Academic literature on the topic 'Waveguide gratings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Waveguide gratings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Waveguide gratings"
Meudt, Maik, Andreas Henkel, Maximilian Buchmüller, and Patrick Görrn. "A Theoretical Description of Node-Aligned Resonant Waveguide Gratings." Optics 3, no. 1 (March 4, 2022): 60–69. http://dx.doi.org/10.3390/opt3010008.
Full textShibayama, Jun, Junji Yamauchi, and Hisamatsu Nakano. "Analysis of Plasmonic Waveguides and Gratings Using Implicit Finite-Difference Methods." Advances in OptoElectronics 2011 (September 6, 2011): 1–6. http://dx.doi.org/10.1155/2011/287284.
Full textChen, Jian, Ji-Jun Feng, Hai-Peng Liu, Wen-Bin Chen, Jia-Hao Guo, Yang Liao, Jie Shen, Xue-Feng Li, Hui-Liang Huang, and Da-Wei Zhang. "Femtosecond Laser Modification of Silica Optical Waveguides for Potential Bragg Gratings Sensing." Materials 15, no. 18 (September 7, 2022): 6220. http://dx.doi.org/10.3390/ma15186220.
Full textGu, Yitong, Ning Wang, Haorui Shang, Fei Yu, and Lili Hu. "Investigations on Grating-Enhanced Waveguides for Wide-Angle Light Couplings." Nanomaterials 12, no. 22 (November 12, 2022): 3991. http://dx.doi.org/10.3390/nano12223991.
Full textGao, Xiaoyu, Shengjie Cao, Yongqiu Zheng, and Jiandong Bai. "A Compact Fabry–Pérot Acoustic Sensor Based on Silicon Optical Waveguide Bragg Gratings." Photonics 10, no. 8 (July 25, 2023): 861. http://dx.doi.org/10.3390/photonics10080861.
Full textCasalboni, M., L. Dominici, V. Foglietti, F. Michelotti, E. Orsini, C. Palazzesi, F. Stella, and P. Prosposito. "Bragg Grating Optical Filters by UV Nanoimprinting." Journal of Nanomaterials 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/186429.
Full textČehovski, Marko, Jing Becker, Ouacef Charfi, Hans-Hermann Johannes, Claas Müller, and Wolfgang Kowalsky. "Single-Mode Polymer Ridge Waveguide Integration of Organic Thin-Film Laser." Applied Sciences 10, no. 8 (April 18, 2020): 2805. http://dx.doi.org/10.3390/app10082805.
Full textSoltani, Mohamadreza. "Enhancement of second harmonic generation using a novel asymmetric metal–graphene–insulator–metal plasmonic waveguide." Journal of Nonlinear Optical Physics & Materials 27, no. 01 (March 2018): 1850003. http://dx.doi.org/10.1142/s0218863518500030.
Full textMarzouk, Ibtihel, David Riassetto, Alain Morand, Davide Bucci, and Michel Langlet. "Study and Optimization of a Micro-Structured Waveguiding and Fluorescent Sol-Gel Architecture." Molecules 28, no. 12 (June 7, 2023): 4608. http://dx.doi.org/10.3390/molecules28124608.
Full textMissinne, Jeroen, Nuria Teigell Benéitez, Marie-Aline Mattelin, Alfredo Lamberti, Geert Luyckx, Wim Van Paepegem, and Geert Van Steenberge. "Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths." Sensors 18, no. 8 (August 18, 2018): 2717. http://dx.doi.org/10.3390/s18082717.
Full textDissertations / Theses on the topic "Waveguide gratings"
Huang, Xuefeng. "Ion implanted optical waveguides and laser ablated Bragg waveguide gratings." Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364140.
Full textWang, Xu. "Silicon photonic waveguide Bragg gratings." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45687.
Full textLi, Lifeng. "Application of diffraction grating theory to analysis and fabrication of waveguide gratings." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184388.
Full textLiu, Qing. "Design and fabrication of long-period waveguide gratings /." access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ee-b19887887a.pdf.
Full text"Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references.
Koussi, Erieta-Katerina. "Micro patterning of complex Waveguide Resonant Gratings (WRG)." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSES027.
Full textThis PhD thesis entitled “Micro patterning of complex Waveguide Resonant Gratings (WRG)” studies the optical sensing devices, which involve various photolithography techniques and nanotechnology tools with clean room processes for their fabrication. These devices, in their classic form, consist of a diffraction grating formed by microscopic lines engraved periodically on a photosensitive surface, which is deposited on a dielectric layer, the waveguide. Both layers are supported on a substrate. To enable sensing functions, the diffraction grating must be extremely selective, i.e. it must have the ability to reject all the received spectral components, while selecting only one wavelength to couple it into the waveguide. After the out coupling, a reflection with a very large amplitude and great finesse occurs. Different types of components depending on the intended application can be produced on different types of substrates, materials or geometries (plane, cylindrical).One of the projects of this thesis engineers WRG on the interior walls of a tube to couple TE and TM modes into the waveguide. The fabrication is achieved by a specially designed radial phase mask, whereas the optical function is highlighted by the use of a conical mirror, able to reflect light isotropically for mode excitation. In addition, innovative materials can be used for their integration into flat WRG. One of the materials under study is the Vanadium Dioxide (VO2), which undergoes first-order phase transitions (Insulator to Metal) at low and high temperatures respectively. The fabrication of such a delicate compound is completed by two different synthesis methods, the Pulsed Laser Deposition and Magnetron Sputtering. The ability to induce resonance by thermally triggering the device is intended for laser safety applications to avoid damage during overheating
MORIWAKI, Osamu, Ken-ichi SATO, Hiroshi HASEGAWA, and Shoji KAKEHASHI. "Formulation of Waveguide Connection for Waveband MUX/DEMUX Using Concatenated Arrayed-Waveguide Gratings." Institute of Electronics, Information and Communication Engineers, 2007. http://hdl.handle.net/2237/14992.
Full textGargallo, Jaquotot Bernardo Andrés. "Advanced arrayed waveguide gratings: models, design strategies and experimental demonstration." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/74646.
Full text[ES] La presente tesis se ha centrado en el modelado, diseño y demostración experimental del dispositivo Arrayed Waveguide Grating (AWG) con funcionalidades avanzadas. Primero, usando la formulación existente sobre AWGs se aportan ecuaciones y librerías de diseño, y se validan experimentalmente por medio de dispositivos fabricados en tecnologías de Indium Phosphide (InP) y Silicon-on-insulator (SOI). Después, se reporta un modelo y demostración experimental para un Interleave-Chirped Arrayed Waveguide Grating (IC-AWG), el cual es capaz de procesar señales ópticas como demultiplexor WDM, divisor de polarización y componente de diversidad de fase en un único dispositivo. Este dispositivo fue fabricado y probado en tecnología de InP. El segundo AWG innovador demostrado en esta tesis es de tipo Reflectante (R-AWG), cuyo diseño permite modificar la forma espectral del canal y cambiar su resolución espectral, incluyendo una demostración de diseño y fabricación de este dispositivo en tecnología de SOI. El último AWG que incluye conceptos innovadores es uno sintonizable por Acoustic Waves (AWGSAW), donde los canales espectrales pueden ser sintonizados por medio del efecto acusto-óptico. Dicho dispositivo fue fabricado en tecnología de Aluminium Gallium Arsenide (AlGaAs), y se han incluido medidas experimentales para validar el concepto y el flujo de diseño. En paralelo junto con esta tesis se han desarrollado diferentes diseños para el AWG en un amplio número de tecnologías (genéricas) y plataformas de fabricación, implementadas en unas librerías de diseño para uno de los softwares m¿as utilizados para el diseño de circuitos integrados ópticos, siendo actualmente el estándar de facto. Dichas librerías de diseño han sido licenciadas a la compañía VLC Photonics S.L., spin-off de la UPV.
[CAT] La present tesi ha estat centrada en el modelatge, disseny i demostració experimental del dispositiu Arrayed Waveguide Grating (AWG) amb funcionalitats avançades. Primer, usant la formulació existent sobre AWGs s'aporten equacions i llibreries de disseny, i es validen experimentalment per mitjà de dispositius fabricats en tecnologies de Indium Phosphide (InP) i Silicon-on-insulator (SOI). Després, es reporta un model i demostració experimental per a un Interleave-Chirped Arrayed Waveguide Grating (IC-AWG), el qual és capaç de processar senyals òptiques com demultiplexor WDM, divisor de polarització i component de diversitat de fase en un únic dispositiu. Aquest dispositiu va ser fabricat i provat en tecnologia de InP. El segon AWG innovador demostrat en aquesta tesi és de tipus Reflector (R-AWG), amb un disseny que permet modificar la forma espectral del canal i canviar la seua resolució espectral, incloent una demostració de disseny i fabricació d'aquest dispositiu en tecnologia de SOI. L'últim AWG que inclou conceptes innovadors és un sintonitzable per Acoustic Waves (AWG-SAW), on els canals espectrals poden ser sintonitzats per mitjà de l'efecte acusto-òptic. Aquest dispositiu va ser fabricat en tecnologia de Aluminium Gallium Arsenide (AlGaAs), i s'han inclòs mesures experimentals per validar el concepte i el flux de disseny. En paral.lel juntament amb aquesta tesi s'han desenvolupat diferents dissenys per al AWG en un ampli nombre de tecnologies (genèriques) i plataformes de fabricació, implementades en unes llibreries de disseny per a un dels programaris més utilitzats per al disseny de circuits integrats òptics, sent actualment l'estàndard de facto. Aquestes llibreries de disseny han estat llicenciades a la companyia VLC Photonics S.L., spin-off de la UPV.
Gargallo Jaquotot, BA. (2016). Advanced arrayed waveguide gratings: models, design strategies and experimental demonstration [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/74646
TESIS
Li, Weizhuo. "Wavelength Multiplexing of MEMS Pressure and Temperature Sensors Using Fiber Bragg Gratings and Arrayed Waveguide Gratings." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1123972586.
Full textTsalamanis, Ioannis. "Applications of arrayed waveguide gratings in future hybrid access network topologies." Thesis, University of Essex, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435595.
Full textRogers, Helen L. "Direct UV-written Bragg gratings for waveguide characterisation and advanced applications." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/352169/.
Full textBooks on the topic "Waveguide gratings"
Ng, Sandy. Ultrafast laser written bulk waveguides and gratings. Ottawa: National Library of Canada, 2000.
Find full textA, Sawchuk Alexander, and Optical Society of America, eds. Bragg gratings, photosensitivity, and poling in glass waveguides. Washington, DC: Optical Society of America, 2001.
Find full textAmerica, Optical Society of, ed. Bragg gratings, photosensitivity, and poling in glass waveguides: From the topical meeting on bragg gratings, photosensitivity, and poling in glass waveguides, September 23-25, 1999, Stuart, Florida. Washington, D.C: Optical Society of America, 2000.
Find full textChen, Eddy G. 157-nm radiation induced bragg gratings in silica optical waveguides. Ottawa: National Library of Canada, 2003.
Find full textGorton, Patricia Jane. A study of waveguides and gratings for achieving 10.6m DBR. Birmingham: University of Birmingham, 1989.
Find full textAmerica, Optical Society of, American Ceramic Society, American Ceramic Society. Glass and Optical Materials Division. Meeting, and International Conference on Optical Fiber Sensors (12th : 1997 : Williamsburg, Va.), eds. Bragg gratings, photosensitivity, and poling in glass fibers and waveguides: Applications and fundamentals : technical digest, October 26-28, 1997, Williamsburg Marriott, Williamsburg, Virginia. Washington, DC: Optical Society of America, 1997.
Find full textSeyringerChen, Dana. Arrayed Waveguide Gratings. SPIE, 2016. http://dx.doi.org/10.1117/3.2242852.
Full textLin, C. W., N. F. Chiu, and C. C. Chang. Modulation design of plasmonics for diagnostic and drug screening. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.18.
Full textBragg gratings photosensitivity and poling in glass waveguides: Postconference digest. Washington, DC: Optical Society of America, 2004.
Find full textOptical Society of America. Bragg Gratings Photosensitivity and Poling in Glass Waveguides: Postconference Digest. Optical Society of America, 2003.
Find full textBook chapters on the topic "Waveguide gratings"
Koshiba, Masanori. "Optical Gratings." In Optical Waveguide Theory by the Finite Element Method, 161–87. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_6.
Full textParriaux, Olivier, Vladimir A. Sychugov, and Alexander V. Tishchenko. "Waveguide Coupling Gratings: Attractive Features and Dangerous Pitfalls." In Guided-Wave Optoelectronics, 333–54. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_41.
Full textAndersson, J. Y., and L. Lundqvist. "Coupling of Radiation into Quantum Well Infrared Detectors by the Use of Reflection Gratings and Waveguide Structures." In NATO ASI Series, 1–13. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3346-7_1.
Full textAgranovich, V. M., and T. A. Leskova. "Decay of Exciton Gratings in Anthracene: Anisotropy of Lowest Exciton Bands and Coexistence of Longpath and Shortpath Waveguide Modes." In Laser Optics of Condensed Matter, 145–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3726-7_22.
Full textKroker, Stefanie, and Thomas Siefke. "Resonant Waveguide Grating Structures." In Optical Characterization of Thin Solid Films, 341–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75325-6_12.
Full textZhang, Haibin, and Peter R. Herman. "3D Bragg Grating Waveguide Devices." In Topics in Applied Physics, 227–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23366-1_9.
Full textFang, Ye. "Resonant Waveguide Grating Biosensor for Microarrays." In Springer Series on Chemical Sensors and Biosensors, 27–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02827-4_2.
Full textBao, Gang, and Kai Huang. "Optimal Design of Waveguide-Grating Resonances." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 830–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_135.
Full textKaminow, Ivan P. "Waveguide Grating Router Components for WDM Networks." In Guided-Wave Optoelectronics, 297–98. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_37.
Full textWu, Meng, and Min Li. "Resonant Waveguide Grating for Monitoring Biomolecular Interactions." In Methods in Molecular Biology, 139–52. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2425-7_8.
Full textConference papers on the topic "Waveguide gratings"
Moss, D., F. Ouellette, M. Faith, P. Leech, P. Kemeny, M. Ibsen, O. Leistiko, C. V. Poulsen, J. D. Love, and F. J. Ladouceur. "All Optically Written Planar Germanosilicate Waveguide Gratings." In Photosensitivity and Quadratic Nonlinearity in Glass Waveguides. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/pqn.1995.sub.8.
Full textHartman, Nile F., and Elizabeth Twyford. "Electro-optically controlled waveguide grating switch." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tuz1.
Full textUl Haq, Tanveer, Kevin J. Webb, and Neal C. Gallagher. "Aperiodic Grating for TE02 to TE01 Conversion in a Highly Overmoded Circular Waveguide." In Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/srs.1995.rtuc2.
Full textSun, Hao, and Lawrence R. Chen. "Polarization Independent Waveguide Bragg Gratings using Tilted Subwavelength Grating Waveguides." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jw3b.14.
Full textLin, Freddie. "Multiplexed holographic optical waveguide interconnects." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.me2.
Full textTaglietti, Bruno, Hao Sun, Sehr Moosabhoy, and Lawrence R. Chen. "Random Subwavelength Grating Waveguide Bragg Gratings." In 2022 IEEE Photonics Conference (IPC). IEEE, 2022. http://dx.doi.org/10.1109/ipc53466.2022.9975633.
Full textWang, S. S., Robert Magnusson, J. S. Bagby, and M. G. Moharam. "Waveguide mode-induced resonances in planar diffraction gratings." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tull4.
Full textMagnusson, R., and S. S. Wang. "Filter Properties of Dielectric Waveguide Gratings." In Difraction Optics: Design, Fabrication, and Applications. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/do.1992.md4.
Full textBao, Yufei, C. M. Verber, and Yuanning Weng. "Control of mode-index modulation of a TIPE grating by multistep proton exchange." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.wy.3.
Full textSteijn, Kirk W., Joseph E. Marchegiano, and Bruce L. Booth. "Bragg gratings in photopolymer buried-channel waveguides." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tull6.
Full textReports on the topic "Waveguide gratings"
Wang, Te-Hui, and Tatsuo Itoh. Confirmation of Slow-Waves in a Crosstie Overlay Coplanar Waveguide and Its Application to Band-Reject Gratings and Reflectors. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada194981.
Full textChang-Hasnain, Constance, Ming Wu, and Eli Yablonovitch. Ultra-Low Loss, Chip-Based Hollow-Core Waveguide Using High-Contrast Grating. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada554981.
Full text