Academic literature on the topic 'Wavelength division multiplexing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wavelength division multiplexing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wavelength division multiplexing"

1

Ye, Mengyuan, Yu Yu, Jinghui Zou, Weili Yang, and Xinliang Zhang. "On-chip multiplexing conversion between wavelength division multiplexing–polarization division multiplexing and wavelength division multiplexing–mode division multiplexing." Optics Letters 39, no. 4 (February 4, 2014): 758. http://dx.doi.org/10.1364/ol.39.000758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stokes, L. F. "Towards Wavelength Division Multiplexing." IEEE Circuits and Devices Magazine 12, no. 1 (January 1996): 28. http://dx.doi.org/10.1109/mcd.1996.481208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, Huaxi, Zhengyu Wang, Bowen Zhang, Yintang Yang, and Kun Wang. "Time-Division-Multiplexing–Wavelength-Division-Multiplexing-Based Architecture for ONoC." Journal of Optical Communications and Networking 9, no. 5 (April 13, 2017): 351. http://dx.doi.org/10.1364/jocn.9.000351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Toba, Hiromu, and Karuhiro Oda. "Wavelength-Division-Multiplexing Transmission Systems." Review of Laser Engineering 24, Supplement (1996): 268–71. http://dx.doi.org/10.2184/lsj.24.supplement_268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Slaveski, F., J. Sloss, M. Atiquzzaman, Hung Nguyen, and Due Ngo. "Optical fiber wavelength division multiplexing." IEEE Aerospace and Electronic Systems Magazine 18, no. 8 (August 2003): 3–8. http://dx.doi.org/10.1109/maes.2003.1224965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nahar, Sabiqun, Md Redowan Mahmud Arnob, and Mohammad Nasir Uddin. "Empirical analysis of polarization division multiplexing-dense wavelength division multiplexing hybrid multiplexing techniques for channel capacity enhancement." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 1 (February 1, 2023): 590. http://dx.doi.org/10.11591/ijece.v13i1.pp590-600.

Full text
Abstract:
<span>This paper exemplifies dense wavelength division multiplexing combined with polarization division multiplexing with C-band frequency range-based single-mode fiber. In the proposed link, 32 independent channels with 16 individual wavelengths are multiplexed with two different angles of polarization. Each carrying 130 Gbps dual-polarization data with 200 GHz channel spacing claiming a net transmission rate of 4.16 Tbits/s with spectral efficiency of 69% with 20% side-mode-suppression-ratio (SMSR) and optical signal to noise ratio (OSNR) 40.7. The performance of the proposed techniques has been analyzed using optimized system parameters securing a minimum bit error rate (BER) 10-9 at a transmission distance up to 50 km.</span>
APA, Harvard, Vancouver, ISO, and other styles
7

Fazea, Yousef, Angela Amphawan, and Hussein Abualrejal. "Wavelength Division Multiplexing-Mode Division Multiplexing for MMF in Access Networks." Advanced Science Letters 23, no. 6 (June 1, 2017): 5448–51. http://dx.doi.org/10.1166/asl.2017.7397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Malekmohammadi, Amin, Ahmad Fauzi Abas, Mohamad Khazani Abdullah, Ghafour Amouzad Mahdiraji, Makhfudzah Mokhtar, and Mohd Fadlee A. Rasid. "Absolute polar duty cycle division multiplexing over wavelength division multiplexing system." Optics Communications 282, no. 21 (November 2009): 4233–41. http://dx.doi.org/10.1016/j.optcom.2009.07.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dennis, T., E. A. Curtis, C. W. Oates, L. Hollberg, and S. L. Gilbert. "Wavelength references for 1300-nm wavelength-division multiplexing." Journal of Lightwave Technology 20, no. 5 (May 2002): 804–10. http://dx.doi.org/10.1109/jlt.2002.1007933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Janagal, Mamta, Gurpreet Kaur, Varinder Mandley, and Tanvi Sood. "Investigation the Effect of Channel Spacing for Long Distance Communication." CGC International Journal of Contemporary Technology and Research 2, no. 1 (December 30, 2019): 45–47. http://dx.doi.org/10.46860/cgcijctr.2019.12.20.45.

Full text
Abstract:
In this paper, the impact of different channel spacing on proposed system setup is investigated for long distance communication. This wavelength division multiplexing (WDM), dense wavelength division multiplexing (DWDM) and ultradense wavelength division multiplexing (UDWDM) is evaluated by considering the signal quality factor, bit error rate, optical gain, and received power for different signal input power and for distance. It is observed that at -5 dBm of signal input power the system covers 130 km with acceptable BER (10-8) and Q-factor (14dB).
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Wavelength division multiplexing"

1

Parker, Michael Charles. "Dynamic holograms for wavelength division multiplexing." Thesis, University of Cambridge, 1997. https://www.repository.cam.ac.uk/handle/1810/251616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmadvand, Nima. "Wavelength division multiplexing cross connect networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ30066.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Srinivas, B. S. "Wavelength division multiplexing technology and systems /." This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03042009-040832/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Srinivas, Bindignavile S. "Wavelength division multiplexing technology and systems." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/41416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cowin, Michael. "Integrated polymeric components for wavelength division multiplexing." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tohme, Henri Edouard. "Dual channel bidirectional wavelength division multiplexing datalink." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43061.

Full text
Abstract:
Wavelength division multiplexing two channels on one fiber is one approach that enables us to make use of the extremely large bandwidth of optical fibers. We start with an analysis of optical fibers, sources, detectors, filters and wavelength division ,multiplexers. Then, using the knowledge from the experimental data, we design a 20 km bidirectional WDM datalink. The design is backed up with theory and measurements. Fiber to the home is one of many applications that makes use of such a design.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
7

OLIVIERI, BRUNO SAPHA. "INTERROGATION SYSTEM OF FIBER BRAGG GRATING SENSORS USING TIME DIVISION MULTIPLEXING AND WAVELENGTH DIVISION MULTIPLEXING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5905@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Um sistema de interrogação de sensores a rede de Bragg utilizando multiplexação no tempo e multiplexação no comprimento de onda é proposto e demonstrado. O sistema apresenta uma solução para a medição de grandezas associadas ao espectro de reflexão de redes de Bragg, possibilitando o aumento do número de sensores a rede de Bragg monitorados através de grandes distâncias em uma mesma fibra óptica, sem um aumento significativo dos custos. O aspecto inovador deste sistema reside na particular associação das seguintes características: o uso de fonte pulsada de banda larga, a disposição, em série, de um grande número de sensores a rede de Bragg de baixa refletividade, a técnica de reutilização dos mesmos comprimentos de onda nominais em grupos contendo vários sensores com comprimentos de onda nominais distintos e um processo de filtragem espectral e análise de sinais pulsados utilizando o filtro DWDM comercial. Aspectos teóricos e experimentais considerando os princípios de trabalho desta técnica são discutidos. Comparações entre resultados simulados e experimentais do sistema implantado mostram boa concordância. Resultados experimentais apontam uma faixa dinâmica de 1,7 nm, podendo encontrar aplicações em medição de temperatura com uma faixa de 150°C. Incertezas com valores médios abaixo de 20 picometros foram obtidas. Simulações experimentais apontam a possibilidade de utilização de um número de aproximadamente 70 sensores com 0,4% de refletividade, por comprimento de onda. Considerando a largura de banda do dispositivo DWDM (1539- 1565 nm) utilizado neste sistema, e um espaçamento de 7 nm por comprimento de onda nominal de sensor, extrapolações mostram que este número pode chegar a 210 sensores em três diferentes comprimentos de onda nominais de sensor. Considerando as bandas C e L este número pode chegar a aproximadamente 1000 sensores em 14 diferentes comprimentos de onda nominais de sensor.
An interrogation system of fiber Bragg grating sensors using time division multiplexing and wavelength division multiplexing is proposed and demonstrated. The system presents a solution to measure the magnitudes associated to the reflection spectrum of the fiber Bragg gratings, making possible to increase the number of the Bragg gratings sensors monitored through large distances at the same fiber optic, without a great increase in the costs. The innovative aspect of this system is the particular association of the following characteristics: the use of a pulsed broad band source, the disposition, in series, of a large number of low reflectivity Bragg gratings sensors, the reusing technique of the same nominal wavelengths in groups containing several numbers of sensors with distinct nominal wavelengths, and a spectral analyzing and filtering process of pulsed signals using a commercial DWDM filter. Theoretical and experimental aspects regarding the working principles of this technique are discussed. Comparisons between experimental and simulated results show a good agreement. Experimental results indicate that a dynamic range of 1,7 nm was obtained. It can be used in temperature measurement systems, with a 150°C range. Uncertainties equivalent to approximately 20 picometers was obtained. Experimental simulations indicate that it would be possible to use a number of approximately 70 sensors with 0,4% reflectivity at each nominal sensor wavelength. Considering the DWDM filter bandwidth (1539-1565 nm) used in this system, and a spectral separation of 7 nm by nominal sensor wavelength, extrapolations indicate that a number of 210 sensors can be obtained, in three different nominal sensor wavelength. Using the C-band and the L-band, a number of 1000 sensors can be obtained, in fourteen different nominal sensor wavelength.
APA, Harvard, Vancouver, ISO, and other styles
8

Buyuksahin, Oncel F. Feza. "Modulation Formats For Wavelength Division Multiplexing (wdm) Systems." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611039/index.pdf.

Full text
Abstract:
Optical communication networks are becoming the backbone of both national and international telecommunication networks. With the progress of optical communication systems, and the constraints brought by WDM transmissions and increased bit rates, new ways to convert the binary data signal on the optical carrier have been proposed. There are different factors that should be considered for the right choice of modulation format, such as information spectral density (ISD), power margin, and tolerance against group-velocity dispersion (GVD) and against fiber nonlinear effects like self-phase modulation (SPM), cross-phase modulation (XPM), four-wave mixing (FWM), and stimulated Raman scattering (SRS). In this dissertation, the several very important modulation formats such as Non Return to Zero (NRZ), Return to Zero (RZ), Chirped Return to Zero (CRZ), Carrier Suppressed Return to Zero (CSRZ), Differential Phase Shift Keying (PSK) and Carrier Suppressed Return to Zero- Differential Phase Shift Keying (CSRZ-DPSK) will be detailed and compared. In order to make performance analysis of such modulation formats, the simulation will be done by using VPItransmissionMakerTM WDM software.
APA, Harvard, Vancouver, ISO, and other styles
9

Lepley, Jason J. "Frequency stabilisation for dense wavelength division multiplexing systems." Thesis, University of Essex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qiao, Jie. "Dense wavelength division multiplexing (DWDM) for optical networks." Access restricted to users with UT Austin EID, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3035169.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Wavelength division multiplexing"

1

Grobe, Klaus, and Michael Eiselt, eds. Wavelength Division Multiplexing. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118755068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wavelength division multiplexing. New York: Prentice-Hall, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hans-Jörg, Thiele, and Nebeling Marcus, eds. Coarse wavelength division multiplexing: Technologies and applications. Boca Raton: CRC Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zang, Hui. WDM mesh networks: Management and survivability. Boston: Kluwer Academic Publishers, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giovanni, Cancellieri, and Chiaraluce Franco, eds. Wavelength division multiple access optical networks. Boston: Artech House, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhiyong, Tao, and Yunxiang, eds. Guang bo fen fu yong ji shu. Beijing Shi: Beijing you dian da xue chu ban she, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

A, Nolan Daniel, ed. WDM components. Washington, DC: Optical Society of America, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bandyopadhyay, Subir. Dissemination of information in optical networks: From technology to algorithms. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kartalopoulos, Stamatios V. DWDM: Networks, devices, and technology. Piscataway, N.J: IEEE Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yŏnʼguwŏn, Hanʼguk Chŏnja Tʻongsin, and Korea (South) Chŏngbo Tʻongsinbu, eds. Tʻerabitʻŭkŭp WDM kwang chŏnsong sisŭtʻem kisul e kwanhan yŏnʼgu =: A study of terabit WDM optical transmission system technology. [Taejŏn Kwangyŏksi]: ETRI, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Wavelength division multiplexing"

1

Weik, Martin H. "wavelength-division multiplexing." In Computer Science and Communications Dictionary, 1915. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_21033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khlifi, Yassine, Noureddine Boudriga, and Mohammad S. Obaidat. "Wavelength Division Multiplexing." In Handbook of Computer Networks, 606–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118256053.ch40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weik, Martin H. "dense wavelength-division multiplexing." In Computer Science and Communications Dictionary, 385. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_4724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Keiser, Gerd. "Wavelength Division Multiplexing (WDM)." In Fiber Optic Communications, 383–435. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4665-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Jianjun, and Nan Chi. "Super-Nyquist Wavelength Division Multiplexing System." In Digital Signal Processing In High-Speed Optical Fiber Communication Principle and Application, 125–56. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3098-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pal, Ajit, and Umesh Patel. "Routing and Wavelength Assignment in Wavelength Division Multiplexing Networks." In Distributed Computing - IWDC 2004, 391–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30536-1_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maier, Guido, Mario Martinelli, Achille Pattavina, and Matteo Pierpaoli. "Performance Analysis of Wavelength Division Multiplexing Mesh Networks." In Optical Networking, 52–63. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0525-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Janz, Siegfried. "Silicon-Based Waveguide Technology for Wavelength Division Multiplexing." In Topics in Applied Physics, 323–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39913-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kakati, Dhiman, and Subhash C. Arya. "Design of Dense Wavelength Division Multiplexing System Using DQPSK Modulation Format." In Proceedings of the International Conference on Computing and Communication Systems, 217–23. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6890-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hyde, R. L., D. Barbier, A. Kevorkian, J. M. P. Delavaux, J. Bismuth, A. Othonos, M. Sweeny, and J. M. Xu. "Optical Amplification, Lasing and Wavelength Division Multiplexing Integrated in Glass Waveguides." In Future Trends in Microelectronics, 337–51. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1746-0_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Wavelength division multiplexing"

1

Borrelli, N. F., C. Smith, and D. C. Allan. ""Laser-Induced Densification in Silica and Binary Silica Systems"." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Riant, Isabelle, Laurent Gasca, Pierre Sansonetti, Gérard Bourret, and José Chesnoy. "Gain Equalisation with Optimised Slanted Bragg Grating on Adapted Fibre for Multi-channel Long-haul Submarine Transmission." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eldada, Louay. "Polymer-Based Filters for DWDM Applications." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sugizaki, Ryuichi, Youichi Akasaka, Yoshihiro Emori, Shu Namiki, and Yoshihisa Suzuki. "Polarization insensitive broadband transparent DCF module." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhatia, Vikram, K. P. Reddy, Marlene A. Marro, and David L. Weidman. "Fiber Bragg Gratings for 50 GHz Add/Drop Multiplexing Applications." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cai, J. X., K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg. "Sampled Nonlinearly-Chirped Fiber-Bragg-Grating for the Tunable Dispersion Compensation of Many WDM Channels Simultaneously." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monro, Tanya M., D. J. Richardson, N. G. R. Broderick, and P. J. Bennett. "Dispersion in holey optical fibers." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grüner-Nielsen, Lars, Stig Nissen Knudsen, Bent Edvold, Dorte Magnussen, Torben Veng, and C. Christian Larsen. "Design and manufacture of dispersion compensating fibre for simultaneous compensation of dispersion and dispersion slope." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Madsen, C. K., G. Lenz, T. N. Nielsen, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez. "Integrated Optical Allpass Filters for Dispersion Compensation." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, L. Y., E. L. Goldstein, and R. W. Tkach. "Free-Space Micromachined Optical Switches with Submillisecond Switching Time for Large-Scale Optical Crossconnects." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.152.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Wavelength division multiplexing"

1

Deri, R. J., A. J. De Groot, and R. E. Haigh. Feasibility of optically interconnected parallel processors using wavelength division multiplexing. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/236212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Patel, R. Development of Components for Wavelength Division Multiplexing Over Parallel Optical Interconnects. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/15005999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yablonovitch, Eli. Multi-Wavelength Optical Code-Division-Multiplexing Based on Passive, Linear, Unitary Filters. Fort Belvoir, VA: Defense Technical Information Center, November 1998. http://dx.doi.org/10.21236/ada361203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fredette, A., and J. Lang, eds. Link Management Protocol (LMP) for Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems. RFC Editor, October 2005. http://dx.doi.org/10.17487/rfc4209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, F., X. Zhang, A. Farrel, O. Gonzalez de Dios, and D. Ceccarelli. RSVP-TE Signaling Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks. RFC Editor, March 2016. http://dx.doi.org/10.17487/rfc7792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, X., H. Zheng, R. Casellas, O. Gonzalez de Dios, and D. Ceccarelli. GMPLS OSPF-TE Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks. RFC Editor, May 2018. http://dx.doi.org/10.17487/rfc8363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, F., X. Fu, D. Ceccarelli, and I. Hussain. Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks. Edited by O. Gonzalez de Dios and R. Casellas. RFC Editor, November 2015. http://dx.doi.org/10.17487/rfc7698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kazovsky, Leonid G., Ian White, Matt Rogge, Kapil Shrikhande, and Erie Hu. Internet Protocol-Hybrid Opto-Electronic Ring Network (IP-HORNET): A Novel Internet Protocol-Over-Wavelength Division Multiplexing (IP-Over-WDM) Multiple-Access Metropolitan Area Network (MAN). Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada415560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography