Academic literature on the topic 'Water usage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water usage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Water usage"
Frimmel, Fritz H. "Water technology for specific water usage." Environmental Science and Pollution Research 10, no. 6 (November 2003): 408–13. http://dx.doi.org/10.1065/espr2003.10.174.
Full textBENNETT, C. D., and S. LEESON. "Water Usage of Broiler Breeders." Poultry Science 68, no. 5 (May 1989): 617–21. http://dx.doi.org/10.3382/ps.0680617.
Full textAleena and Aneela Sultana. "Traditional Water Fetching Practices, Water Usage, and Scarcity." Global Political Review VII, no. I (March 30, 2022): 35–47. http://dx.doi.org/10.31703/gpr.2022(vii-i).05.
Full textRitchie, Michael J., Jacobus A. A. Engelbrecht, and Marthinus J. Booysen. "Practically-Achievable Energy Savings with the Optimal Control of Stratified Water Heaters with Predicted Usage." Energies 14, no. 7 (April 1, 2021): 1963. http://dx.doi.org/10.3390/en14071963.
Full textSchmidt, C., John F. Smith, Joseph P. Harner, and Michael J. Brouk. "Consumptive water usage of evaporative pads." Kansas Agricultural Experiment Station Research Reports, no. 2 (January 1, 2006): 44–48. http://dx.doi.org/10.4148/2378-5977.3140.
Full textAndrić, I., A. Vrsalović, T. Perković, M. Aglić Čuvić, and P. Šolić. "IoT approach towards smart water usage." Journal of Cleaner Production 367 (September 2022): 133065. http://dx.doi.org/10.1016/j.jclepro.2022.133065.
Full textCoomes, Paul A., Barry D. Kornstein, Thomas D. Rockaway, and Joshua A. Rivard. "North America Residential Water Usage Trends." Proceedings of the Water Environment Federation 2010, no. 9 (January 1, 2010): 6488–500. http://dx.doi.org/10.2175/193864710798206892.
Full textShakhnovsky, A., and O. Kvitka. "INDUSTRIAL WATER USAGE NETWORKS DESIGN PROCEDURE." WATER AND WATER PURIFICATION TECHNOLOGIES. SCIENTIFIC AND TECHNICAL NEWS 23, no. 2 (November 1, 2018): 47–58. http://dx.doi.org/10.20535/2218-93002322018144959.
Full textKhachatryan, Hayk, Alicia Rihn, and Michael Dukes. "Household Water Usage and Irrigation Practices." EDIS 2016, no. 9 (November 9, 2016): 5. http://dx.doi.org/10.32473/edis-fe996-2016.
Full textHanipah, H. S. Hasibuan, and R. P. Tambunan. "Strengthening Water Irrigation Management to Increase Water Usage Efficiency." IOP Conference Series: Earth and Environmental Science 448 (April 4, 2020): 012042. http://dx.doi.org/10.1088/1755-1315/448/1/012042.
Full textDissertations / Theses on the topic "Water usage"
Andersson, Sköld Lisa. "Water usage behaviour and discourse in Cambodia." Thesis, Linköping University, Department of Culture and Communication, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54568.
Full textCambodia is one of the poorest countries in Asia and the mortality and morbidity due to lack of improved water supply sources are high. Improvement in this area could better the situation for many Cambodians and as a consequence better the situation for the state of Cambodia.
The purpose of this thesis is to depict how water issues are being handled in Cambodia. This is done from an anthropological point of view and as a result the focus is on the interviewees of this study. Issues that will be of interest are water consumption and management behaviour, and their explanations. Thoughts and knowledge on water treatments, water safety and how to prevent water related health issues will also be of interest. Other important aspects are sanitation, garbage and the work of non-governmental organizations and the Royal Government of Cambodia. The field work was carried out though interviews and observations in three main areas, urban Phnom Penh, Khsach Kandal and Angk Snuol.
The result focuses on risk behaviour and behaviour change and shows that there is a lack of knowledge among the people I talked to when it comes to water related health risks. There is a big mistrust in the quality of the water and most people regard boiling a necessity before drinking the water. However, storage is generally the big problem as well as lack of information on how, where and why water gets contaminated.
Another problem that emerged is that there is a lack of financial commitment from the Royal Government of Cambodia and much work is done by NGOs which might be the reason for conflicting and confusing messages towards the public.
Kambodja är ett av Asiens fattigaste länder och bristen på tjänliga vattenkällor gör att skade- och dödstalen är höga. Framsteg på detta område skulle förbättra situationen för många kambodjaner och i förlängningen förbättra situationen för Kambodja.
Syfte med studien är att beskriva hur problem kring vattenkonsumtion hanteras i Kambodja. Studien har en antropologisk utgångspunkt vilket betyder att fokus ligger på informanterna och deras berättelser. Frågor som var av intresse vara vattenkonsumtion och vattenhanteringsbeteende samt förklarningar kring dessa. Tankar och kunskap kring vattenrening, vattensäkerhet och hur man förebygger vattenrelaterade hälsoproblem är också av intresse för studien. Ytterligare viktiga faktorer är hygien- och avfallsfrågor, samt arbetet som hjälporganisationer och Kambodjas regering utför. Fältstudien utfördes genom intervjuer och observationer i tre områden: Phnom Penh, Khsach Kandal and Angk Snuol.
Resultatet av studien fokuserar på riskbeteende och beteendeförändring och visar att det finns kunskapsbrister när det gäller vattenrelaterade hälsorisker bland mina informanter. Det finns ett stort misstroende när det gäller vattenkvaliteten och det flesta ser kokning som ett måste innan de kan dricka vattnet. Generellt sett är dock vattenförvaring ett större problem tillsammans med en brist i hur, var och varför vatten blir förorenat.
Ett annat vattenrelaterat problem är brist på ekonomiskt åtagande från den kambodjanska regeringens sida. Mycket av arbetet utförs av olika hjälporganisationer vilket kan vara anledning till den ibland motsägelsefulla och förvirrande information som ges till allmänheten.
Ansari, Shaghayegh Moalemzadeh. "An Investigation into Water Usage and Water Efficient Design for Persian Gardens." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/595836.
Full textCastelltort, Viñallonga Emma. "Cold tap water usage for a chilling system." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17415.
Full textCatherine, Quinton Shaun. "Effective geyser management through intelligent hot water usage profiling." Thesis, Cape Peninsula University of Technology, 2009. http://hdl.handle.net/20.500.11838/1094.
Full textThis study presents an intelligent Hot Water Cylinder (HWC) usage profiling system to provide peak demand side management and improve HWC efficiency in a typical household. In this research HWCs will be referred to as geysers. Research was done into various techniques available to improve energy efficiency in South Africa, as well as the different sectors South Africa's electricity supplier, Eskom, has highlighted where improvements in energy efficiency can be made. From this it was decided to refine the scope of the project to the residential sector, and more importantly geyser. A typical geysers operation and power consumption was researched and analysed to determine where efficiency improvements could be made. A system was required that would reduce the amount of energy consumed by the geyser, and provide the consumer with hot water at the same time. Based on the research it was decided to design a profile based geyser controller. The profiling system comprised of a PIC microcontroller, four digital temperature sensors and a time keeper used to determine individually based hot water usage profiles for the home. The profile was based on three parameters, namely the frequency (repetitiveness) of hot water being drawn, the length of the draw period, and the time of day when the water was drawn. Once the profile had reached a 90% accuracy, the profile implemented itself. Based on the profile, the controller then regulated the temperature of the geyser according to the demand of the household, without manual intervention. If the household's routine were changed, the profile would adapt itself accordingly. The controller is therefore fully intelligent and continues to refine the profile on a day to day basis. By introducing the profile based controller, the monthly average geyser temperature was reduced, reducing the amount of standing losses, which in torn reduced the total amount of energy consumed by the geyser. The profile controller was designed to aid in the reduction of the energy demand of geysers on the power grid. This will benefit both the consumer as well as Eskom, as Eskom will have a reduced power load, and the consumer will have a reduced electricity bill. The results of the experiments are shown, as well as a comparison between calculated versus measured results, to justify the accuracy of the calculations.
Morén, Ida, and Elin Andersson. "Comparing water capacity and water usage in the Gorom-Lampsar river system, Senegal." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226852.
Full textArandia, Ernesto. "Spatial-Temporal Statistical Modeling of Treated Drinking Water Usage." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1377870978.
Full textSachidananda, Madhu. "A framework for modelling and reduction of water usage in the manufacturing industry." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13893.
Full textYun, Janet H. "Public perception of alternative water sources and water usage : a case study of desalination and recycled Water facilities." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115589.
Full textThesis: S.M. in Technology and Policy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 78-80).
The importance of public acceptance within the decision-making process for large-scale, municipal water projects is widely understood and documented. In order to assess the role of public perception on the acceptance of alternative water sources, this paper broadly evaluates public preference for alternative water source and water conservation programs through a user-based approach. Choice-based conjoint analysis was utilized as a quantitative method to determine which design attributes make alternative water sources, specifically desalination and recycled water facilities, more appealing to communities. An online survey was taken by 306 respondents in California, Florida, and Texas. Respondents were analyzed on an aggregate level to identify overall perception of, familiarity with, and preference for desalinated and recycled water. The results indicate significant importance placed on specific attributes such as cost and environmental impact, as opposed to the water program type and location of the proposed facility. Findings based on subpopulations of respondents suggest that preference between water program types were fairly consistent among different demographics, but varied on characteristics such as increased familiarity and perceived reliability of currently provided tap water.
by Janet H. Yun.
S.M.
S.M. in Technology and Policy
Kandissounon, Gilles-Arnaud. "Sustainable Water Usage and Surface Runoff Management in Lagos, Nigeria." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2299.
Full textMetlitz, Matthew S. "Design for an invertible water bottle to facilitate cleaning and promote sustainable water bottle usage." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92200.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 57-58).
The goal of this thesis is to explore the design of a reusable water bottle that can be inverted to expose the inside. Being able to directly touch the entire inside of the product could facilitate cleaning and consequently promote sustainable water bottle usage. Existing cleaning solutions and various water bottles were evaluated for benchmarking, and a water bottle usage survey revealed that most respondents clean their reusable bottles on a weekly to monthly basis, with 35.5% of respondents indicating that they had thrown out a bottle since it was clean. Observing volunteers in water bottle cleanliness perception test revealed that being able to physically contact and see the inside of the bottle while cleaning were most important. Two iterations of sketch models were created, demonstrating that a pouch-like design with a drawstring attached between the inside of the pouch and the water bottle top to aid invertibility was the most feasible solution. The final water bottle design, created as a CAD model, consists of three components: a top, a bottom, and an invertible pouch made of a soft plastic. The invertible pouch is held in place and made watertight between the bottom and top components that resemble a standard reusable water bottle design.
by Matthew S. Metlitz.
S.B.
Books on the topic "Water usage"
Arshad, Muhammad, ed. Perspectives on Water Usage for Biofuels Production. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66408-8.
Full textBrar, Amanpreet Singh. Consumer's behaviour and perception regarding water usage: A study of urban Punjab. New Delhi: Serials Publications Pvt. Ltd., 2015.
Find full textAgency, Environment, Institute of Petroleum, and Komex Europe, eds. A Review of current MTBE usage and occurrence in groundwater in England and Wales. London: Stationery Office, 2000.
Find full textLas aguas de Atlixco: Estado, haciendas, fábricas y pueblos, 1880-1920. México, D.F: CIESAS, 2005.
Find full textDaoushy, Abdalla. Artificial neural networks usage for underground water storage & river nile in Toshka area. Madīnat Naṣr, al-Qāhirah: Jumhūrīyat Miṣr al-ʻArabīyah, Maʻhad al-Takhṭīṭ al-Qawmī, 1998.
Find full textEl-Daoushy, Abdalla. Artificial neural networks usage for underground water storage & River Nile in Toshka area. Madīnat Naṣr [Cairo]: Maʻhad al-Takhṭīṭ al-Qawmī, 1998.
Find full textZambeze, Kakoma Sakatolo. L'eau dans la ville de Lubumbashi: Qualité, approvisionnement et usage, implications épidémiologiques : rapport des recherches effectuées durant la treizième session des travaux de l'Observatoire, août 2004. Lubumbashi , Congo]: Université de Lubumbashi, Coopération universitaire au développement, Observatoire du changement urbain, 2004.
Find full textAshraf, Nava. Can higher prices stimulate product use?: Evidence from a field experiment in Zambia. Cambridge, MA: National Bureau of Economic Research, 2007.
Find full textAshraf, Nava. Can higher prices stimulate product use?: Evidence from a field experiment in zambia. Cambridge, MA: National Bureau of Economic Research, 2007.
Find full textForrest, Richard. Pilbara Region water resources review and development plan.: A pamphlet designed to provide the community with an outline of the water resources in the Pilbara Region and the probable future usage of that water in the region. East Perth, W.A: The Commission, 1996.
Find full textBook chapters on the topic "Water usage"
Debnath, Biswajit, Aryama Raychaudhuri, and Punam Mukhopadhyay. "Grey Water Recycling for Domestic Usage." In Waste Water Recycling and Management, 85–96. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2619-6_8.
Full textVolk, Martin. "Landscape Planning landscape planning for Sustainable Water Usage landscape planning for sustainable water usage." In Encyclopedia of Sustainability Science and Technology, 5817–35. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_216.
Full textVolk, Martin. "Landscape Planning landscape planning for Sustainable Water Usage landscape planning for sustainable water usage." In Sustainable Built Environments, 355–72. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5828-9_216.
Full textArshad, Muhammad, and Mazhar Abbas. "Future Biofuel Production and Water Usage." In Perspectives on Water Usage for Biofuels Production, 107–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66408-8_6.
Full textBano, Ijaz, and Muhammad Arshad. "Climatic Changes Impact on Water Availability." In Perspectives on Water Usage for Biofuels Production, 39–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66408-8_2.
Full textArshad, Muhammad, and Mazhar Abbas. "Water Sustainability Issues in Biofuel Production." In Perspectives on Water Usage for Biofuels Production, 55–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66408-8_3.
Full textNyamayedenga, Nicholas. "Regeneration-Recycling of Industrial Wastewater to Minimise Freshwater Usage with Water Cascade Analysis." In Water Management, 427–41. First editor. | Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2019] | Series: Green chemistry and chemical engineering: CRC Press, 2018. http://dx.doi.org/10.1201/b22241-23.
Full textNoreen, Sibgha, Seema Mahmood, Habib-ur-Rehman Athar, Zafar Ullah Zafar, and Muhammad Ashraf. "Potential usage of antioxidants, hormones and plant extracts." In Water Stress and Crop Plants, 124–41. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119054450.ch9.
Full textBano, Ijaz, and Muhammad Arshad. "Impact of Biofuel’s Production on Ground Water." In Perspectives on Water Usage for Biofuels Production, 77–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66408-8_4.
Full textArshad, Muhammad, Muhammad Anjum Zia, Farman Ali Shah, and Mushtaq Ahmad. "An Overview of Biofuel." In Perspectives on Water Usage for Biofuels Production, 1–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66408-8_1.
Full textConference papers on the topic "Water usage"
Peck, Jaron J., and Amanda D. Smith. "Modeling Power Generation Water Usage." In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49097.
Full textSaseendran, Sajith, and V. Nithya. "Automated water usage monitoring system." In 2016 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2016. http://dx.doi.org/10.1109/iccsp.2016.7754501.
Full textBhandary, H., K. Al-Fahad, M. Al-Senafy, and A. Al-Khalid. "Usage of environmental isotopes in characterizing groundwater recharge sources." In WATER POLLUTION 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/wp120191.
Full textHannah, Ben, Lucy Martin, Marisol Uriarte, Tami Haase, Gomes Ganapathi, and Fracisca Labarca. "Water Usage Optimization During Concrete Operations." In World Environmental and Water Resources Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412947.308.
Full textPhilistine, Cynthia L., and Ara Kulhanjian. "International Space Station Water Usage Analysis." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-2094.
Full textMadala, Kranthi, and Narendra Babu Tatini. "Optimizing Water Usage and Improving Irrigation." In 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2021. http://dx.doi.org/10.1109/icaccs51430.2021.9441720.
Full textPhilistine, Cynthia L. "International Space Station Water Usage Analysis." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2836.
Full textKulhanjian, Ara, David A. Yeoman, and Cynthia L. Philistine. "International Space Station Water Usage Analysis." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-2009.
Full textKumar, Gaurav, and B. W. Karney. "Electricity Usage in Water Distribution Networks." In 2007 IEEE Canada Electrical Power Conference (EPC 2007). IEEE, 2007. http://dx.doi.org/10.1109/epc.2007.4520313.
Full textGuha, Jyotirmoy, Arka De, Saroj Kumar Jha, Aditya Gupta, and Mousiki Kar. "Water Management for Checking the Water Usage and Preventing Wastage." In 2013 Texas Instruments India Educators' Conference (TIIEC). IEEE, 2013. http://dx.doi.org/10.1109/tiiec.2013.40.
Full textReports on the topic "Water usage"
Bolton, Laura. Attitudes to Water Usage in Jordan. Institute of Development Studies (IDS), July 2021. http://dx.doi.org/10.19088/k4d.2021.105.
Full textMaloney, Stephen W. Water Usage at Forward Operating Bases. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada566854.
Full textBradley, Matthew, Derek LaPolice, Christian Peterson, Joseph R. Vanstrom, and Jacek A. Koziel. Water Usage Reduction at Food Processing Facility. Ames: Iowa State University, Digital Repository, April 2018. http://dx.doi.org/10.31274/tsm416-180814-21.
Full textEwers, Mary. Water usage for electricity in the I-WEST. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1872328.
Full textMcFarlane, Joanna, Kevin J. Qualls, A. L. Qualls, Adrian S. Sabau, Steven A. Wright, Hebi Yin, Lawrence {Larry} M. Anovitz, and Andrew K. Kercher. Ways to Minimize Water Usage in Engineered Geothermal Systems. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1050888.
Full textReich, W. J., and R. S. Moore. Analysis of assembly serial number usage in domestic light-water reactors. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/5668046.
Full textEarl D. Mattson, Larry Hull, and Kara Cafferty. Water Usage for In-Situ Oil Shale Retorting ? A Systems Dynamics Model. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1061001.
Full textShiao-Hung Chiang and Guy Weismantel. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/834139.
Full textEarl D Mattson and Larry Hull. Documentation of INL?s In Situ Oil Shale Retorting Water Usage System Dynamics Model. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1070124.
Full textSickinger, David E., Otto D. Van Geet, Suzanne A. Belmont, Thomas Carter, and David Martinez. Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Results from 24 Months and the Impact on Water Usage Effectiveness. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471661.
Full text