 (November 2016): 1650056. http://dx.doi.org/10.1142/s0219691316500569.
Full textZhou, Guang-Dong, You-Liang Ding, and Ai-Qun Li. "Wavelet-Based Methodology for Evolutionary Spectra Estimation of Nonstationary Typhoon Processes." Mathematical Problems in Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/870420.
Full textYin, Ming, Wei Liu, Jun Shui, and Jiangmin Wu. "Quaternion Wavelet Analysis and Application in Image Denoising." Mathematical Problems in Engineering 2012 (2012): 1–21. http://dx.doi.org/10.1155/2012/493976.
Full textShumilov, Boris M. "An Algorithm with the Even-odd Splitting of the Wavelet Transform of Non-Hermitian Splines of the Seventh Degree." WSEAS TRANSACTIONS ON SIGNAL PROCESSING 18 (March 2, 2022): 25–36. http://dx.doi.org/10.37394/232014.2022.18.4.
Full textCattani, Carlo, and Aleksey Kudreyko. "Application of Periodized Harmonic Wavelets towards Solution of Eigenvalue Problems for Integral Equations." Mathematical Problems in Engineering 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/570136.
Full textDissertations / Theses on the topic "Wavelet coefficients"
Er, Chiangkai. "Speech recognition by clustering wavelet and PLP coefficients." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42742.
Full textAl-Jawad, Naseer. "Exploiting statistical properties of wavelet coefficients for image/video processing and analysis tasks." Thesis, University of Buckingham, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601354.
Full textAl-Jawad, Neseer. "Exploiting Statical Properties of Wavelet Coefficients for image/Video Processing and Analysis Tasks." Thesis, University of Exeter, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515492.
Full textChrápek, Tomáš. "Potlačování šumu v řeči založené na waveletové transformaci a rozeznávání znělosti segmentů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217506.
Full textJanajreh, Isam Mustafa II. "Wavelet Analysis of Extreme Wind Loads on Low-Rise Structures." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30414.
Full textPh. D.
Konczi, Róbert. "Digitální hudební efekt založený na waveletové transformaci jako plug-in modul." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-218981.
Full textKato, Jien, Toyohide Watanabe, Sebastien Joga, Rittscher Jens, Blake Andrew, ジェーン 加藤, and 豊英 渡邉. "An HMM-based segmentation method for traffic monitoring movies." IEEE, 2002. http://hdl.handle.net/2237/6744.
Full textStamos, Dimitrios Georgios. "Experimental Analysis of the Interaction of Water Waves With Flexible Structures." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/27567.
Full textPh. D.
Morand, Claire. "Segmentation spatio-temporelle et indexation vidéo dans le domaine des représentations hiérarchiques." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13888/document.
Full textThis thesis aims at proposing a solution of scalable object-based indexing of HD video flow compressed by MJPEG2000. In this context, on the one hand, we work in the hierarchical transform domain of the 9/7 Daubechies' wavelets and, on the other hand, the scalable representation implies to search for multiscale methods, from low to high resolution. The first part of this manuscript is dedicated to the definition of a method for automatic extraction of objects having their own motion. It is based on a combination of a robust global motion estimation with a morphological color segmentation at low resolution. The obtained result is then refined following the data order of the scalable flow. The second part is the definition of an object descriptor which is based on the multiscale histograms of the wavelet coefficients. Finally, the performances of the proposed method are evaluated in the context of scalable content-based queries
Zhao, Fangwei. "Multiresolution analysis of ultrasound images of the prostate." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0028.
Full textBooks on the topic "Wavelet coefficients"
Liandrat, J. Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1990.
Find full textBook chapters on the topic "Wavelet coefficients"
Delyon, Bernard, and Anatoli Juditsky. "Estimating Wavelet Coefficients." In Wavelets and Statistics, 151–68. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2544-7_10.
Full textResnikoff, Howard L., and Raymond O. Wells. "Wavelet Calculus and Connection Coefficients." In Wavelet Analysis, 236–65. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0593-7_10.
Full textBratlie, Jostein, Rune Dalmo, and Børre Bang. "Wavelet Compression of Spline Coefficients." In Numerical Methods and Applications, 246–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15585-2_27.
Full textNawotki, A. "Exploiting Wavelet Coefficients for Modifying Functions." In Geometric Modelling, 281–92. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6270-5_16.
Full textSatti, Shahid M., Leon Denis, Adrian Munteanu, Jan Cornelis, and Peter Schelkens. "Modeling Wavelet Coefficients for Wavelet Subdivision Transforms of 3D Meshes." In Advanced Concepts for Intelligent Vision Systems, 267–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17688-3_26.
Full textGuoxiang, Song, and Zhao Ruizhen. "Three Novel Models of Threshold Estimator for Wavelet Coefficients." In Wavelet Analysis and Its Applications, 145–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45333-4_19.
Full textCathier, Pascal. "Iconic Feature Registration with Sparse Wavelet Coefficients." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 694–701. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11866763_85.
Full textAbramovich, Felix, and Yoav Benjamini. "Thresholding of Wavelet Coefficients as Multiple Hypotheses Testing Procedure." In Wavelets and Statistics, 5–14. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2544-7_1.
Full textJansen, Maarten, and Adhemar Bultheel. "Geometrical Priors for Noisefree Wavelet Coefficients in Image Denoising." In Bayesian Inference in Wavelet-Based Models, 223–42. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0567-8_15.
Full textCollineau, Serge. "Some remarks about the scalograms of wavelet transform coefficients." In Wavelets and Their Applications, 325–29. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1028-0_15.
Full textConference papers on the topic "Wavelet coefficients"
Cade, Iain S., Patrick S. Keogh, M. Necip Sahinkaya, and Clifford R. Burrows. "Wavelet Coefficient Characteristics During Rotor/Auxiliary Bearing Contact in Active Magnetic Bearing Systems." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35362.
Full textSvenson, T. D., Jo A. Ward, and K. J. Harrison. "Uniform approximation of wavelet coefficients." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1996. http://dx.doi.org/10.1117/12.255231.
Full textLimei Zhang and Zhongxuan Luo. "Subdivision wavelet with stochastic coefficients." In 2008 7th World Congress on Intelligent Control and Automation. IEEE, 2008. http://dx.doi.org/10.1109/wcica.2008.4593081.
Full textWale, Sachin S., and Vinayak G. Asutkar. "Evaluation of wavelet connection coefficients by wavelet-Galerkin approximation." In 2014 Annual IEEE India Conference (INDICON). IEEE, 2014. http://dx.doi.org/10.1109/indicon.2014.7030425.
Full textChae, Jong J., and B. S. Manjunath. "Robust embedded data from wavelet coefficients." In Photonics West '98 Electronic Imaging, edited by Ishwar K. Sethi and Ramesh C. Jain. SPIE, 1997. http://dx.doi.org/10.1117/12.298463.
Full textKeinert, Fritz, and Soon-Geol Kwon. "High-accuracy reconstruction from wavelet coefficients." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1996. http://dx.doi.org/10.1117/12.255230.
Full textSinghal, Anuradha, and Punam Bedi. "Steganography using Cuckoo Optimized Wavelet Coefficients." In the Third International Symposium. New York, New York, USA: ACM Press, 2015. http://dx.doi.org/10.1145/2791405.2791500.
Full textCristea, Daniela-Ecaterina. "Statistical modeling of texture wavelet coefficients." In 2012 10th International Symposium on Electronics and Telecommunications (ISETC). IEEE, 2012. http://dx.doi.org/10.1109/isetc.2012.6408126.
Full textZhou, Guo-Rui, Wen-Jiang Wang, and Shi-Xin Sun. "Phase Properties of Complex Wavelet Coefficients." In 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC). IEEE, 2009. http://dx.doi.org/10.1109/icicic.2009.295.
Full textPushpavathi, K. P., and B. Kanmani. "FIR Filter Design using Wavelet Coefficients." In 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). IEEE, 2019. http://dx.doi.org/10.1109/wispnet45539.2019.9032718.
Full textReports on the topic "Wavelet coefficients"
Gao, Zhenguang, Andrey Andreev, and Robert C. Sharpley. Data Compression and Elementary Encoding of Wavelet Coefficients. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada640181.
Full textAbdallah, Mahmoud A., and Ram-Nandan P. Singh. Image Data Compression by Adaptive Thresholding of Wavelet Coefficients. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada375823.
Full textRomine, C. H., and B. W. Peyton. Computing connection coefficients of compactly supported wavelets on bounded intervals. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/661583.
Full text