Academic literature on the topic 'Waveform similarity analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Waveform similarity analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Waveform similarity analysis"
Havrlík, Matouš, Martin Libra, Vladislav Poulek, and Pavel Kouřím. "Analysis of Output Signal Distortion of Galvanic Isolation Circuits for Monitoring the Mains Voltage Waveform." Sensors 22, no. 20 (October 13, 2022): 7769. http://dx.doi.org/10.3390/s22207769.
Full textLIU, Tong-tong, Min DAI, and Zhong-yi LI. "ECG waveform similarity analysis based on window-slope representation." Journal of Computer Applications 32, no. 10 (May 23, 2013): 2969–72. http://dx.doi.org/10.3724/sp.j.1087.2012.02969.
Full textIosa, M., A. Cereatti, A. Merlo, I. Campanini, S. Paolucci, and A. Cappozzo. "Assessment of Waveform Similarity in Clinical Gait Data: The Linear Fit Method." BioMed Research International 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/214156.
Full textA. Khalil, Mohamed. "Groundwater Classification by Using Fourier Analysis." Global Journal of Earth Science and Engineering 9 (August 22, 2022): 65–73. http://dx.doi.org/10.15377/2409-5710.2022.09.5.
Full textZheng, Tao, Xinhui Yang, Xingchao Guo, Xingguo Wang, and Chengqi Zhang. "Zero-Sequence Differential Current Protection Scheme for Converter Transformer Based on Waveform Correlation Analysis." Energies 13, no. 7 (April 9, 2020): 1814. http://dx.doi.org/10.3390/en13071814.
Full textLukovenkova, Olga, and Alexandra Solodchuk. "Analysis of geoacoustic emission and electromagnetic radiation signals accompanying earthquake with magnitude Mw = 7.5." E3S Web of Conferences 196 (2020): 03001. http://dx.doi.org/10.1051/e3sconf/202019603001.
Full textPetersen, G. M., P. Niemz, S. Cesca, V. Mouslopoulou, and G. M. Bocchini. "Clusty, the waveform-based network similarity clustering toolbox: concept and application to image complex faulting offshore Zakynthos (Greece)." Geophysical Journal International 224, no. 3 (November 25, 2020): 2044–59. http://dx.doi.org/10.1093/gji/ggaa568.
Full textTang, Junlei, Junyang Li, Hu Wang, Yingying Wang, and Geng Chen. "In-Situ Monitoring and Analysis of the Pitting Corrosion of Carbon Steel by Acoustic Emission." Applied Sciences 9, no. 4 (February 18, 2019): 706. http://dx.doi.org/10.3390/app9040706.
Full textJeon, Jeong Woo, and Jiheon Hong. "Comparison of screw-home mechanism in the unloaded living knee subjected to active and passive movements." Journal of Back and Musculoskeletal Rehabilitation 34, no. 4 (July 13, 2021): 589–95. http://dx.doi.org/10.3233/bmr-200110.
Full textGrund, Michael, Jörn C. Groos, and Joachim R. R. Ritter. "Fault Reactivation Analysis Using Microearthquake Clustering Based on Signal-to-Noise Weighted Waveform Similarity." Pure and Applied Geophysics 173, no. 7 (April 2, 2016): 2325–55. http://dx.doi.org/10.1007/s00024-016-1281-4.
Full textDissertations / Theses on the topic "Waveform similarity analysis"
Massa, M. "Waveforms analysis to improve earthquake location procedures: theory and applications." Thesis, 2005. http://hdl.handle.net/2122/5898.
Full textIstituto Nazionale di Geofisica e Vulcanologia, sezione di Milano-Pavia
Unpublished
3.1. Fisica dei terremoti
open
Kianimajd, Adell. "Analysis of similarity among arterial blood pressure waveforms." Master's thesis, 2016. http://hdl.handle.net/10400.1/10004.
Full textTime series are an important class of data objects that arise from various sources and their analysis typically involves huge amounts of information requiring usage of data mining techniques. Measuring similarity in long time series plays an important role in searching for similar patterns, classification, clustering, prediction and knowledge discovery. In clinical context any estimation of future values based on its past values can be useful in disease prognosis. In this thesis different methods of measuring similarity between time series of arterial blood pressure (ABP) signals are described and experimental results are provided. To classify an ABP record within a particular diseases’ class (a cluster), the typical procedure is the prior determination of the similarity of the ABP record with a reference signal characterizing a cardiovascular disease (CVD) and then identifying the strength of that similarity to enable a true positive classification of the illness (or not). Several methods of measuring similarity among time-series are referred in literature, the most commonly employed one were object of this research. Since the goal was the application of the similarity results to perform clustering of the ABP signals, similarity methods were investigated particularly in what concerns their performance when proceeding for the clustering following step. So, this thesis reports the usage of seven different similarity methods, five working in the time domain and two in the transform-based domain, and explores their usage when clustering by Partitioning Around Medoids is implemented. As data records are noisy and signals suffer from variations due to other sources than heart, six types of variations were imposed on the reference signal and 20 degrees of possible variations were tested. The time series considered on this study were 10 seconds length, referring to healthy, electrocardiogram (ECG) long term ST’s, atrial fibrillation and a collection of diagnostic ECGs. Three clusters were considered, each involving healthy and pathological records, in different proportions. Results demonstrate that the Discrete Wavelet Transform using a Haar wavelet decomposition with the Karhunen-Loève transforms, besides reducing the computational processing load enables clustering with an accuracy between 76% and 84% among the three diagnostic classes considered. The organization of this thesis is as follows. A short representation of Time-series is in chapter.1. A brief description of various similarity methods and clustering methods are given in chapters 2 and 3. Experiments performed and results obtained are described in chapter 4. Finally, the conclusion of this work is presented in chapter 5 where the list of publications resultant from this thesis is included.
As séries temporais são uma classe importante de objetos de dados que surgem de várias fontes e a sua análise geralmente envolve enormes quantidades de informações que exigem o uso de técnicas de mineração de dados. A medição da similaridade em séries de longo prazo desempenha um papel importante na busca por padrões semelhantes, classificação, agrupamento, previsão e descoberta de conhecimento. No contexto clínico qualquer estimativa de valores futuros baseada em seus valores passados pode ser útil no prognóstico de doenças. Nesta tese são descritos diferentes métodos para medir a similaridade entre séries temporais de sinais de pressão arterial (ABP) e são fornecidos resultados experimentais. Para classificar um registro ABP dentro de uma classe de doenças particulares (um cluster), o procedimento típico é a determinação prévia da similaridade do registro ABP com um sinal de referência caracterizando uma doença cardiovascular (CVD) e depois, identificando a força dessa similaridade, possibilita-se uma classificação verdadeira positiva da doença (ou não). Vários métodos de mensuração da similaridade entre séries temporais são referidos na literatura, sendo os mais comumente empregados objeto desta pesquisa. Uma vez que o objetivo foi a aplicação dos resultados de similaridade para realizar agrupamento dos sinais ABP (clustering), vários métodos de similaridade foram investigados particularmente no que diz respeito ao seu desempenho ao prosseguir para a etapa seguinte de agrupamento de acordo com a patologia. Assim, esta tese relata o uso de sete métodos de similaridade diferentes, cinco trabalhando no domínio do tempo e dois no domínio baseado em transformação, e explora o seu uso quando o clustering pelo método de Partitioning Around Medoids é implementado. Como os registros de dados são ruidosos e os sinais sofrem de variações devido a outras fontes além das do coração, seis tipos de variações foram impostas ao sinal de referência e foram testados 20 graus de possíveis variações. As séries temporais consideradas neste estudo foram de 10 segundos de duração, referindo-se a eletrocardiogramas (ECG) saudáveis, a sinais de ECG com segmentos ST de longo prazo, a ECG’s relativos a fibrilação atrial e ainda a uma coleção de ECGs de diagnóstico. Foram considerados três agrupamentos, cada um envolvendo registros saudáveis e patológicos, em diferentes proporções. Os resultados demonstram que a Transformação de Wavelet Discreta usando uma decomposição de wavelet de Haar com as transformações de Karhunen-Loève, além de reduzir a carga de processamento computacional, possibilita o agrupamento com uma precisão entre 76% e 84% entre as três classes diagnósticas consideradas. A organização desta tese é a seguinte. Uma breve representação de séries temporais está incluída no capítulo 1. Uma breve descrição de vários métodos de similaridade e métodos de agrupamento são apresentados nos capítulos 2 e 3. As experiências realizadas e os resultados obtidos são descritos no capítulo 4. Finalmente, a conclusão deste trabalho é apresentada no capítulo 5, onde a lista de publicações resultantes desta tese está incluído.
Book chapters on the topic "Waveform similarity analysis"
Di Salvo, Francesca, Renata Rotondi, and Giovanni Lanzano. "Functional Linear Models for the Analysis of Similarity of Waveforms." In Models for Data Analysis, 125–40. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15885-8_9.
Full textConference papers on the topic "Waveform similarity analysis"
Stuermer, Karsten, Joern Kummerow, and Serge A. Shapiro. "Waveform similarity analysis at Cotton Valley, Texas." In SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011. http://dx.doi.org/10.1190/1.3627524.
Full textGao, Chenxiang, Moke Feng, Heming Yan, Chang Lin, Jianzhong Xu, and Chengyong Zhao. "Waveform Similarity Analysis for Nonlinear Components of Metal Oxide Arrester (MOA)." In 2019 4th IEEE Workshop on the Electronic Grid (eGRID). IEEE, 2019. http://dx.doi.org/10.1109/egrid48402.2019.9092641.
Full textPan, Zhuojin, Shijie Wu, and Hua Yang. "The waveform similarity measurement study of seeker-eCabin based on wavelet analysis." In 2010 3rd International Congress on Image and Signal Processing (CISP). IEEE, 2010. http://dx.doi.org/10.1109/cisp.2010.5647852.
Full textJadhav, Pankaj, Debabrata Datta, and Siddhartha Mukhopadhyay. "Signature Matching For Seismic Signal Identification." In International Conference on Women Researchers in Electronics and Computing. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.114.17.
Full textWalendziuk, Wojciech, Aleksander Sawicki, and Adam Idźkowski. "The supporting method for automatic diagnosis of prostatic hypertrophy." In Biomdlore. VGTU Technika, 2016. http://dx.doi.org/10.3846/biomdlore.2016.13.
Full textShi, C., J. Park, L. Manuel, and M. A. Tognarelli. "A Data-Driven Mode Identification Algorithm for Fatigue Damage Assessment in Instrumented Marine Risers." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-50231.
Full text