Academic literature on the topic 'Wave scattering coefficient'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wave scattering coefficient.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wave scattering coefficient"
ZHONG, WEI-PING. "ROGUE WAVE SOLUTIONS OF THE GENERALIZED ONE-DIMENSIONAL GROSS–PITAEVSKII EQUATION." Journal of Nonlinear Optical Physics & Materials 21, no. 02 (June 2012): 1250026. http://dx.doi.org/10.1142/s0218863512500269.
Full textSugaya, R. "Momentum-space diffusion due to resonant wave–wave scattering of electromagnetic and electrostatic waves in a relativistic magnetized plasma." Journal of Plasma Physics 56, no. 2 (October 1996): 193–207. http://dx.doi.org/10.1017/s0022377800019206.
Full textKumar, Uma Vinod. "Scattering of Gravity Waves by a Rectangular Floating Flexible Porous Plate." Journal of Advanced Research in Applied Mathematics and Statistics 06, no. 1&2 (May 7, 2021): 4–11. http://dx.doi.org/10.24321/2455.7021.202102.
Full textKar, Prakash, Harekrushna Behera, and Trilochan Sahoo. "Oblique Long Wave Scattering by an Array of Bottom-Standing Non-Smooth Breakwaters." Fluids 7, no. 11 (November 15, 2022): 352. http://dx.doi.org/10.3390/fluids7110352.
Full textGuo, Yinjing, Yuanyuan Ju, Zhen Liu, and Jianhua Zhang. "A Propagation Loss Coefficient Model of Low-Frequency Elastic Wave in Coal Strata Set." Mathematical Problems in Engineering 2020 (March 9, 2020): 1–7. http://dx.doi.org/10.1155/2020/6832362.
Full textZhao, Ye, Wen-Tao Guan, and Peng-Ju Yang. "The Mono/Bistatic SAR Imaging Simulation of Sea Surface with Breaking Waves Based on a Refined Facet Scattering Field Model." International Journal of Antennas and Propagation 2021 (July 12, 2021): 1–9. http://dx.doi.org/10.1155/2021/9915688.
Full textMudaliar, S. "Acoustic wave scattering from a randomly rough surface." Canadian Journal of Physics 74, no. 9-10 (September 1, 1996): 641–50. http://dx.doi.org/10.1139/p96-093.
Full textAngel, Y. C. "Scattering of Love Waves by a Surface-Breaking Crack." Journal of Applied Mechanics 53, no. 3 (September 1, 1986): 587–92. http://dx.doi.org/10.1115/1.3171815.
Full textKohout, Alison L., Michael H. Meylan, and David R. Plew. "Wave attenuation in a marginal ice zone due to the bottom roughness of ice floes." Annals of Glaciology 52, no. 57 (2011): 118–22. http://dx.doi.org/10.3189/172756411795931525.
Full textSato, Haruo. "Isotropic scattering coefficient of the solid earth." Geophysical Journal International 218, no. 3 (June 6, 2019): 2079–88. http://dx.doi.org/10.1093/gji/ggz266.
Full textDissertations / Theses on the topic "Wave scattering coefficient"
Böhme, Christiane. "Decay rates and scattering states for wave models with time-dependent potential." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2011. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-70939.
Full textKefi, Monia. "Coefficients d'attenuation et facteurs de diffusion atomique des elements 46 a 54 dans leur region k." Paris 6, 1988. http://www.theses.fr/1988PA066326.
Full textJeyakumaran, R. "Some scattering and sloshing problems in linear water wave theory." Thesis, Brunel University, 1993. http://bura.brunel.ac.uk/handle/2438/5390.
Full textMaess, Johannes Thomas. "Attenuation models for material characterization." Thesis, Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-10252004-031615/unrestricted/maess%5Fjohannes%5Ft%5F200412%5Fmast.pdf.
Full textLaurence J. Jacobs, Committee Chair ; Reginald DesRoches, Committee Member ; Jianmin Qu, Committee Member. Includes bibliographical references.
Sajjad, Naheed. "Bistatic scattering of electromagnetic waves from rough surface by using second order twoscale model : application to sea and bare soil surface." Brest, 2011. http://www.theses.fr/2011BRES2049.
Full textL’estimation de la surface équivalente radar (SER) des fouillis de mer et terrestre est essentielle pour la conception et l’amélioration des performances des systèmes de télédétection et d’observation de la planète. Le problème particulier de la diffusion des ondes en configuration à angle rasant est de grand intérêt à cause de son importance pour la surveillance, suivi de cible, la communication et les systèmes de navigation fonctionnant au-dessus de surfaces rugueuses, terrestre ou maritime. La surface équivalente radar d’une surface rugueuse devient très faible en incidence rasante puisque la plus grande partie de la puissance incidente est diffusée dans la direction spéculaire (selon le degré de rugosité de k surface). De plus, les mécanismes principaux de diffusion sont différents aux angles rasants, par exemple, les effets de diffusion multiple (ou de diffusion d’ordre supérieur), l’ombrage, fading et les mécanismes liés au déferlement des vagues sont particulièrement présents dans une telle configuration. Par conséquent, c’est dans ce contexte que s’intègre les travaux de recherche développés dans cette thèse. Ceci en développant le modèle deux échelles à l’ordre 2 (TSM2) permettant ainsi de contribuer à l’estimation des coefficients de diffusion bistatique par les surfaces rugueuses avec l’application de ce modèle aux surfaces maritime et terrestre. L’évaluation du modèle développé est réalisée en effectuant des comparaisons par rapport aux résultats obtenus avec d’autres modèles et aussi aux données issues de la littérature ouverte
Ben, Khadra Slahedine. "Etude de la signature EM bistatique d'une surface maritime hétérogène avec prise en compte des phénomènes hydrodynamiques." Thesis, Brest, 2012. http://www.theses.fr/2012BRES0089/document.
Full textThe work done in this thesis fits generally under the observation and maritime surveillance. To improve the detection and automatic identification of targets embedded in a noisy environment targets, we opted for the fusion of different knowledge and information regarding a remotely observed scene by microwave sensors. Indeed, several physical phenomena co-exist and interfere with the propagation of electromagnetic waves over a heterogeneous sea surface (the refraction due to the index gradients, the roughness of the sea surface, nonlinear hydrodynamic effects like waves breaking, the presence of objects, pollutants, ship wake, coastal areas,..). In this context, the work presented in this thesis focuses on the study of electromagnetic signature (diffusion coefficients) of a heterogeneous sea surface with consideration of hydrodynamic phenomena (linear: capillary and gravity waves, nonlinear: breaking waves). The electromagnetic signature is performed in bistatic configuration (monostatic and forward propagating) and in X-band. The complete study of this problem is difficult.Indeed, the breaking wave is a dissipative process of energy that corresponds to the last stage of the life of a wave and therefore has most often held in the shore. This nonlinear phenomenon produces a sea peak which is a rapid increase of the diffusion coefficients and can exceed l0 dB in a 100 ms period. This peak can lead to clutter, which can be identified as virtual targets, and then they can disrupt the detection radar system (false alarms). Therefore, to improve the detection process and reduce the false alarm rate, it is important to distinguish between targets and sea peaks generated by breaking waves. This represents one of the motivations and also the interest to study the electromagnetic signature of breaking waves in different observation configurations so that we can easily detect and identify the sea peaks. To solve this problem, we proposed a methodology based on a hybrid electromagnetic model which is on a combination of asymptotic methods (SPMI used in this work) to simulate the radar response of linear waves (capillary and gravity waves described via the Elfouhaily sea spectrum) and an exact methods, the method of moment (the FB "Forward-Backward" method is used in this work), to calculate the electromagnetic response of nonlinear waves (profiles are produced by the LONGTANK code). To complement the theoretical study and simulations, we carried out an evaluation and validation phase by measuring the radar signature of breaking wave profiles in the ENSTA Bretagne anechoic chamber
Munian, Rajendra Kumar. "Time Domain Spectral Finite Element Simulation of Ultrasonic Wave Propagation in Composite with Defects." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5502.
Full textBaquet, Aldric. "Wave Interactions with Arrays of Bottom-Mounted Circular Cylinders: Investigation of Optical and Acoustical Analogies." 2010. http://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8537.
Full textBook chapters on the topic "Wave scattering coefficient"
Ramm, Alexander G. "Many-Body Wave Scattering Problems for Small Scatterers and Creating Materials with a Desired Refraction Coefficient." In Mathematical Analysis and Applications, 57–75. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2018. http://dx.doi.org/10.1002/9781119414421.ch3.
Full textAktosun, Tuncay, Michael H. Borkowski, Alyssa J. Cramer, and Lance C. Pittman. "Inverse Scattering with Rational Scattering Coefficients and Wave Propagation in Nonhomogeneous Media." In Recent Advances in Operator Theory and its Applications, 1–20. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7398-9_1.
Full textChimenti, Dale, Stanislav Rokhlin, and Peter Nagy. "Measurement of Scattering Coefficients." In Physical Ultrasonics of Composites. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780195079609.003.0012.
Full textRamm, Alexander G. "Wave scattering by many small impedance particles." In Creating Materials with a Desired Refraction Coefficient (Second Expanded Edition). IOP Publishing, 2020. http://dx.doi.org/10.1088/978-0-7503-3391-7ch2.
Full textGoody, R. M., and Y. L. Yung. "Extinction by Molecules and Droplets." In Atmospheric Radiation. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195051346.003.0009.
Full textBoothroyd, Andrew T. "Neutron Optics." In Principles of Neutron Scattering from Condensed Matter, 311–42. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862314.003.0009.
Full textAdam, John A. "One-Dimensional Jost Solutions: The S-Matrix Revisited." In Rays, Waves, and Scattering. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691148373.003.0026.
Full textI., M., and A. G. "Numerical Solution of Many-Body Wave Scattering Problem for Small Particles and Creating Materials with Desired Refraction Coefficient." In Numerical Simulations of Physical and Engineering Processes. InTech, 2011. http://dx.doi.org/10.5772/24495.
Full textAdam, John A. "Introduction to the WKB(J) Approximation: All Things Airy." In Rays, Waves, and Scattering. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691148373.003.0007.
Full text"Appendix 2: Calculation of the Scattering Coefficients under the GO for 3D Problems." In Electromagnetic Wave Scattering from Random Rough Surfaces, 131–35. Hoboken, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118579152.app2.
Full textConference papers on the topic "Wave scattering coefficient"
Ding, Ke, and Shougen Song. "Solving coefficient of acoustic wave equation by inverse scattering iterative method." In Proceedings of the 9th SEGJ International Symposium. Society of Exploration Geophysicists of Japan, 2009. http://dx.doi.org/10.1190/segj092009-001.46.
Full textDing, K., and K. F. Zhang. "Solving coefficient of acoustic wave equation by inverse scattering iterative method." In International Conference on Remote Sensing and Smart City. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/rssc140441.
Full textRamm, A. G. "Many-body wave scattering and creating materials with a desired refraction coefficient." In 2009 International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2009. http://dx.doi.org/10.1109/diped.2009.5307280.
Full textLiu, Yi-Fan, and K. M. Leung. "Scattering of a plane wave with a film with a self-defocusing nonlinearity." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.ws3.
Full textGarcía-Llamas, Raúl, Cesar Márquez-Beltran, and Kevin O’Donnell. "Scattering of light from a film with a random rough surface on a metallic substrate." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.tha.2.
Full textGarus, Dieter, and Ralf Hereth. "Cascaded stimulated Brillouin scattering in high-finesse all-fibre ring resonators." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.tub2.
Full textBenenson, Z. M., and T. V. Yakovleva. "Theory of stimulated Mandelshtam-Brillouin scattering in running conditions in a inhomogeneous scattering medium." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thmm28.
Full textFang, Zhichao, Longfei Xiao, Yinghao Guo, Lijun Yang, and Wenyue Lu. "Experimental and Numerical Investigations Into Wave Run-Up on Fixed Surface-Piercing Square Column." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77726.
Full textRheem, Chang-Kyu, Hidetaka Kobayashi, and Kazuomi Yamanishi. "Doppler Spectra of Microwave Backscatter From Water Surface." In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51272.
Full textWang, Yao, Pei-feng Hsu, and Mary Helen McCay. "The Pore Size Dependence of the Radiative Scattering Coefficient in Yttria-Stabilized Zirconia Films." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-80853.
Full text