Academic literature on the topic 'Water vapor profile'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water vapor profile.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Water vapor profile"
Mariani, Zen, Noah Stanton, James Whiteway, and Raisa Lehtinen. "Toronto Water Vapor Lidar Inter-Comparison Campaign." Remote Sensing 12, no. 19 (September 27, 2020): 3165. http://dx.doi.org/10.3390/rs12193165.
Full textMillán, Luis, Matthew Lebsock, Nathaniel Livesey, and Simone Tanelli. "Differential absorption radar techniques: water vapor retrievals." Atmospheric Measurement Techniques 9, no. 6 (June 21, 2016): 2633–46. http://dx.doi.org/10.5194/amt-9-2633-2016.
Full textPetrova, T. M., A. M. Solodov, A. P. Shcherbakov, V. M. Deichuli, A. A. Solodov, and Yu N. Ponomarev. "Comparison of Profile Models for Water Vapor Absorption Lines." Atmospheric and Oceanic Optics 34, no. 4 (July 2021): 283–87. http://dx.doi.org/10.1134/s1024856021040096.
Full textLivingston, J. M., B. Schmid, P. B. Russell, J. R. Podolske, J. Redemann, and G. S. Diskin. "Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8." Journal of Atmospheric and Oceanic Technology 25, no. 10 (October 1, 2008): 1733–43. http://dx.doi.org/10.1175/2008jtecha1047.1.
Full textRoy, Richard J., Matthew Lebsock, Luis Millán, Robert Dengler, Raquel Rodriguez Monje, Jose V. Siles, and Ken B. Cooper. "Boundary-layer water vapor profiling using differential absorption radar." Atmospheric Measurement Techniques 11, no. 12 (December 6, 2018): 6511–23. http://dx.doi.org/10.5194/amt-11-6511-2018.
Full textDai, Guangyao, Dietrich Althausen, Julian Hofer, Ronny Engelmann, Patric Seifert, Johannes Bühl, Rodanthi-Elisavet Mamouri, Songhua Wu, and Albert Ansmann. "Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data." Atmospheric Measurement Techniques 11, no. 5 (May 8, 2018): 2735–48. http://dx.doi.org/10.5194/amt-11-2735-2018.
Full textWu, You, Feng Zhang, Kun Wu, Min Min, Wenwen Li, and Renqiang Liu. "Best Water Vapor Information Layer of Himawari-8-Based Water Vapor Bands over East Asia." Sensors 20, no. 8 (April 23, 2020): 2394. http://dx.doi.org/10.3390/s20082394.
Full textHe, Jie Ying, Feng Lin Sun, Sheng Wei Zhang, and Yu Zhang. "The Analysis of Atmospheric Water Vapor Based on Ground-Based Microwave Radiometer." Key Engineering Materials 500 (January 2012): 335–40. http://dx.doi.org/10.4028/www.scientific.net/kem.500.335.
Full textTurner, David D., and Ulrich Löhnert. "Ground-based temperature and humidity profiling: combining active and passive remote sensors." Atmospheric Measurement Techniques 14, no. 4 (April 26, 2021): 3033–48. http://dx.doi.org/10.5194/amt-14-3033-2021.
Full textXu, Wen Jing, and Hong Yan Liu. "Ground-Based Microwave Radiometer Profiler Observations before a Heavy Rainfall." Applied Mechanics and Materials 137 (October 2011): 312–15. http://dx.doi.org/10.4028/www.scientific.net/amm.137.312.
Full textDissertations / Theses on the topic "Water vapor profile"
Skoglund, Emil. "A NUMERICAL MODEL OF HEAT- AND MASS TRANSFER IN POLYMER ELECTROLYTE FUEL CELLS : A two-dimensional 1+1D approach to solve the steady-state temperature- and mass- distributions." Thesis, Mälardalens högskola, Framtidens energi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55223.
Full textHancock, Jay Brian 1976. "Passive microwave and hyperspectral infrared retrievals of atmospheric water vapor profiles." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8573.
Full textIncludes bibliographical references (p. 231-234).
Two clear-air relative humidity profile estimators were designed and implemented using neural networks. The microwave estimator is the first to utilize 54-, 118-, and 183-GHz channels for simultaneously retrieving a relative humidity profile. It utilizes 2 separate instruments simultaneously. The first instrument is a medium-resolution dual-band radiometer with one set of 8 double-sideband 118-GHz channels and a second set of 8 single-sideband 54-GHz channels. The other instrument is a high-resolution double-sideband radiometer with a set of 3 183-GHz channels, and additional channels at 89, 220, and 150 GHz. The infrared estimator is among the first to utilize a hyperspectral infrared aircraft instrument for relative humidity profile retrievals. The infrared instrument is a 9000-channel interferometer operative over the wavelength range of 3.8-16.2 microns. Both estimators utilized neural networks of comparable topology and training methods. The training data was generated from the SATIGR set of 1761 RAOBs using a different implementation of the discrete radiative transfer equation for each estimator. The test data were from two clear-air ER-2 aircraft flights during the tropical CAMEX-3 mission near Andros Island. The retrievals were robust in the face of unknown instrument bias and noise, which introduced a difference between the training data and the flight data. A noise-averaging technique achieved robustness in exchange for a degradation in sensitivity of the retrieval algorithms. Robustness was demonstrated by the retrieval agreement between the microwave and infrared instruments. The theoretical average rms error in relative humidity for the various techniques on the training set was 12% for the microwave estimator, 11% for the infrared, and 10% for a linear regression of the two. In application to two flights, the rms error was 9.4% for the microwave, 7.7% for the infrared, and 7.7% for the combination, based on comparisons with nearby radiosondes.
by Jay Brian Hancock.
S.M.
Grippa, Manuela. "Retrieval of tropospheric temperature and composition profiles from infrared radiance measurements." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/527.
Full textWilson, Christopher Brant. "Measurement of chemical composition and pH profiles near the liquid-vapor interface of aqueous solutions using a unique confocal microscope system /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9840.
Full textFollette, Melanie Beth. "Classification of northern hemisphere stratospheric ozone and water vapor profiles by meteorological regime validation, climatology, and trends /." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6675.
Full textThesis research directed by: Atmospheric and Oceanic Sciences. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wassenberg, Chris Alan 1959. "Development of a multi-frequency microwave radiometer for the measurement of atmospheric water vapor and temperature profiles." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277271.
Full textLacour, Jean Lionel. "Estimations du profil du rapport isotopique de la vapeur d'eau dans la troposphère à partir de spectres mesurés dans l'infrarouge thermique par le sondeur IASI: méthodologie d'inversion et analyses des premières distributions spatiales." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209151.
Full textDans cette perspective, les mesures de radiances du système terre-atmosphère dans l’infrarouge thermique par l’Interféromètre Atmosphérique de Sondage Infrarouge (IASI) à bord de la plateforme météorologique MetOp, peuvent fournir des observations du rapport isotopique δD (rapport HDO/H216O), à l’échelle globale et à haute résolution spatio-temporelle, pour autant que la restitution du rapport puisse être obtenue avec une précision suffisante.
Dans ce travail, nous présentons une méthodologie robuste et précise pour la restitution du profil de δD à partir des spectres IASI. Basée sur la méthode d’estimation optimale, elle consiste à appliquer des contraintes d’inversion adaptées afin d’obtenir des profils de δD fiables. Nous décrivons le choix de celles-ci et nous montrons que la méthode mise en place permet de fournir des profils de δD qui présentent un maximum de sensibilité dans la troposphère libre. L’adéquation de la méthode mise en place est ensuite évaluée grâce à une étude d’inter-comparaison avec des mesures dérivées de l’instrument spatial TES (Tropospheric Emission Spectrometer sur AURA) et FTIR localisés au sol. L’exactitude des profils IASI a aussi pu être déterminée grâce à des comparaisons avec des mesures in situ.
Dans une autre partie du travail, nous nous attachons à préciser les applications liées à l’utilisation des nouvelles mesures dans le domaine des géosciences. Nous documentons ainsi les capacités du sondeur IASI à fournir des mesures de δD à une résolution spatio-temporelle inégalée et décrivons les diverses distributions obtenues. Nous montrons et analysons notamment les premières cartes globales à haute résolution de δD dans la troposphère. Les mesures de δD et de l’humidité sont analysées conjointement à l’aide de modèles simples et permettent de démontrer la plus-value mesures de δD depuis les satellites. Parmi les résultats les plus significatifs, citons la mise en évidence de la signature isotopique des différentes sources de la vapeur d’eau (évaporation continentale/océanique), et celle de l’empreinte des différents processus hydrologiques qui contrôlent l’humidification de l’atmosphère (convection, mélange de masse d’air, ré-évaporation des gouttes de pluie).
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Li, Chieh, and 李杰. "The Effect of the Water Vapor and Carbon Dioxide on the Radiation Absorption and Temperature Profile in Troposphere." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/z42rd3.
Full text國立中山大學
機械與機電工程學系研究所
101
The work on this paper focus on the effect of the water vapor and carbon dioxide on the absorption of atmospheric radiation and the temperature within the troposphere (10km above the ground), which is based on the realistic temperature- and pressure- or concentration-dependent radiative properties. And for simplicity, this model is assumed one-dimension and only concerning about the conduction and radiation. As we know, the earth receives energy from the sun in the form UV, visible light, and near infrared radiation. And virtually all wave below 290 nm is absorbed at tropopause (top of the troposphere), and the wave between 300 nm and 800 nm is weakly absorbed and transmitted into the troposphere. Some of them are absorbed by the land and ocean, about 50%. Then the earth surface radiates the energy back in the form of far infrared thermal radiation, which is mostly absorbed by the atmosphere. Those absorbed far IR thermal radiation is re-radiated both upwards and downwards, and the downwards part is absorbed by the earth surface, which leads to a raising temperature. As a result, the influence of water vapor and carbon dioxide on global warming is growing day by day. Although the water vapor absorbs most of the infrared emitted by the ground, yet it got a shorter period about 8 days. Comparing to that, the concentration of carbon dioxide is increasing gradually since the industry revolution due to the anthropogenic emission like burning fossil fuel and deforestation .That’s why recent surveys of global warming all list Carbon dioxide as the main greenhouse gases. The computed results in this work quantitatively show that water vapor and carbon dioxide play an important role on affecting the temperature difference about 2 to 5 Celsius degree and therefore remind us of taking notice of the global warming.
Wu, Xiaohua. "Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and cloud liquid water." 1993. http://catalog.hathitrust.org/api/volumes/oclc/31455677.html.
Full textCarlson, Grant Stuart. "Mesoscale water vapor profiles from VAS an evaluation of two physical retrieval methods /." 1988. http://catalog.hathitrust.org/api/volumes/oclc/18365299.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 96-102).
Books on the topic "Water vapor profile"
Oltmans, Samuel J. Water vapor profiles for Washington, DC; Boulder, CO; Palestine, TX; Laramie, WY; and Fairbanks, AK; during the period 1974 to 1985. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textOltmans, Samuel J. Water vapor profiles for Washington, DC; Boulder, CO; Palestine, TX; Laramie, WY; and Fairbanks, AK; during the period 1974 to 1985. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textOltmans, Samuel J. Water vapor profiles for Washington, DC; Boulder, CO; Palestine, TX; Laramie, WY; and Fairbanks, AK; during the period 1974 to 1985. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textEnvironmental Research Laboratories (U.S.), ed. Water vapor profiles for Boulder, Colorado, and Pago Pago, American Samoa during the period 1986-1989. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1990.
Find full textEnvironmental Research Laboratories (U.S.), ed. Water vapor profiles for Boulder, Colorado, and Pago Pago, American Samoa during the period 1986-1989. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1990.
Find full textWater vapor profiles for Boulder, Colorado, and Pago Pago, American Samoa during the period 1986-1989. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1990.
Find full textBook chapters on the topic "Water vapor profile"
Nakanishi, Tomoko M. "Water-Specific Imaging." In Novel Plant Imaging and Analysis, 3–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4992-6_1.
Full textBalin, Ioan, Gilles Larchevêque, Philippe Quaglia, Valentin Simeonov, Hubert Van Den Bergh, and Bertrand Calpini. "Water vapor vertical profile by Raman lidar in the free troposphere from the Jungfraujoch Alpine Station." In Advances in Global Change Research, 123–38. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47983-4_7.
Full textMapes, Brian, Arunchandra S. Chandra, Zhiming Kuang, and Paquita Zuidema. "Importance Profiles for Water Vapor." In Space Sciences Series of ISSI, 183–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-77273-8_9.
Full textMurcray, D. G., A. Goldman, J. Kosters, R. Zander, W. Evans, N. Louisnard, C. Alamichel, et al. "Intercomparison of Stratospheric Water Vapor Profiles Obtained During the Balloon Intercomparison Campaign." In Atmospheric Ozone, 144–48. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5313-0_29.
Full textGerding, Michael, and Antje Weisheimer. "Validation of Water Vapour Profiles from GPS Radio Occultations in the Arctic." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 441–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_60.
Full textNehrir, Amin R., Christoph Kiemle, Mathew D. Lebsock, Gottfried Kirchengast, Stefan A. Buehler, Ulrich Löhnert, Cong-Liang Liu, Peter C. Hargrave, Maria Barrera-Verdejo, and David M. Winker. "Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles." In Space Sciences Series of ISSI, 273–310. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-77273-8_13.
Full textStiller, Gabriele Petra, Tilman Steck, Mathias Milz, Thomas von Clarmann, Udo Grabowski, and Herbert Fischer. "Approach to the Cross-Validation of MIPAS and CHAMP Temperature and Water Vapour Profiles." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 551–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_75.
Full textPalm, Stephen P., Denise Hagan, Geary Schwemmer, and S. H. Melfi. "Inference of Atmospheric Boundary Layer Water Vapor and Temperature Profiles over the Ocean Using Airborne Lidar Data." In Advances in Atmospheric Remote Sensing with Lidar, 39–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_10.
Full textKaimal, J. C., and J. J. Finnigan. "Flow Over Plant Canopies." In Atmospheric Boundary Layer Flows. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195062397.003.0006.
Full textKandra, Ranju, and Sunil Bajpai. "Wound Dressing Application of Ch/CD Nanocomposite Film." In Chitin and Chitosan - Physicochemical Properties and Industrial Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95107.
Full textConference papers on the topic "Water vapor profile"
De Feis, Italia, Alberta M. Lubrano, Guido Masiello, and Carmine Serio. "Simultaneous temperature and water vapor profile from IASI radiances." In Europto Remote Sensing, edited by Jaqueline E. Russell, Klaus Schaefer, and Olga Lado-Bordowsky. SPIE, 2001. http://dx.doi.org/10.1117/12.413855.
Full textValtr, Pavel, Pavel Pechac, and Martin Grabner. "Water vapor density profile statistics in the atmospheric boundary layer." In 2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017. http://dx.doi.org/10.23919/eucap.2017.7928173.
Full text"Profile of ammonia and water vapor in an Irish broiler production house." In 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162461252.
Full textPougatchev, Nikita, Thomas August, Xavier Calbet, Tim Hultberg, Osoji Oduleye, Peter Schlüssel, Bernd Stiller, Karen St. Germain, and Gail Bingham. "Validation of the IASI temperature and water vapor profile retrievals by correlative radiosondes." In Optical Engineering + Applications, edited by James J. Butler and Jack Xiong. SPIE, 2008. http://dx.doi.org/10.1117/12.795382.
Full textMigliorini, Stefano, Stefano Nativi, and Dino Giuli. "Water vapor and cloud liquid water effective profile retrievals over the sea using TRMM microwave imager (TMI)." In Remote Sensing, edited by Jaqueline E. Russell. SPIE, 1999. http://dx.doi.org/10.1117/12.373058.
Full textCuccoli, Fabrizio, Simone Tanelli, Luca Facheris, Stefano Migliorini, and Dino Giuli. "Microwave attenuation measurements in satellite-ground links: spectral analysis for water vapor profile retrieval." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael C. Roggemann and Luc R. Bissonnette. SPIE, 1999. http://dx.doi.org/10.1117/12.363618.
Full textZhao, Yili, Yubao Chen, Bai Li, Chuntao Chen, Jianhua Zhu, and Xiaoqi Huang. "A study on detecting water vapor profile using ground based microwave radiometer and cloud radar." In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8128044.
Full textDi Paola, F., A. Cersosimo, D. Cimini, D. Gallucci, S. Gentile, E. Geraldi, S. T. Nilo, E. Ricciardelli, F. Romano, and M. Viggiano. "Retrieval of Temperature and Water Vapor Vertical Profile from ATMS Measurements with Random Forests Technique." In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518198.
Full textBlankenship, Clay B. "Validation of AMSU-B water vapor profile retrievals with GOES infrared observations in the 6.5-micron band." In Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, edited by Gail Skofronick Jackson and Seiho Uratsuka. SPIE, 2004. http://dx.doi.org/10.1117/12.578956.
Full textCuccol, Fabrizio, and Luca Facheris. "Multi-band NDSA measurements between two counter-rotating LEO satellites for estimating the tropospheric water vapor profile." In IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010. http://dx.doi.org/10.1109/igarss.2010.5649261.
Full textReports on the topic "Water vapor profile"
Jensen, M., and D. Troyan. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/948517.
Full textEdgeworth R. Westwater and Yong Han. Progress report of FY 1998 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/762790.
Full textEdgeworth R. Westwater and Yong Han. Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/762791.
Full textEdgeworth R. Westwater and Yong Han. Progress report of FY 1999 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/762789.
Full text