Academic literature on the topic 'Wave run-up'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wave run-up.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wave run-up"
Lee, Sang Beom, Seung Yoon Han, Young Myoung Choi, Sun Hong Kwon, Dong Woo Jung, and Jun Soo Park. "Study on Wave Run-Up Phenomenon over Vertical Cylinder." Journal of Ocean Engineering and Technology 27, no. 4 (August 31, 2013): 62–67. http://dx.doi.org/10.5574/ksoe.2013.27.4.062.
Full textTakezawa, Mitsuo, Masaru Mizuguchi, Shintaro Hotta, and Susumu Kubota. "WAVE RUN-UP ON A NATURAL BEACH." Coastal Engineering Proceedings 1, no. 21 (January 29, 1988): 10. http://dx.doi.org/10.9753/icce.v21.10.
Full textFiedler, Julia W., Adam P. Young, Bonnie C. Ludka, William C. O’Reilly, Cassandra Henderson, Mark A. Merrifield, and R. T. Guza. "Predicting site-specific storm wave run-up." Natural Hazards 104, no. 1 (July 31, 2020): 493–517. http://dx.doi.org/10.1007/s11069-020-04178-3.
Full textSteendam, Gosse Jan, Jentsje Wouter Van der Meer, Andre Van Hoven, and Astrid Labrujere. "WAVE RUN-UP SIMULATIONS ON REAL DIKES." Coastal Engineering Proceedings, no. 35 (June 23, 2017): 42. http://dx.doi.org/10.9753/icce.v35.structures.42.
Full textDidenkulova, I., and A. Rodin. "A typical wave wake from high-speed vessels: its group structure and run-up." Nonlinear Processes in Geophysics 20, no. 1 (February 26, 2013): 179–88. http://dx.doi.org/10.5194/npg-20-179-2013.
Full textKreyenschulte, Moritz, David Schürenkamp, Benedikt Bratz, Holger Schüttrumpf, and Nils Goseberg. "Wave Run-Up on Mortar-Grouted Riprap Revetments." Water 12, no. 12 (December 2, 2020): 3396. http://dx.doi.org/10.3390/w12123396.
Full textMather, Andrew Alan, Derek Stretch, and Gerald Garland. "WAVE RUN UP ON NATURAL BEACHES." Coastal Engineering Proceedings 1, no. 32 (January 31, 2011): 45. http://dx.doi.org/10.9753/icce.v32.currents.45.
Full textLI, YING, and FREDRIC RAICHLEN. "Non-breaking and breaking solitary wave run-up." Journal of Fluid Mechanics 456 (April 9, 2002): 295–318. http://dx.doi.org/10.1017/s0022112001007625.
Full textSaville, Jr., Thorndike. "WAVE RUN-UP ON COMPOSITE SLOPES." Coastal Engineering Proceedings 1, no. 6 (January 29, 2011): 41. http://dx.doi.org/10.9753/icce.v6.41.
Full textMj, Dripta, and Denys Dutykh. "Learning extreme wave run-up conditions." Applied Ocean Research 105 (December 2020): 102400. http://dx.doi.org/10.1016/j.apor.2020.102400.
Full textDissertations / Theses on the topic "Wave run-up"
Roux, Abraham Pierre. "A re-assessment of wave run up formulae." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96562.
Full textENGLISH ABSTRACT: Over the last few decades, wave run up prediction has gained the interest of numerous researchers and every newly-published paper has aimed to predict wave run up with greater accuracy. Wave run up is defined as the vertical elevation reached by a wave's, front water edge as it runs up a beach, measured relative to the still water line. Wave run up is dependent on the incidental wave height, the wave period, the beach slope and the wave steepness. The majority of publications incorporate all of these factors, but some do not, which has led to numerous debates. The goal of this study is to do a re-assessment of previously published wave run up formulae, to obtain a more informed understanding about wave run up and the available predictive empirical formulae. The study also seeks to evaluate the Mather, Stretch & Garland (2011) formula. The method for undertaking this objective comprised a physical model test series with 10 regular wave conditions on a constant slope, being 1/24, performed with an impermeable floor. Also, a beach study in the field was done on Long Beach, Noordhoek, where run up measurements were taken for 30 minute intervals, resulting in five test conditions. A numerical model was employed in conjunction with the beach study to determine the local offshore wave parameters transformed from a deep water wave rider. This information was used to correlate the run up measurements with known wave parameters. Firstly, the physical model assessment was performed to provide a proper foundation for run up understanding. Plotting empirical normalised run up values (R2/H0 ) versus the Iribarren number for different formulae, a grouping was achieved with upper and lower boundaries. The physical model results plotted on the lower end of this grouping, resulted in prediction differences of more than 10%. These differences may have been caused by the unevenness of the physical model slope or the fact that only one slope had been tested. Despite this, the results fell within a band of wave run up formulae located on the lower end of this grouping. An assessment of the beach measurements in the field gave a better correlation than the physical model results when compared to normalised predicted wave run up formulae. These measurements also plotted on the lower end of the grouping, resulting in prediction differences of less than 10% for some empirical formulae. When comparing these empirical predictions to one another, the results demonstrate that the formulae comparing best with the beach measurements were Holman (1986) and Stockdon, Holman, Howd, & Sallenger Jr. (2006). Extreme over predictions were found by Mase & Iwagaki (1984), Hedges & Mase (2004) and Douglass (1992). Nielsen & Hanslow (1991) only compared best with the beach measurements and De la Pena, Sanchez Gonzalez, Diaz-Sanchez, & Martin Huescar (2012) only compared best to the physical model results. This study supports the formula proposed by Mather, Stretch, & Garland (2011). Applying their formula to the measured results presented a C constant of 3.3 for the physical model and 8.6 for the beach results. Both values are within the range prescribed by the authors. Further reasearch minimized the array of possible „C‟ values by correlating this coefficient to Iribarren numbers. „C‟ values between 3.0~5.0 is prescribed for low Iribarren conditions (0.25-0.4) and values between 7.0~10 for higher Iribarren conditions are 0.75-0.8. However, this formula is still open for operator erros whereby the „C‟ value has a big influence in the final result. The best formulae to use, from results within this thesis, is proposed by Holman (1986) and Stockdon et.al (2006). These formulae are not open to operator erros and uses the significant wave height, deep water wave length and the beach face slope to calculate the wave run up.
AFRIKAANSE OPSOMMING: Gedurende die afgelope paar dekades, het golf-oploop voorspellings die aandag van talle navorsers gelok en elke nuwe geskrewe voorlegging het gepoog om meer akkurate golf-oploop voorspellings te verwesenlik. golf-oploop kan definieer word as die vertikale elevasie bereik deur 'n golf se voorwaterkant soos dit op die strand uitrol, gemeet relatief vanaf die stilwaterlyn. golf-oploop is afhanklik van die invals-golfhoogte, die golfperiode, die strandhelling en die golfsteilheid. Die oorgrote mederheid publikasies uit die literaturr inkorporeer al hierdie faktore, maar sommige nie, wat groot debatvoering tot gevolg het. Die doel met hierdie studie is om vorige gepubliseerde golf- oploop formules te re-evalueer, om 'n meer ingeligte begrip van golf- oploop en beskikbare voorspellende formules te verkry. Die studie poog terselfdertyd ook om golf-opvolg tendense, uniek aan Suid Afrikaanse strande te evalueer deur die huidige formule wat tans hier gebruik word, te assesseer. Om hierdie doelwit te bereik, is gebruik gemaak van 'n fisiese model toets reeks bestaande uit 10 reëlmatige golfstoestande op 'n konstante ondeurlaatbaare strandhelling van 1/24. 'n Veldstudie was ook uitgevoer op Langstrand, Noordhoek, waar golf-oploopmetings met 30 minute tussenposes uitgevoer is, vir vyf toets-toestande. Tesame met die veldstudie, is 'n numeriese model aangewend om die gemete diepsee data nader ann die strand wat bestudeer is te transformeer. Hierdie inligting is benodig om 'n verband tussen tussen oploop-metings en bekende golf parameters te bepaal. Eerstens is die fisiese model assessering uitgevoer om 'n behoorlike basis vir die begrip van golfoploop in die veld te verkry. Deur die emperiese, genormaliseerde oploop waardes (R₂/H₀) vir verkeie formules teenoor die Iribarren getal te plot, is 'n groepering met hoër en laer grense gevind. Daar is gevind dat die fisiese modelwaardes op die laer grens plot, en het verskille met die emperiese waardes van meer as 10% getoon. Hierdie verskille is moontlik veroorsaak as gevolg van 'n oneweredige fisiese model strandhelling of deur die feit dat slegs een helling getoets is. Ten spyte hiervan, het die model oploop waardes binne die bestek van golf- oploop formules geval. Assessering van die veldmetings het 'n beter korrelasie as die fisiese modelresultate getoon, tydens vergelykings met genormaliseerde golf-oploop formules van die emperiese formules. Die oploop waardes van hierdie metings het ook geplot aan die laer grens van die groepering, met verskille van minder as 10% vir die meeste gevalle van die emperiese formules. Wanneer hierdie emperiese voorspellings vergelyk word, is gevind dat die formules wat die beste ooreenstem met die fisiese model, die van Holman (1986) en Stockdon, Howd, & Sallenger Jr. (2006) is. Die emperiese formules van Mase & Iwagake (1984), Hedges & Mase (2004) en Douglas (1992) het die golf-oploop oorvoorspel. Nielsen & Hanslow (1991) het slegs die beste met die strandmetings vergelyk, terwyl De la Pena, Sanchez Gonzalez, Diaz-Sanchez & Martin Huescar (2012) slegs die beste vergelyk het met die fisiese-model resultaat. Hierdie studie ondersteun die formule voorgestel deur Mather, Stretch, & Garland (2011). Deur hul formules op die gemete bevindings toe te pas, is 'n C konstante van 3.3 vir die fisiese model resultate, en 8.0 vir die stranduitlslae bepaal. Beide waardes lê binne die grense wat deur die outeurs voorgestel is. Verdere navorsing het getoon dat moontlike waardes vir die „C‟ konstante tussen 3.0 en 5.0 moet wees vir Iribarren waardes van tussen 0.25 en 0.4. Vir hoër Iribarren waardes, 0.75-0.8, moet die „C‟ kosntante tussen 7.0 en 10 wees; dog is die formule steeds oop vir operateur foute. Die hoofbevindinge van die tesis is gevind dat die beste golf-oploop formules, om tans te gebruik, die van Holman (1986) en Stockdon et.al (2006) is. Hierdie formules kan glad nie beinvloed word deur operateurs foute nie en maak gebruik van die invals golfhoogte, die golfperiode en die strandhelling om die golf-oploop te bepaal.
Morris-Thomas, Michael. "An investigation into wave run-up on vertical surface piercing cylinders in monochromatic waves." University of Western Australia. School of Oil and Gas Engineering, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0010.
Full textShiach, Jonathan Ben. "Numerical modelling of wave run-up and overtopping using depth integrated equations." Thesis, Manchester Metropolitan University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486867.
Full textOrszaghova, Jana. "Solitary waves and wave groups at the shore." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:5b168bdc-4956-4152-a303-b23a6067bf42.
Full textChapman, Neil. "Modelling the dynamic interaction between hydrology, slope stability and wave run-up processes in the soft-sea cliffs at Covehithe, Suffolk, UK." Thesis, Birkbeck (University of London), 2014. http://bbktheses.da.ulcc.ac.uk/98/.
Full textWilson, Jessica. "The Efficacy and Design of Coastal Protection Using Large Woody Debris." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41573.
Full textRöhner, Michael. "Schwallwellen infolge der Bewegung einer Begrenzungsfläche." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-77100.
Full textSilva, Guilherme Vieira da. "Cota de inundação e recorrência para a enseada do Itapocorói e praia de Morro dos Conventos, Santa Catarina." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/56330.
Full textThe goal of this study is to determine the inundation levels at Ensenada do Itapocorói and Morro dos Conventos beaches, located in Santa Catarina State. This was accomplished through the calculation of the inundation level as the sum of astronomical and meteorological tides and wave run-up. The database for this study included -60 years of hourly waves and tides, bathymetric and topographic data. The instantaneous sea level has been defined for each hour of the data series through the summation of astronomical and meteorological tides. To determine more realistic wave run-up data, the wave parameters have been propagated to shallower water using the SWAN (Simulating WAves Nearshore) model. Published equations were used and results were compared with measured data at a headland bay beach (Enseada do Itapocorói); furthermore, the equations have been calibrated for four sectors of the bay (exposed, semi-exposed, semi-protected and protected). Morro dos Conventos is an exposed beach, comparable to those for which the equations have been developed, so the raw, un-calibrated equations were applied for this site. The inundation level was calculated for each hour of the 60 year-long series by summing the run-up values to obtain the instantaneous level. Over the series of inundation levels, the area inundated during 50% of the time, and the return period for this inundation, have been calculated for 50, 100 and 200 years. The sea-level rise prediction for each calculated period has also been incorporated in order estimate the area likely to be inundated by future events. For Enseada do Itapocorói, the inundation level reached 50% of the time was 1,35 m in the exposed sector, 1 m in the semi-exposed sector, 0,9 m in the semi-protected sector and 0,7 in the protected sector. The exposed sector demonstrated the highest values of inundation, 3,45, 3,85 and 4,5 m for 50, 100 and 200 years of return period respectively. At the semi-exposed sector, the values calculated were 2,85 (50 years), 3,25 (100 years) and 3,9 (200 years) m. At semi-protected sector, inundation levels for the 50-, 100- and 200-year return period intervals were 2,65, 3,05 and 3,75 m, respectively. At the protected sector the lowest levels were reached: 2,4, 2,85 and 3,5 m for 50-, 100- and 200-year return period intervals. 2,4% of the total area for which topographic data is available would be inundated during 50% of the time, increasing to 26%, 29% and 33% for 50-, 100- and 200-year return periods. At Morro dos Conventos, the level of inundation reaches 1,1 m 50% of the time;, for 50,100 and 200 years the level rises to 4,2, 4,6 and 5,36 m respectively. Approximately 15% of the area for which topographic data is available would be area is inundated during 50% of the time, 85% with a 50 year return period, 91% with a 100-year period and 96% with a 200 year period.
Williams, Steven Mark. "The run-up and overtopping of shallow water waves." Thesis, University of Bristol, 2003. http://hdl.handle.net/1983/1737edc5-15c3-4fc6-b5eb-cc598df55ca2.
Full textGuibourg, Sandrine. "MModélisations numérique et expérimentale des houles bidimensionnelles en zone cotière." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10160.
Full textBooks on the topic "Wave run-up"
Gourlay, M. R. Wave set-up, wave run-up, and beach water table: Interaction between surf zone hydraulics and groundwater hydraulics. St. Lucia, Q: Dept. of Civil Engineering, University of Queensland, 1990.
Find full textGourlay, M. R. Wave set-up,wave run-up and beach water table: Interaction between surf zone hydraulics and groundwater hydraulics. St. Lucia: University of Queensland, Dept. of Civil Engineering, 1990.
Find full textKobayashi, Nobuhisha. Irregular wave reflection and run-up on rough impermeable slopes. 1991.
Find full textShih, Shyuer-ming. Processes of sea-cliff erosion on the Oregon coast: From neotectonics to wave run-up. 1992.
Find full textShih, Shyuer-Ming. Processes of sea-cliff erosion on the Oregon coast: From neotectonics to wave run-up. 1992.
Find full textShih, Shyuer-ming. Processes of sea-cliff erosion on the Oregon coast: From neotectonics to wave run-up. 1992.
Find full textChan, Felicia. Performing (Comic) Abjection in the Hong Kong Ghost Story. Edinburgh University Press, 2018. http://dx.doi.org/10.3366/edinburgh/9781474424592.003.0007.
Full textBook chapters on the topic "Wave run-up"
Pelinovsky, E. N. "Nonlinear Theory of Sea Wave Run-Up." In Nonlinear Waves, 128–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74366-5_12.
Full textİnan, Asu, and Lale Balas. "A Moving Boundary Wave Run-Up Model." In Computational Science – ICCS 2007, 38–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72584-8_6.
Full textSubramaniam, Suba Periyal, Babette Scheres, and Holger Schüttrumpf. "Numerical Investigation of Wave Run-Up on Curved Dikes." In Lecture Notes in Civil Engineering, 79–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8506-7_7.
Full textTao, Jianhua. "Numerical Simulation of Wave Run-up and Breaking on Beach." In Numerical Simulation of Water Waves, 185–209. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2841-5_5.
Full textKundapura, Suman, Subba Rao, and Vittal Hegde Arkal. "Relative Wave Run-Up Parameter Prediction of Emerged Semicircular Breakwater." In Lecture Notes in Civil Engineering, 867–78. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5195-6_63.
Full textAbdalazeez, Ahmed, Ira Didenkulova, and Denys Dutykh. "Dispersive Effects During Long Wave Run-up on a Plane Beach." In Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge, 143–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34397-2_28.
Full textDidenkulova, Ira, and Efim Pelinovsky. "Tsunami Wave Run-up on a Vertical Wall in Tidal Environment." In Global Tsunami Science: Past and Future. Volume III, 157–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03760-4_11.
Full textStelling, G. S., and M. Zijlema. "Numerical Modeling of Wave Propagation, Breaking and Run-Up on a Beach." In Lecture Notes in Computational Science and Engineering, 373–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03344-5_13.
Full textBacigaluppi, P., M. Ricchiuto, and P. Bonneton. "A 1D Stabilized Finite Element Model for Non-hydrostatic Wave Breaking and Run-up." In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, 779–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05591-6_78.
Full textJohn, Beena Mary, R. T. Arun Vignesh, Kiran G. Shirlal, and Subba Rao. "Experimental Study on Role of Emergent Artificial Coastal Vegetation in Controlling Wave Run Up." In Hydrologic Modeling, 535–42. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_37.
Full textConference papers on the topic "Wave run-up"
Schüttrumpf, Holger, Hendrik Bergmann, and Hans-Henning Dette. "The Concept of Residence Time for the Description of Wave Run-Up, Wave Set-Up and Wave Run-Down." In 24th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1995. http://dx.doi.org/10.1061/9780784400890.042.
Full textInukai, Naoyuki, Kazuki Ogawa, Yoshifumi Ejiri, Takeshi Ootake, and Hiroshi Yamamoto. "Wave run up dynamics at Jogehama beach." In 2016 Techno-Ocean (Techno-Ocean). IEEE, 2016. http://dx.doi.org/10.1109/techno-ocean.2016.7890727.
Full textRad, F. "Calculation of Wave Run-up on Slopes." In Sixth International Conference on Civil Engineering in the Oceans. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40775(182)20.
Full textShih, S. M., P. D. Komar, K. J. Tillotson, W. G. McDougal, and P. Ruggiero. "Wave Run-Up and Sea-Cliff Erosion." In 24th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1995. http://dx.doi.org/10.1061/9780784400890.158.
Full textTakezawa, Mitsuo, Masaru Mizuguchi, Shintaro Hotta, and Susumu Kubota. "Wave Run-Up on a Natural Beach." In 21st International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1989. http://dx.doi.org/10.1061/9780872626874.011.
Full textNiedzwecki, J. M., and A. S. Duggal. "Wave Run-Up and Wave Forces on a Truncated Cylinder." In Offshore Technology Conference. Offshore Technology Conference, 1990. http://dx.doi.org/10.4043/6409-ms.
Full textMuttray, Markus, Hocine Oumeraci, and Erik ten Oever. "WAVE REFLECTION AND WAVE RUN-UP AT RUBBLE MOUND BREAKWATERS." In Proceedings of the 30th International Conference. World Scientific Publishing Company, 2007. http://dx.doi.org/10.1142/9789812709554_0362.
Full textJuang, Jea-Tzyy. "Effect on Roughness to Irregular Wave Run-Up." In 24th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1995. http://dx.doi.org/10.1061/9780784400890.086.
Full textGrüne, Joachim. "Field Study on Wave Run-Up on Seadykes." In 25th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1997. http://dx.doi.org/10.1061/9780784402429.078.
Full textWang, Zeya, and Joachim Grüne. "Wave Run-Up on Revetments with Composite Slopes." In 25th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1997. http://dx.doi.org/10.1061/9780784402429.079.
Full text