Academic literature on the topic 'Wavefront coding'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wavefront coding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wavefront coding"

1

Babilotte, Philippe. "Simulation of multiwavelength conditions in laser picosecond ultrasonics." SIMULATION 97, no. 7 (March 25, 2021): 473–84. http://dx.doi.org/10.1177/0037549721996451.

Full text
Abstract:
Complete numerical simulations are given under SciLab® and MATLAB® coding environments, concerning propagative acoustic wavefronts, for laser picosecond ultrasonics under multiwavelength conditions. Simulations of the deformation field and its propagation into bulk material are given under different wavelength configurations for optical pump and probe beams, which are used to generate and to detect the acoustic signal. Complete insights concerning the dynamics of the acoustic waves are given, considering the absence of carrier diffusions into the material. Several numerical approaches are proposed concerning both the functions introduced to simulate the wavefront ( Heaviside or error) and the coding approach (linear/vectorized/ Oriented Object Programming), under the pure thermo-elastic approach.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Xiaonan, Feng Xu, Jingpei Hu, and Chinhua Wang. "Broadband photon sieves imaging with wavefront coding." Optics Express 23, no. 13 (June 17, 2015): 16812. http://dx.doi.org/10.1364/oe.23.016812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barwick, Shane. "Catastrophes in wavefront-coding spatial-domain design." Applied Optics 49, no. 36 (December 14, 2010): 6893. http://dx.doi.org/10.1364/ao.49.006893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roche, M. "Introduction to Wavefront Coding for Incoherent Imaging." EAS Publications Series 59 (2013): 77–92. http://dx.doi.org/10.1051/eas/1359005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

González-Amador, E., A. Padilla-Vivanco, C. Toxqui-Quitl, J. Arines, and E. Acosta. "Jacobi–Fourier phase mask for wavefront coding." Optics and Lasers in Engineering 126 (March 2020): 105880. http://dx.doi.org/10.1016/j.optlaseng.2019.105880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feng Yan, Feng Yan. "The alignment and imaging experiment of a telescope with wavefront coding technology." Chinese Optics Letters 12, s1 (2014): S12201–312203. http://dx.doi.org/10.3788/col201412.s12201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nhu. "PARAMETRIC BLIND-DECONVOLUTION METHOD TO REMOVE IMAGE ARTIFACTS IN WAVEFRONT CODING IMAGING SYSTEMS." Journal of Military Science and Technology, no. 72A (May 10, 2021): 62–68. http://dx.doi.org/10.54939/1859-1043.j.mst.72a.2021.62-68.

Full text
Abstract:
Wavefront coding technique includes a phase mask of asymmetric phase mask kind in the pupil plane to extend the depth of field of an imaging system and the digital processing step to obtain the restored final high-quality image. However, the main drawback of wavefront coding technique is image artifacts on the restored final images. In this paper, we proposed a parameter blind-deconvolution method based on maximizing of the variance of the histogram of restored final images that enables to obtain the restored final image with artifact-free over a large range of defocus.
APA, Harvard, Vancouver, ISO, and other styles
8

Ye, Qing, Yunlong Wu, Yangliang Li, Hao Zhang, Lei Wang, and Xiaoquan Sun. "A Retroreflection Reduction Technique Based on the Wavefront Coded Imaging System." Crystals 11, no. 11 (November 9, 2021): 1366. http://dx.doi.org/10.3390/cryst11111366.

Full text
Abstract:
A novel anti-cat-eye effect imaging technique based on wavefront coding is proposed as a solution to the problem of previous anti-cat-eye effect imaging techniques where imaging quality was sacrificed to reduce the retroreflection from the photoelectric imaging equipment. With the application of the Fresnel–Kirchhoff diffraction theory, and the definition of generalized pupil function combining both phase modulation and defocus factors, the cat-eye echo formation of the wavefront coded imaging system is theoretically modeled. Based on the physical model, the diffracted spot profile distribution and the light intensity distribution on the observation plane are further simulated with the changes in the defocus parameter and the phase modulation coefficient. A verification test on the cat-eye laser echo power of the wavefront coded imaging system and that of the conventional imaging system at a 20 m distance are conducted, respectively. Simulations and experiment results show that compared with conventional imaging systems, the wavefront coding imaging system can reduce the retroreflection echo by two orders of magnitude while maintaining better imaging quality through defocusing.
APA, Harvard, Vancouver, ISO, and other styles
9

Cao, Zhaolou, Chunjie Zhai, Jinhua Li, Fenglin Xian, and Shixin Pei. "Combination of color coding and wavefront coding for extended depth of field." Optics Communications 392 (June 2017): 252–57. http://dx.doi.org/10.1016/j.optcom.2017.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZHANG Ji-yan, 张继艳, 黄元庆 HUANG Yuan-qing, and 熊飞兵 XIONG Fei-bing. "Iris Acquiring Optical System Design with Wavefront Coding." ACTA PHOTONICA SINICA 45, no. 10 (2016): 1022001. http://dx.doi.org/10.3788/gzxb20164510.1022001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Wavefront coding"

1

Muyo, Nieto Gonzalo D. "Principles and applications of wavefront coding." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/2043.

Full text
Abstract:
The aim of the work reported in this thesis was to investigate the physical principles and potential applications of wavefront coding. This technique enables extended depth of field and greatly reduced sensitivity to defocus-related and higher-order aberrations whilst maintaining diffraction-limited resolution in incoherent imaging systems. Wavefront· coding involves the introduction of an asymmetric refractive mask close to the aperture stop so as to encode the image with a specific point spread function that, when combined with decoding of the recorded image, can enable accurate image acquisition even in the presence of aberrations. In practical imaging systems, this enhancement is subject to a range of constraints and limitations which have been neglected in previous works. We show that although-wavefront coding has sometimes been presented as a panacea, it is more realistic to consider it as an additional parameter in the optimisation process. This research explores the trade offs involved in the application of wavefront coding to lowcost imaging systems for use in t,he thermal infrared and visible imaging systems, showing how very useful performance enhancements can be achieved in practical systems. Some of the original contributions of this work include the design of new phase masks, a new understanding of the fundamental physical principles in terms of the decomposition of the optical transfer function, appraisal of the restoration issues (detector sampling, noise amplification and artefacts in the digitally processed image) and the design and manufacture of a wavefront-coded infrared singlet.
APA, Harvard, Vancouver, ISO, and other styles
2

Mezouari, Samir. "Wavefront coding for alleviation of aberrations in incoherent imaging systems." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Somayaji, Manjunath. "Enhancement of form factor and light collection in computational imaging systems through wavefront coding techniques." Ann Arbor, Mich. : ProQuest, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3208093.

Full text
Abstract:
Thesis (Ph.D. in Electrical Engineering)--S.M.U.
Title from PDF title page (viewed July 16, 2007). Source: Dissertation Abstracts International, Volume: 67-02, Section: B, page: 1065. Adviser: Marc P. Christensen. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Arnison, Matthew Raphael. "Phase control and measurement in digital microscopy." Thesis, The University of Sydney, 2003. http://hdl.handle.net/2123/569.

Full text
Abstract:
The ongoing merger of the digital and optical components of the modern microscope is creating opportunities for new measurement techniques, along with new challenges for optical modelling. This thesis investigates several such opportunities and challenges which are particularly relevant to biomedical imaging. Fourier optics is used throughout the thesis as the underlying conceptual model, with a particular emphasis on three--dimensional Fourier optics. A new challenge for optical modelling provided by digital microscopy is the relaxation of traditional symmetry constraints on optical design. An extension of optical transfer function theory to deal with arbitrary lens pupil functions is presented in this thesis. This is used to chart the 3D vectorial structure of the spatial frequency spectrum of the intensity in the focal region of a high aperture lens when illuminated by linearly polarised beam. Wavefront coding has been used successfully in paraxial imaging systems to extend the depth of field. This is achieved by controlling the pupil phase with a cubic phase mask, and thereby balancing optical behaviour with digital processing. In this thesis I present a high aperture vectorial model for focusing with a cubic phase mask, and compare it with results calculated using the paraxial approximation. The effect of a refractive index change is also explored. High aperture measurements of the point spread function are reported, along with experimental confirmation of high aperture extended depth of field imaging of a biological specimen. Differential interference contrast is a popular method for imaging phase changes in otherwise transparent biological specimens. In this thesis I report on a new isotropic algorithm for retrieving the phase from differential interference contrast images of the phase gradient, using phase shifting, two directions of shear, and non--iterative Fourier phase integration incorporating a modified spiral phase transform. This method does not assume that the specimen has a constant amplitude. A simulation is presented which demonstrates good agreement between the retrieved phase and the phase of the simulated object, with excellent immunity to imaging noise.
APA, Harvard, Vancouver, ISO, and other styles
5

Arnison, Matthew Raphael. "Phase control and measurement in digital microscopy." University of Sydney. Physics, 2003. http://hdl.handle.net/2123/569.

Full text
Abstract:
The ongoing merger of the digital and optical components of the modern microscope is creating opportunities for new measurement techniques, along with new challenges for optical modelling. This thesis investigates several such opportunities and challenges which are particularly relevant to biomedical imaging. Fourier optics is used throughout the thesis as the underlying conceptual model, with a particular emphasis on three--dimensional Fourier optics. A new challenge for optical modelling provided by digital microscopy is the relaxation of traditional symmetry constraints on optical design. An extension of optical transfer function theory to deal with arbitrary lens pupil functions is presented in this thesis. This is used to chart the 3D vectorial structure of the spatial frequency spectrum of the intensity in the focal region of a high aperture lens when illuminated by linearly polarised beam. Wavefront coding has been used successfully in paraxial imaging systems to extend the depth of field. This is achieved by controlling the pupil phase with a cubic phase mask, and thereby balancing optical behaviour with digital processing. In this thesis I present a high aperture vectorial model for focusing with a cubic phase mask, and compare it with results calculated using the paraxial approximation. The effect of a refractive index change is also explored. High aperture measurements of the point spread function are reported, along with experimental confirmation of high aperture extended depth of field imaging of a biological specimen. Differential interference contrast is a popular method for imaging phase changes in otherwise transparent biological specimens. In this thesis I report on a new isotropic algorithm for retrieving the phase from differential interference contrast images of the phase gradient, using phase shifting, two directions of shear, and non--iterative Fourier phase integration incorporating a modified spiral phase transform. This method does not assume that the specimen has a constant amplitude. A simulation is presented which demonstrates good agreement between the retrieved phase and the phase of the simulated object, with excellent immunity to imaging noise.
APA, Harvard, Vancouver, ISO, and other styles
6

Diaz, Frédéric. "Systeme d'imagerie hybride par codage de pupille." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00624387.

Full text
Abstract:
De nouveaux concepts d'imagerie permettent aux systèmes optiques d'être plus compacts et plus performants. Parmi ces nouvelles techniques, les systèmes d'imagerie hybrides par codage de pupille allient un système optique comprenant un masque de phase et un traitement numérique. La fonction de phase implantée sur le masque rend l'image insensible à un défaut du système optique, qui peut être une aberration ou de la défocalisation. Cet avantage est obtenu au prix d'une déformation connue de l'image qui est ensuite corrigée par un traitement numérique.L'étude des propriétés de ces systèmes a été effectuée en cherchant à augmenter la profondeur de champ d'un système d'imagerie. Un gain sur ce paramètre permet déjà d'envisager le relâchement de contraintes de conception optique telles que la courbure de champ, la défocalisation thermique, le chromatisme... Dans ces techniques d'imagerie, la prise en compte du bruit du capteur constitue l'un des paramètres critiques pour le choix et l'utilisation de méthodes de traitement d'image.Les travaux menés durant cette thèse ont permis de proposer une approche originale de conception conjointe de la fonction de phase du masque et de l'algorithme de restauration d'image. Celle-ci est basée sur un critère de rapport signal à bruit de l'image finale. Contrairement aux approches connues, ce critère montre qu'il n'est pas nécessaire d'obtenir une stricte invariance de la fonction de transfert du système optique. Les paramètres des fonctions de phase optimisés grâce à ce critère sont sensiblement différents de ceux usuellement proposés et conduisent à une amélioration significative de la qualité de l'image.Cette approche de conception optique a été validée expérimentalement sur une caméra thermique non refroidie. Un masque de phase binaire qui a été mis en œuvre en association avec un traitement numérique temps réel implémenté sur une carte GPU a permis d'augmenter la profondeur de champ de cette caméra d'un facteur 3. Compte-tenu du niveau de bruit important introduit par l'utilisation d'un capteur bolométrique, la bonne qualité des images obtenues après traitement démontre l'intérêt de l'approche de conception conjointe appliquée à l'imagerie hybride par codage de pupille.
APA, Harvard, Vancouver, ISO, and other styles
7

Frugier, Pierre Antoine. "Quantification 3D d’une surface dynamique par lumière structurée en impulsion nanoseconde. Application à la physique des chocs, du millimètre au décimètre." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112129.

Full text
Abstract:
La technique de reconstruction de forme par lumière structurée (ou projection de motifs) permet d’acquérir la topographie d’une surface objet avec une précision et un échantillonnage de points dense, de manière strictement non invasive. Pour ces raisons, elle fait depuis plusieurs années l’objet d’un fort intérêt. Les travaux présentés ici ont pour objectif d’adapter cette technique aux conditions sévères des expériences de physique des chocs : aspect monocoup, grande brièveté des phénomènes, diversité des échelles d’observation (de quelques millimètres au décimètre). Pour répondre à ces exigences, nous proposons de réaliser un dispositif autour d’un système d’imagerie rapide par éclairage laser nanoseconde, présentant des performances éprouvées et bien adaptées. La première partie des travaux s’intéresse à analyser les phénomènes prépondérants pour la qualité des images. Nous montrons quels sont les contributeurs principaux à la dégradation des signaux, et une technique efficace de lissage du speckle par fibrage est présentée. La deuxième partie donne une formulation projective de la reconstruction de forme ; celle-ci est rigoureuse, ne nécessitant pas de travailler dans l’approximation de faible perspective, ou de contraindre la géométrie de l’instrument. Un protocole d’étalonnage étendant la technique DLT (Direct Linear Transformation) aux systèmes à lumière structurée est proposé. Le modèle permet aussi, pour une expérience donnée, de prédire les performances de l’instrument par l’évaluation a priori des incertitudes de reconstruction. Nous montrons comment elles dépendent des paramètres du positionnement des sous-ensembles et de la forme-même de l’objet. Une démarche d’optimisation de la configuration de l’instrument pour une reconstruction donnée est introduite. La profondeur de champ limitant le champ objet minimal observable, la troisième partie propose de l’étendre par codage pupillaire : une démarche de conception originale est exposée. L’optimisation des composants est réalisée par algorithme génétique, sur la base de critères et de métriques définis dans l’espace de Fourier. Afin d’illustrer les performances de cette approche, un masque binaire annulaire a été conçu, réalisé et testé expérimentalement. Il corrige des défauts de mise au point très significatifs (Ψ≥±40 radians) sans impératif de filtrage de l’image. Nous montrons aussi que ce procédé donne accès à des composants tolérant des défauts de mise au point extrêmes (Ψ≈±100 radians , après filtrage). La dernière partie présente une validation expérimentale de l’instrument dans différents régimes, et à différentes échelles. Il a notamment été mis en œuvre sur l’installation LULI2000, où il a permis de mesurer dynamiquement la déformation et la fragmentation d’un matériau à base de carbone (champs millimétriques). Nous présentons également les mesures obtenues sous sollicitation pyrotechnique sur un revêtement de cuivre cylindrique de dimensions décimétriques. L’apparition et la croissance rapide de déformations radiales submillimétriques est mesurée à la surface du revêtement
A Structured Light System (SLS) is an efficient means to measure a surface topography, as it features both high accuracy and dense spatial sampling in a strict non-invasive way. For these reasons, it became in the past years a technique of reference. The aim of the PhD is to bring this technique to the field of shock physics. Experiments involving shocks are indeed very specific: they only allow single-shot acquisition of extremely short phenomena occurring under a large range of spatial extensions (from a few mm to decimeters). In order to address these difficulties, we have envisioned the use of a well-known high-speed technique: pulsed laser illumination. The first part of the work deals with the evaluation of the key-parameters that have to be taken into account if one wants to get sharp acquisitions. The extensive study demonstrates that speckle effect and depth of field limitation are of particular importance. In this part, we provide an effective way to smooth speckle in nanosecond regime, leaving 14% of residual contrast. Second part introduces an original projective formulation for object-points reconstruction. This geometric approach is rigorous; it doesn’t involve any weak-perspective assumptions or geometric constraints (like camera-projector crossing of optical axis in object space). From this formulation, a calibration procedure is derived; we demonstrate that calibrating any structured-light system can be done by extending the Direct Linear Transformation (DLT) photogrammetric approach to SLS. Finally, we demonstrate that reconstruction uncertainties can be derived from the proposed model in an a priori manner; the accuracy of the reconstruction depends both on the configuration of the instrument and on the object shape itself. We finally introduce a procedure for optimizing the configuration of the instrument in order to lower the uncertainties for a given object. Since depth of field puts a limitation on the lowest measurable field extension, the third part focuses on extending it through pupil coding. We present an original way of designing phase components, based on criteria and metrics defined in Fourier space. The design of a binary annular phase mask is exhibited theoretically and experimentally. This one tolerates a defocus as high as Ψ≥±40 radians, without the need for image processing. We also demonstrate that masks designed with our method can restore extremely high defoci (Ψ≈±100 radians) after processing, hence extending depth of focus by amounts unseen yet. Finally, the fourth part exhibits experimental measurements obtained with the setup in different high-speed regimes and for different scales. It was embedded on LULI2000 high energy laser facility, and allowed measurements of the deformation and dynamic fragmentation of a sample of carbon. Finally, sub-millimetric deformations measured in ultra-high speed regime, on a cylinder of copper under pyrotechnic solicitation are presented
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Wavefront coding"

1

Arnison, Matthew R., Carol J. Cogswell, Colin J. R. Sheppard, and Peter Török. "Wavefront Coding Fluorescence Microscopy Using High Aperture Lenses." In Springer Series in Optical Sciences, 143–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-46022-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Katkovnik, Vladimir, José Bioucas-Dias, and Hongxing Hao. "Wavefront Reconstruction from Noisy Fringe Observations via Sparse Coding." In Fringe 2013, 179–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36359-7_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silveira, Paulo E. X., Lu Gao, and Ramkumar Narayanswamy. "Wavefront Coding for Enhancing the Imaging Volume in Iris Recognition." In Encyclopedia of Biometrics, 1402–7. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-73003-5_216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silveira, Paulo E. X., Lu Gao, and Ramkumar Narayanswamy. "Wavefront Coding for Enhancing the Imaging Volume in Iris Recognition." In Encyclopedia of Biometrics, 1608–13. Boston, MA: Springer US, 2015. http://dx.doi.org/10.1007/978-1-4899-7488-4_216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Acosta, Eva, Miguel Olvera-Angeles, Enrique González-Amador, and Justo Arines. "Wavefront Coding with Jacobi-Fourier Phase Masks to Alleviate Random Aberrations." In Springer Proceedings in Physics, 19–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Panagou, Natalia, Panagiotis Oikonomou, Panos K. Papadopoulos, Maria Koziri, Thanasis Loukopoulos, and Dimitris Iakovidis. "On Predicting Bottlenecks in Wavefront Parallel Video Coding Using Deep Neural Networks." In Engineering Applications of Neural Networks, 501–10. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20257-6_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Panagou, Natalia, Maria Koziri, Panos K. Papadopoulos, Panagiotis Oikonomou, Nikos Tziritas, Kostas Kolomvatsos, Thanasis Loukopoulos, and Samee U. Khan. "Evaluation of Heterogeneous Scheduling Algorithms for Wavefront and Tile Parallelism in Video Coding." In Lecture Notes in Computer Science, 16–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23357-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Wavefront Coding." In Encyclopedia of Optical and Photonic Engineering, Second Edition, 1–6. CRC Press, 2015. http://dx.doi.org/10.1081/e-eoe2-120047131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Wavefront Coding." In Encyclopedia of Biometrics, 1402. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-73003-5_1073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cathey, W. T., and E. R. Dowski. "PHASE CONTROL | Wavefront Coding." In Encyclopedia of Modern Optics, 93–105. Elsevier, 2005. http://dx.doi.org/10.1016/b0-12-369395-0/00710-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Wavefront coding"

1

Cathey, W. Thomas. "Wavefront Coding." In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.fmj1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Yikai, and Jiangtao Wen. "Wavefront Parallel Processing for AV1 Encoder." In 2018 Picture Coding Symposium (PCS). IEEE, 2018. http://dx.doi.org/10.1109/pcs.2018.8456283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Almaguer, Citlalli, Eva Acosta, and Justo Arines. "Wavefront coding for visual optics." In Third International Conference on Applications of Optics and Photonics, edited by Manuel Filipe P. Martins Costa. SPIE, 2017. http://dx.doi.org/10.1117/12.2272065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Agbana, Temitope E., Oleg Soloviev, Vitalii Bezzubik, Vsevolod Patlan, Michel Verhaegen, and Gleb Vdovin. "Wavefront coding with adaptive optics." In SPIE BiOS, edited by Thomas G. Bifano, Joel Kubby, and Sylvain Gigan. SPIE, 2015. http://dx.doi.org/10.1117/12.2081164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Novak, Kyle, and Abbie T. Watnik. "Compact vortex wavefront coding camera." In Computational Imaging V, edited by Jonathan C. Petruccelli, Lei Tian, and Chrysanthe Preza. SPIE, 2020. http://dx.doi.org/10.1117/12.2559479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Prischepa, Inga A., and Edward R. Dowski Jr. "Wavefront coding optical system design." In Integrated Computational Imaging Systems. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/icis.2001.itua2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Behrmann, Gregory, Mark Mirotznik, Joseph N. Mait, David Wikner, and Joseph van der Gracht. "Wavefront coding for millimeter wave imaging." In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.fwt3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lis, Steven A. "Passive range measurement through wavefront coding." In Optics East 2006, edited by Peisen S. Huang. SPIE, 2006. http://dx.doi.org/10.1117/12.682025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barton, Daniel L., Jeremy A. Walraven, Edward R. Dowski, Rainer Danz, Andreas Faulstich, and Bernd Faltermeier. "Wavefront Coded Imaging Systems for MEMS Analysis." In ISTFA 2002. ASM International, 2002. http://dx.doi.org/10.31399/asm.cp.istfa2002p0295.

Full text
Abstract:
Abstract A new imaging technique called Wavefront Coding allows real-time imaging of three-dimensional structures over a very large depth. Wavefront Coding systems combine aspheric optics and signal processing to achieve depth of fields ten or more times greater than that possible with traditional imaging systems. Understanding the relationships between traditional and modern imaging system design through Wavefront Coding is very challenging. In high performance imaging systems nearly all aspects of the system that could reduce image quality are carefully controlled. Modifying the optics and using signal processing can increase the amount of image information that can be recorded by microscopes. For a number of applications this increase in information can allow a single image to be used where a number of images taken at different object planes had been used before. Having very large depth of field and real-time imaging capability means that very deep structures such as surface micromachined MEMS can be clearly imaged with one image, greatly simplifying defect and failure analysis.
APA, Harvard, Vancouver, ISO, and other styles
10

Robinson, Dirk, and David G. Stork. "Extending depth-of-field: Spherical coding versus asymmetric wavefront coding." In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cosi.2009.cthb3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Wavefront coding"

1

Scrymgeour, David, Robert Boye, and Kathleen Adelsberger. Advanced Imaging Optics Utilizing Wavefront Coding. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1184361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Langeveld, Willy. Possible Application of Wavefront Coding to the LSST. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/885517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography