Academic literature on the topic 'Waveform similarity analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Waveform similarity analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Waveform similarity analysis"

1

Havrlík, Matouš, Martin Libra, Vladislav Poulek, and Pavel Kouřím. "Analysis of Output Signal Distortion of Galvanic Isolation Circuits for Monitoring the Mains Voltage Waveform." Sensors 22, no. 20 (October 13, 2022): 7769. http://dx.doi.org/10.3390/s22207769.

Full text
Abstract:
Different methods for galvanically isolated monitoring of the mains voltage waveform were evaluated. The aim was to determine the level of distortion of the output signal relative to the input signal and the suitability of each method for calculating active power values. Six fixtures were tested: two voltage transformers, an electronic circuit with a current transformer, a standalone current transformer, a simple circuit with optocouplers, and a circuit with an A/D-D/A converter with capacitive coupling. The input and output waveforms were mathematically analyzed by three methods: (1) calculating the spectral components of waveforms and the relative changes in their THD (total harmonic distortion) values, (2) determining the similarity of waveforms according to the size of the area bounded by the input and output waveform curves, and (3) determining the accuracy of the active power calculation based on the output waveform. The time difference in the zero crossing of the input and output signals was measured, and further calculations for the second and third method were performed on the zero-crossing time shift-corrected waveforms. Other aspects of selecting the appropriate type of monitoring element, such as power consumption or overall circuit complexity, were also evaluated.
APA, Harvard, Vancouver, ISO, and other styles
2

LIU, Tong-tong, Min DAI, and Zhong-yi LI. "ECG waveform similarity analysis based on window-slope representation." Journal of Computer Applications 32, no. 10 (May 23, 2013): 2969–72. http://dx.doi.org/10.3724/sp.j.1087.2012.02969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Iosa, M., A. Cereatti, A. Merlo, I. Campanini, S. Paolucci, and A. Cappozzo. "Assessment of Waveform Similarity in Clinical Gait Data: The Linear Fit Method." BioMed Research International 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/214156.

Full text
Abstract:
The assessment of waveform similarity is a crucial issue in gait analysis for the comparison of kinematic or kinetic patterns with reference data. A typical scenario is in fact the comparison of a patient’s gait pattern with a relevant physiological pattern. This study aims to propose and validate a simple method for the assessment of waveform similarity in terms of shape, amplitude, and offset. The method relies on the interpretation of these three parameters, obtained through a linear fit applied to the two data sets under comparison plotted one against the other after time normalization. The validity of this linear fit method was tested in terms of appropriateness (comparing real gait data of 34 patients with cerebrovascular accident with those of 15 healthy subjects), reliability, sensitivity, and specificity (applying a cluster analysis on the real data). Results showed for this method good appropriateness, 94.1% of sensitivity, 93.3% of specificity, and good reliability. The LFM resulted in a simple method suitable for analysing the waveform similarity in clinical gait analysis.
APA, Harvard, Vancouver, ISO, and other styles
4

A. Khalil, Mohamed. "Groundwater Classification by Using Fourier Analysis." Global Journal of Earth Science and Engineering 9 (August 22, 2022): 65–73. http://dx.doi.org/10.15377/2409-5710.2022.09.5.

Full text
Abstract:
The article illustrates a statistical technique for the visual representation of geochemical data. Quaternary and Pre-Quaternary groundwater samples from Northern Sinai Peninsula, Egypt, were interpreted statistically using Andrews plots, which use Fourier analysis to transform and represent a set of multivariate data by a waveform pattern. The resulting waveform patterns were classified into low, middle, and high amplitudes, following up the increase in the total dissolved solids of the samples. Comparison with the traditional hydrochemical polygonal Stiff diagrams resulted in a complete matching. The proposed mixing between the Quaternary and Pre-Quaternary aquifers has been proved via the similarity of waveform patterns of the mixed water. The application of Andrews plots is investigated by comparison with the Stiff conventional diagrams. The correlation between different amplitudes and the TDS value of every sample indicates that the amplitude increases with the increase in the salinity.
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Tao, Xinhui Yang, Xingchao Guo, Xingguo Wang, and Chengqi Zhang. "Zero-Sequence Differential Current Protection Scheme for Converter Transformer Based on Waveform Correlation Analysis." Energies 13, no. 7 (April 9, 2020): 1814. http://dx.doi.org/10.3390/en13071814.

Full text
Abstract:
Through the analysis of the recovery inrush current generated by the external fault removal of the converter transformer, it is pointed out that the zero-sequence current caused by the recovery inrush may result in the saturation of the neutral current transformer (CT), whose measurement distortion contributes to the mis-operation of zero-sequence differential current protection. In this paper, a new scheme of zero-sequence differential current protection based on waveform correlation is proposed. By analyzing the characteristics of zero-sequence current under internal fault, external fault and external fault removal, the waveform correlation of the zero-sequence current measured at the terminal of the transformer and the zero-sequence current measured at the neutral point of the transformer is used for identification. The polarity of the CT is selected to guarantee the zero-sequence currents at the terminal and neutral point of the transformer exhibit a "ride through" characteristic under external fault, then the waveform similarity is high, and the correlation coefficient is positive. On the other hand, when internal fault occurs, zero-sequence current waveforms on both sides differ from each other largely, and the correlation coefficient is negative. Through a large number of simulations verified by PSCAD/EMTDC, this criterion can accurately identify internal and external faults, exempt from effects of the recovery inrush. Moreover, it presents certain ability for CT anti-saturation.
APA, Harvard, Vancouver, ISO, and other styles
6

Lukovenkova, Olga, and Alexandra Solodchuk. "Analysis of geoacoustic emission and electromagnetic radiation signals accompanying earthquake with magnitude Mw = 7.5." E3S Web of Conferences 196 (2020): 03001. http://dx.doi.org/10.1051/e3sconf/202019603001.

Full text
Abstract:
The paper is devoted to the analysis of frequency spectra and pulse waveform variety of the geoacoustic and electromagnetic signals recorded on Kamchatka Peninsula at “Karymshina” site during seismically calm and active periods. Signal pre-processing includes pulse detection and their waveforms reconstruction. A frequency spectrum is analyzed using the Adaptive Matching Pursuit algorithm. To study a variety of waveforms, each pulse is encoded by a special descriptive matrix. Then pulse classification based on similarity of the descriptive matrices is performed. Thus, a signal alphabet is formed. The authors analyzed the geophysical signals recorded before, during and after the earthquake with the magnitude Mw = 7.5 dated March 25, 2020. The obtained estimates of frequency spectra and signal alphabets are compared with the analysis results of signal recoded during the seismically calm period of March 22, 2020.
APA, Harvard, Vancouver, ISO, and other styles
7

Petersen, G. M., P. Niemz, S. Cesca, V. Mouslopoulou, and G. M. Bocchini. "Clusty, the waveform-based network similarity clustering toolbox: concept and application to image complex faulting offshore Zakynthos (Greece)." Geophysical Journal International 224, no. 3 (November 25, 2020): 2044–59. http://dx.doi.org/10.1093/gji/ggaa568.

Full text
Abstract:
SUMMARY Clusty is a new open source toolbox dedicated to earthquake clustering based on waveforms recorded across a network of seismic stations. Its main application is the study of active faults and the detection and characterization of faults and fault networks. By using a density-based clustering approach, earthquakes pertaining to a common fault can be recognized even over long fault segments, and the first-order geometry and extent of active faults can be inferred. Clusty implements multiple techniques to compute a waveform based network similarity from maximum cross-correlation coefficients at multiple stations. The clustering procedure is designed to be transparent and parameters can be easily tuned. It is supported by a number of analysis visualization tools which help to assess the homogeneity within each cluster and the differences among distinct clusters. The toolbox returns graphical representations of the results. A list of representative events and stacked waveforms facilitate further analyses like moment tensor inversion. Results obtained in various frequency bands can be combined to account for large magnitude ranges. Thanks to the simple configuration, the toolbox is easily adaptable to new data sets and to large magnitude ranges. To show the potential of our new toolbox, we apply Clusty to the aftershock sequence of the Mw 6.9 25 October 2018 Zakynthos (Greece) Earthquake. Thanks to the complex tectonic setting at the western termination of the Hellenic Subduction System where multiple faults and faulting styles operate simultaneously, the Zakynthos data set provides an ideal case-study for our clustering analysis toolbox. Our results support the activation of several faults and provide insight into the geometry of faults or fault segments. We identify two large thrust faulting clusters in the vicinity of the main shock and multiple strike-slip clusters to the east, west and south of these clusters. Despite its location within the largest thrust cluster, the main shock does not show a high waveform similarity to any of the clusters. This is consistent with the results of other studies suggesting a complex failure mechanism for the main shock. We propose the existence of conjugated strike-slip faults in the south of the study area. Our waveform similarity based clustering toolbox is able to reveal distinct event clusters which cannot be discriminated based on locations and/or timing only. Additionally, the clustering results allows distinction between fault and auxiliary planes of focal mechanisms and to associate them to known active faults.
APA, Harvard, Vancouver, ISO, and other styles
8

Tang, Junlei, Junyang Li, Hu Wang, Yingying Wang, and Geng Chen. "In-Situ Monitoring and Analysis of the Pitting Corrosion of Carbon Steel by Acoustic Emission." Applied Sciences 9, no. 4 (February 18, 2019): 706. http://dx.doi.org/10.3390/app9040706.

Full text
Abstract:
The acoustic emission (AE) technique was applied to monitor the pitting corrosion of carbon steel in NaHCO3 + NaCl solutions. The open circuit potential (OCP) measurement and corrosion morphology in-situ capturing using an optical microscope were conducted during AE monitoring. The corrosion micromorphology was characterized with a scanning electron microscope (SEM). The propagation behavior and AE features of natural pitting on carbon steel were investigated. After completion of the signal processing, including pre-treatment, shape preserving interpolation, and denoising, for raw AE waveforms, three types of AE signals were classified in the correlation diagrams of the new waveform parameters. Finally, a 2D pattern recognition method was established to calculate the similarity of different continuous AE graphics, which is quite effective to distinguish the localized corrosion from uniform corrosion.
APA, Harvard, Vancouver, ISO, and other styles
9

Jeon, Jeong Woo, and Jiheon Hong. "Comparison of screw-home mechanism in the unloaded living knee subjected to active and passive movements." Journal of Back and Musculoskeletal Rehabilitation 34, no. 4 (July 13, 2021): 589–95. http://dx.doi.org/10.3233/bmr-200110.

Full text
Abstract:
BACKGROUND: The screw-home mechanism (SHM) plays an important role in the stability of the knee. Accordingly, the analysis of tibial rotation patterns can be used to elucidate the effect of SHM-related factors. OBJECTIVE: The purpose of this study was to compare the magnitude of the angle and the pattern of SHM between passive and active movements. METHODS: We studied twenty healthy males, of which the angle of knee flexion-extension and tibial longitudinal rotation (TLR) during active and passive movements were measured using the inertial measurement unit. Student’s t-tests were used to compare the magnitude of TLR. The waveform similarity was quantified using a coefficient of multiple correlation (CMC). RESULTS: Significant differences were found in the TLR between the active and passive movements (p< 0.05). The knee flexion-extension waveform similarity was excellent (CMC = 0.956). However, the waveform similarity of TLR was weak (CMC = 0.629). CONCLUSION: The SHM increased abruptly during the last 20∘ of the active (extension) movement compared with passive extension. The SHM occurred mainly owing to the geometry and shape of the articular surfaces of the knee joint. In addition, muscle contraction was considered to be an important factor in the articulation movement.
APA, Harvard, Vancouver, ISO, and other styles
10

Grund, Michael, Jörn C. Groos, and Joachim R. R. Ritter. "Fault Reactivation Analysis Using Microearthquake Clustering Based on Signal-to-Noise Weighted Waveform Similarity." Pure and Applied Geophysics 173, no. 7 (April 2, 2016): 2325–55. http://dx.doi.org/10.1007/s00024-016-1281-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Waveform similarity analysis"

1

Massa, M. "Waveforms analysis to improve earthquake location procedures: theory and applications." Thesis, 2005. http://hdl.handle.net/2122/5898.

Full text
Abstract:
Nell'analisi di routine di segnali sismici registrati sia da reti fisse sia temporanee è abbastanza comune riconoscere, alle varie stazioni, coppie (doublets) o gruppi (multiplets) di eventi sismici caratterizzati da forme d'onda molto simili. Tali eventi se localizzati in corrispondenza di una ristretta fascia geografica costituiscono, se caratterizzati da comune meccanismo sorgente, quelle che vengono definite “famiglie sismogenetiche” (Tsujiura, 1983). Il riconoscimento di terremoti caratterizzati (se registrati ad una comune stazione) da sismogrammi molto simili consente indagini di dettaglio in grado di fornire informazioni molto più accurate rispetto ad una semplice localizzazione di routine; determinare una relazione diretta tra famiglie sismogenetiche e strutture geologiche presenti in una determinata area consente infatti di discriminare all’interno della stessa la presenza di sorgenti potenzialmente attive. In particolare, uno studio prolungato nel tempo dell’occorrenza di terremoti aventi le caratteristiche sopra riportate rappresenta lo strumento fondamentale al fine della determinazione dei periodi di riattivazione delle sorgenti individuate. L’analisi di somiglianza di forme d’onda può essere implementata sia nel dominio del tempo sia nel dominio delle frequenze, utilizzando a seconda dei casi tecniche basate rispettivamente sulle funzioni di cross correlazione e di cross spettro. In caso di analisi nel dominio delle frequenze i segnali analizzati sono ottenuti a partire da sismogrammi convertiti in spettri tramite l’utilizzo della funzione trasformata di Fourier. A causa del non sempre soddisfacente rapporto segnale disturbo caratterizzante le registrazioni fornite dalle reti sismiche fisse RSNI (Rete Sismica Italia Nord Occidentale) ed RSLG (Rete sismica Lunigiana-Garfagnana), gestite direttamente dalla sezione geofisica dell’Università di Genova ed utilizzate come base di partenza per gli studi effettuati, nel presente lavoro di tesi sono state implementate tecniche di analisi del segnale sismico esclusivamente nel dominio del tempo. Al fine di determinare in termini oggettivi un adeguato settaggio per tutti i parametri coinvolti in un’analisi di somiglianza di forme d’onda si è compiuto uno studio di dettaglio considerando come test la sismicità dell’Appennino Settentrionale (area Lunigiana- Garfagnana) registrata dalla rete fissa RSLG nel periodo 1999 - 2003. In base alle risultanze derivate da una preliminare analisi del rapporto segnale disturbo effettuata a ciascuna stazione della rete RSLG, è stato selezionato un data set composto da circa 1.000 terremoti, aventi magnitudo locale compresa tra 1.5 e 4.1. L’analisi delle forme d'onda è stata implementata nel dominio del tempo utilizzando la funzione di cross correlazione normalizzata. A differenza di recenti studi su doublets sismici, per ogni singolo sismogramma è stata analizzata una finestra temporale comprendente tutte le fasi del segnale considerato. Molteplici test eseguiti hanno infatti dimostrato come effettuare un’analisi di somiglianza considerando ridotte porzioni di sismogramma (pochi secondi) conduca in modo inequivocabile alla determinazione di famiglie sismogenetiche erroneamente sovradimensionate. Come sottolineato in Ferretti et al., 2005 (accettato in via preliminare per la pubblicazione sulla rivista “Bulletin Seismological Society of America”) l’indice di cross-correlazione calcolato considerando un’adeguata finestra temporale, comprendente fase P, fase S e parte della coda, consente di ottenere valori di similitudine dipendenti anche da componenti di segnale strettamente legate alla propagazione nel mezzo. Una volta ottenuti affidabili indici di somiglianza si è proceduto alla determinazione, a partire da coppie di terremoti simili (doublets), di una soglia minima di cross correlazione (indice di somiglianza) riferita a ciascuna stazione utilizzata, da applicare al fine di discriminare quelle che vengono definite famiglie sismogenetiche (multiplets). A tale scopo è stata applicata una innovativa procedura (Ferretti et al., 2005) in grado di considerare sia le componenti verticali sia le componenti orizzontali dei segnali registrati a tutte le stazioni della rete sismica considerata. Il raggruppamento in famiglie è stato effettuato utilizzando la “bridging technique” (Aster and Scott, 1993), considerandone vantaggi e svantaggi rispetto alle metodologie classiche. Il risultato finale è stata la determinazione di 27 multiplets, ognuno dei quali riconosciuto da più stazioni con valori minimi di somiglianza superiori all’ 80%. Considerando le famiglie sismogenetiche maggiormente significative (in termini di componenti) e contemporaneamente localizzate internamente alla rete RSLG, è stata applicata a ciascuna di esse una procedura di localizzazione in relativo tramite l’utilizzo del “double difference algorithm” (Waldhauser and Ellsworth, 2000). L’accuratezza dei parametri ipocentrali ottenuta tramite la procedura di ri-localizzazione è stata testata analizzando due differenti data set, composti rispettivamente da eventi localizzati internamente ed esternamente alla rete RSLG. I risultati ottenuti hanno messo in evidenza la buona affidabilità del metodo per eventi sismici localizzati internamente al network ed allo stesso tempo una scarsa significatività dei risultati considerando un data set caratterizzato al contrario da eventi sismici caratterizzati da elevato gap azimutale e non trascurabile distanza ipocentro-prima stazione. Per ciascuna famiglia rilocalizzata è stato calcolato, ove possibile, il meccanismo focale cumulato al fine di determinare l’orientazione del piano di faglia principale. Una successiva applicazione delle metodologie sopra descritte è stata effettuata utilizzando come data set di partenza circa 250 terremoti, registrati dalla rete sismica RSNI nel periodo Agosto 2000 - Luglio 2001, localizzati in una ristretta area geografica ubicata pochi km a NO di Acqui Terme (Monferrato, Piemonte) (Massa et al., 2005, accettato in via preliminare per la pubblicazione sulla rivista “Journal of Seismology”). L’analisi di doublets unita ad una successiva procedura di localizzazione in relativo ha condotto alla determinazione di 5 multiplets, ognuno dei quali aventi parametri di localizzazione caratterizzati, se paragonati ai medesimi derivati dalla localizzazione di bollettino, da un brusco decremento degli errori. Le nuove localizzazioni delle famiglie sismogenetiche, nonostante abbiano consentito di definire per l’area in studio una distribuzione di sismicità interpretabile in riferimento alle conoscenze concernenti l’assetto geologico strutturale dell’area stessa, rimangono in questo caso affette, per quanto riguarda le coordinate assolute, da non trascurabili errori insiti nelle localizzazioni di partenza. La configurazione del network a disposizione, sia in termini di gap azimutale sia in termini di distanza epicentri-stazione, non ha consentito, relativamente alla posizione dell’area epicentrale, di ottenere affidabili localizzazioni assolute. Il confronto dei risultati derivanti dall’applicazione di medesime metodologie, a partire da differenti condizioni al contorno, ha consentito di definire le condizioni limite di applicabilità delle stesse, le quali se utilizzate senza alcun criterio di selezione condurranno in generale ad un mancato miglioramento delle condizioni di partenza e/o a risultati erronei. La parte conclusiva degli studi trattati è stata dedicata allo sviluppo di un nuovo algoritmo di localizzazione assoluta basato esclusivamente su un’analisi di somiglianza di forme d’onda effettuata ad una singola stazione di riferimento (Massa et. al. 2005, sottomesso alla rivista “Journal of Geophysical Research”). Tale procedura è stata implementata considerando come riferimento la stazione mono-componente di Sant’Anna di Valdieri (rete sismica RSNI), ubicata nelle Alpi Sud Occidentali, in prossimità del confine italo-francese. Sono stati raccolti in un data base di partenza, accuratamente selezionato a seguito di un’analisi del rapporto segnale disturbo, circa 2.700 sismogrammi verticali, registrati in un’area di 40 km x 40 km nel periodo 1985-2004. L’analisi di somiglianza, precedentemente descritta è stata in grado di discriminare per il periodo considerato 80 multiplets, a ciascuno dei quali è stato possibile associare un evento master (evento di riferimento) in corrispondenza del quale fare collassare le coordinate ipocentrali di tutti gli eventi appartenenti alla famiglia associata al medesimo. Utilizzando il data set di multiplets ricavato per il periodo in esame, l’algoritmo di localizzazione è stato testato utilizzando un data set ridotto composto da circa 100 terremoti, registrati nell’area in studio nel periodo Gennaio 2003 - Giugno 2004. Tramite la suddetta metodologia di localizzazione, basata esclusivamente sui risultati derivati da un’analisi di forme d’onda nel dominio del tempo, è stato possibile localizzare circa il 50% degli eventi appartenenti al data set ridotto. Il vantaggio principale di tale procedura, rispetto alle tecniche usualmente utilizzate per determinare le coordinate ipocentrali di eventi sismici, risulta l’indipendenza della medesima da errori derivanti da sfavorevoli geometre di rete rispetto all’area epicentrale, dal numero di stazioni (fasi registrate), dalla distanza ipocentro-prima stazione e da errori di lettura delle fasi sismiche da parte di un operatore. L’attenzione rivolta allo studio delle sequenze sismiche, con la conseguente possibilità di dare una corretta caratterizzazione alle strutture sismogenetiche presenti nelle aree considerate, rappresenta uno passo fondamentale per qualsiasi tipo di studio disciplinare successivo; la qualità dei risultati ottenibili attraverso la costruzione di modelli tomografici e di propagazione (sulla base dei quali vengono effettuati gli studi di rischio sismico) dipende infatti dagli errori ottenuti durante le procedure di localizzazione dei terremoti e di conseguenza dalla corretta individuazione delle strutture sismogenetiche responsabili degli stessi.
Istituto Nazionale di Geofisica e Vulcanologia, sezione di Milano-Pavia
Unpublished
3.1. Fisica dei terremoti
open
APA, Harvard, Vancouver, ISO, and other styles
2

Kianimajd, Adell. "Analysis of similarity among arterial blood pressure waveforms." Master's thesis, 2016. http://hdl.handle.net/10400.1/10004.

Full text
Abstract:
Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2017
Time series are an important class of data objects that arise from various sources and their analysis typically involves huge amounts of information requiring usage of data mining techniques. Measuring similarity in long time series plays an important role in searching for similar patterns, classification, clustering, prediction and knowledge discovery. In clinical context any estimation of future values based on its past values can be useful in disease prognosis. In this thesis different methods of measuring similarity between time series of arterial blood pressure (ABP) signals are described and experimental results are provided. To classify an ABP record within a particular diseases’ class (a cluster), the typical procedure is the prior determination of the similarity of the ABP record with a reference signal characterizing a cardiovascular disease (CVD) and then identifying the strength of that similarity to enable a true positive classification of the illness (or not). Several methods of measuring similarity among time-series are referred in literature, the most commonly employed one were object of this research. Since the goal was the application of the similarity results to perform clustering of the ABP signals, similarity methods were investigated particularly in what concerns their performance when proceeding for the clustering following step. So, this thesis reports the usage of seven different similarity methods, five working in the time domain and two in the transform-based domain, and explores their usage when clustering by Partitioning Around Medoids is implemented. As data records are noisy and signals suffer from variations due to other sources than heart, six types of variations were imposed on the reference signal and 20 degrees of possible variations were tested. The time series considered on this study were 10 seconds length, referring to healthy, electrocardiogram (ECG) long term ST’s, atrial fibrillation and a collection of diagnostic ECGs. Three clusters were considered, each involving healthy and pathological records, in different proportions. Results demonstrate that the Discrete Wavelet Transform using a Haar wavelet decomposition with the Karhunen-Loève transforms, besides reducing the computational processing load enables clustering with an accuracy between 76% and 84% among the three diagnostic classes considered. The organization of this thesis is as follows. A short representation of Time-series is in chapter.1. A brief description of various similarity methods and clustering methods are given in chapters 2 and 3. Experiments performed and results obtained are described in chapter 4. Finally, the conclusion of this work is presented in chapter 5 where the list of publications resultant from this thesis is included.
As séries temporais são uma classe importante de objetos de dados que surgem de várias fontes e a sua análise geralmente envolve enormes quantidades de informações que exigem o uso de técnicas de mineração de dados. A medição da similaridade em séries de longo prazo desempenha um papel importante na busca por padrões semelhantes, classificação, agrupamento, previsão e descoberta de conhecimento. No contexto clínico qualquer estimativa de valores futuros baseada em seus valores passados pode ser útil no prognóstico de doenças. Nesta tese são descritos diferentes métodos para medir a similaridade entre séries temporais de sinais de pressão arterial (ABP) e são fornecidos resultados experimentais. Para classificar um registro ABP dentro de uma classe de doenças particulares (um cluster), o procedimento típico é a determinação prévia da similaridade do registro ABP com um sinal de referência caracterizando uma doença cardiovascular (CVD) e depois, identificando a força dessa similaridade, possibilita-se uma classificação verdadeira positiva da doença (ou não). Vários métodos de mensuração da similaridade entre séries temporais são referidos na literatura, sendo os mais comumente empregados objeto desta pesquisa. Uma vez que o objetivo foi a aplicação dos resultados de similaridade para realizar agrupamento dos sinais ABP (clustering), vários métodos de similaridade foram investigados particularmente no que diz respeito ao seu desempenho ao prosseguir para a etapa seguinte de agrupamento de acordo com a patologia. Assim, esta tese relata o uso de sete métodos de similaridade diferentes, cinco trabalhando no domínio do tempo e dois no domínio baseado em transformação, e explora o seu uso quando o clustering pelo método de Partitioning Around Medoids é implementado. Como os registros de dados são ruidosos e os sinais sofrem de variações devido a outras fontes além das do coração, seis tipos de variações foram impostas ao sinal de referência e foram testados 20 graus de possíveis variações. As séries temporais consideradas neste estudo foram de 10 segundos de duração, referindo-se a eletrocardiogramas (ECG) saudáveis, a sinais de ECG com segmentos ST de longo prazo, a ECG’s relativos a fibrilação atrial e ainda a uma coleção de ECGs de diagnóstico. Foram considerados três agrupamentos, cada um envolvendo registros saudáveis e patológicos, em diferentes proporções. Os resultados demonstram que a Transformação de Wavelet Discreta usando uma decomposição de wavelet de Haar com as transformações de Karhunen-Loève, além de reduzir a carga de processamento computacional, possibilita o agrupamento com uma precisão entre 76% e 84% entre as três classes diagnósticas consideradas. A organização desta tese é a seguinte. Uma breve representação de séries temporais está incluída no capítulo 1. Uma breve descrição de vários métodos de similaridade e métodos de agrupamento são apresentados nos capítulos 2 e 3. As experiências realizadas e os resultados obtidos são descritos no capítulo 4. Finalmente, a conclusão deste trabalho é apresentada no capítulo 5, onde a lista de publicações resultantes desta tese está incluído.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Waveform similarity analysis"

1

Di Salvo, Francesca, Renata Rotondi, and Giovanni Lanzano. "Functional Linear Models for the Analysis of Similarity of Waveforms." In Models for Data Analysis, 125–40. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15885-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Waveform similarity analysis"

1

Stuermer, Karsten, Joern Kummerow, and Serge A. Shapiro. "Waveform similarity analysis at Cotton Valley, Texas." In SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011. http://dx.doi.org/10.1190/1.3627524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Chenxiang, Moke Feng, Heming Yan, Chang Lin, Jianzhong Xu, and Chengyong Zhao. "Waveform Similarity Analysis for Nonlinear Components of Metal Oxide Arrester (MOA)." In 2019 4th IEEE Workshop on the Electronic Grid (eGRID). IEEE, 2019. http://dx.doi.org/10.1109/egrid48402.2019.9092641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pan, Zhuojin, Shijie Wu, and Hua Yang. "The waveform similarity measurement study of seeker-eCabin based on wavelet analysis." In 2010 3rd International Congress on Image and Signal Processing (CISP). IEEE, 2010. http://dx.doi.org/10.1109/cisp.2010.5647852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jadhav, Pankaj, Debabrata Datta, and Siddhartha Mukhopadhyay. "Signature Matching For Seismic Signal Identification." In International Conference on Women Researchers in Electronics and Computing. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.114.17.

Full text
Abstract:
Seismic signals can be classified as natural or manmade by matching signature of similar events that have occurred in the past. Waveform matching techniques can be effectively used for discrimination since the events with similar location and focal mechanism have similar waveform irrespective of magnitude. The seismic signals are inherently non-stationary in nature. The analysis of such signals can be best achieved in multiresolution framework by resolving the signal using continuous wavelet transform (CWT) in time-frequency plane. In this paper similarity testing and classification of nuclear explosion and earthquake are exploited with correlation, continuous wavelet transform, cross-wavelet transform and wavelet coherence (WC) of P phase of seismogram. Clustering of seismic signals continuous wavelet spectra is performed using maximum covariance analysis. The proposed classifier has an average classification accuracy of 94%.
APA, Harvard, Vancouver, ISO, and other styles
5

Walendziuk, Wojciech, Aleksander Sawicki, and Adam Idźkowski. "The supporting method for automatic diagnosis of prostatic hypertrophy." In Biomdlore. VGTU Technika, 2016. http://dx.doi.org/10.3846/biomdlore.2016.13.

Full text
Abstract:
In the paper numerical algorithms used in the automatic diagnosis of prostatic hypertrophy are presented. The liquid flow during urination was applied as a signal that describes the condition of prostate. In order to register the signal, the uroflowmeter was used. Patients were included in a two-step procedure. In the first step, an analysis of signal characteristics, such as maximum and the mean value with the use of Liverpool Nomogram, were performed. Then, the signal was tested for the presence of oscillation. For this purpose, an algorithm that generates the reference signal was created. Moreover, the similarity waveform was investigated with the help of the integral index. The diversity of signals indicated the presence of anomalies and had an impact on the final classification of the patient.
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, C., J. Park, L. Manuel, and M. A. Tognarelli. "A Data-Driven Mode Identification Algorithm for Fatigue Damage Assessment in Instrumented Marine Risers." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-50231.

Full text
Abstract:
A well-established empirical procedure, which we refer to as Weighted Waveform Analysis (WWA), is employed to reconstruct a model riser’s response over its entire length using a limited number of strain measurements. The quality of the response reconstruction is controlled largely by identification of the participating riser response modes (waveforms); hence, mode selection is vital in WWA application. Instead of selecting a set of consecutive riser vibratory modes, we propose a procedure that automatically identifies a set of non-consecutive riser modes that can thus account for higher harmonics in the riser response (at multiplies of the Strouhal frequency). Using temporal data analysis of the discrete time-stamped samples, significant response frequencies are identified on the basis of power spectrum peaks; similarly using spatial data analysis of the sparse non-uniformly sampled data, significant wavenumbers are identified using Lomb-Scargle periodograms. Knowing the riser length, the most important wavenumber is related to a specific mode number; this dominant mode is in turn related to the dominant peak in power spectra based on the temporal data analysis. The riser’s fundamental frequency is estimated as the ratio of the empirically estimated dominant spectral frequency to the dominant mode number. Additional mode numbers are also identified as spectral peak frequencies divided by the fundamental frequency. This mode selection technique is an improvement over similar WWA procedures that rely on a priori knowledge of the risers fundamental frequency or on knowledge of physical properties and assumptions on added mass contributions. At selected target locations, we compare fatigue damage rates, estimated based on the riser response reconstructed using the WWA method with the proposed automated mode selection technique (we refer to this as “improved” WWA) and those based on the “original” WWA method (that relies on a theoretically computed fundamental natural frequency of the riser). In both cases, predicted fatigue damage rates based on the empirical methods and data at various locations (other than the target) are cross-validated against damage rates based directly on measurements at the target location. Results show that the improved WWA method, which empirically estimates the riser’s fundamental natural frequency and automatically selects significant modes of vibration, may be employed to estimate fatigue damage rates quite well from limited strain measurements.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography