Academic literature on the topic 'Water treatment'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water treatment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Water treatment"

1

Jena, Santosh Kumar. "Application of Silver Nanoparticles for Water Treatment." Journal of Advance Nanobiotechnology 2, no. 4 (August 30, 2018): 1–11. http://dx.doi.org/10.28921/jan.2018.02.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Starchevsky, Volodymyr, Vоlоdymyr Kislenko, and Svyatoslove Ivanyshyn. "Starch Dispersion in Water under Ultrasonic Treatment." Chemistry & Chemical Technology 6, no. 2 (June 20, 2012): 183–88. http://dx.doi.org/10.23939/chcht06.02.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mandal, Pradip Chandra, and Mohamad Azmi Bin Alias. "Investigation of Asphaltene under Subcritical Water Treatment." International Journal of Materials, Mechanics and Manufacturing 5, no. 1 (February 2017): 11–15. http://dx.doi.org/10.18178/ijmmm.2017.5.1.279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Rui, Yu Liu, MeiRong Sun, Honglian Zhang, Zhihui Zhao, Hui Du, Yan Liao, and QinHua Hou. "Offshore Polluted Water treatment by biocomposites flocculation." SDRP Journal of Earth Sciences & Environmental Studies 5, no. 1 (2020): 21–24. http://dx.doi.org/10.25177/jeses.5.1.ra.10609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zabulonov, Yu L., V. M. Burtnyak, L. A. Odukalets, O. V. Alekseeva, and S. V. Petrov. "Plasmachemical Plant for NPP Drain Water Treatment." Science and innovation 14, no. 6 (December 3, 2018): 86–94. http://dx.doi.org/10.15407/scine14.06.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aoki, Hidemitsu, Masaharu Nakamori, Nahomi Aoto, and Eiji Ikawa. "Wafer Treatment Using Electrolysis-Ionized Water." Japanese Journal of Applied Physics 33, Part 1, No. 10 (October 15, 1994): 5686–89. http://dx.doi.org/10.1143/jjap.33.5686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khayan, Khayan, Adi Heru Sutomo, Ashari Rasyid, Widyana Lakshmi Puspita, Didik Hariyadi, Taufik Anwar, Slamet Wardoyo, Raja Sahknan, and Alkausyari Aziz. "Integrated Water Treatment System for Peat Water Treatment." CLEAN – Soil, Air, Water 50, no. 2 (December 21, 2021): 2100404. http://dx.doi.org/10.1002/clen.202100404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Salih, Chro Kamil. "Selecting The Best Portable Water Treatment For Disinfection Drinking Water Using Factorial Experiment." Journal of Zankoy Sulaimani Part (B - for Humanities) 10, no. 2 (January 30, 2000): 89–100. http://dx.doi.org/10.17656/jzsb.10198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

N.N., Mamatkulov. "Chemical Treatment Of Water In Ammophos Production Plants." American Journal of Agriculture and Biomedical Engineering 03, no. 06 (June 18, 2021): 1–5. http://dx.doi.org/10.37547/tajabe/volume03issue06-01.

Full text
Abstract:
This paper presents purification methods for the analysis of effluents from an ammophos production plant. Chemical analysis of the waters shows that phosphorus slags and phosphogypsum contain harmful elements such as strontium, arsenic, cadmium, titanium and manganese. Theoretical work on the control of ammophos max wastewater. Wastewater was found to contain Ca, Mg, F, S, P, N2 and trace elements.
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar Das, Chandan. "Bio-Detoxification Treatment of Waste Water Containing Cadmium." International Journal of Engineering and Technology 4, no. 1 (2012): 72–75. http://dx.doi.org/10.7763/ijet.2012.v4.321.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Water treatment"

1

Artiola, Janick. "Water Facts: Home Water Treatment Options." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2011. http://hdl.handle.net/10150/146297.

Full text
Abstract:
4 pp.
Arizona Know Your Water.
Today, homeowners have access to several water treatment systems to help control minerals and contaminants and to disinfect their water. Nearly half of the homes in the U.S. have some type of water treatment device. Mistrust of public water utilities, uncertainty over water quality standards, concerns about general health issues and limited understanding about home water treatment systems have all played a role in this increasing demand for home water treatment systems. Private well owners also need to provide safe drinking water for their families and have to make decisions as to how to treat their own water sources to meet this need. However, choosing a water treatment system is no easy task. Depending of the volume of water and degree of contamination, the homeowner should consider professional assistance in selecting and installing well water treatment systems. The process of selection is often confounded by incomplete or misleading information about water quality, treatment options, and costs. The following paragraphs outline the major well water treatment options. Further details on types, uses (point of use) and costs of these home water treatment systems are provided in the Arizona Know Your Water booklet. Additional information about Arizonas water sources that can help private well owners make decisions about home water treatment options, can be found in Arizona Well Owners Guide to Water Supply booklet (see references section).
APA, Harvard, Vancouver, ISO, and other styles
2

Skibinski, Bertram. "Swimming pool water treatment with conventional and alternative water treatment technologies." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-233929.

Full text
Abstract:
To mitigate microbial activity in swimming pools and to assure hygienic safety for bathers, pool systems have a re-circulating water system ensuring continuous water treatment and disinfection by chlorination. A major drawback associated with the use of chlorine as disinfectant is its potential to react with organic matter (OM) present in pool water to form potentially harmful disinfection by-products (DBP). In this thesis, the treatment performance of different combinations of conventional and novel treatment processes was compared using a pilot scale swimming pool model that was operated under reproducible and fully controlled conditions. The quality of the pool water was determined in means of volatile DBPs and the concentration and composition of dissolved organic carbon (DOC). Further, overall apparent reaction rates for the removal of monochloramine (MCA), a DBP found in pool water, in granular activated carbon (GAC) beds were determined using a fixed-bed reactor system operated under conditions typical for swimming pool water treatment. The reaction rates as well as the type of reaction products formed were correlated with physico-chemical properties of the tested GACs.
APA, Harvard, Vancouver, ISO, and other styles
3

Рой, Ігор Олександрович, Игорь Александрович Рой, and Ihor Oleksandrovych Roi. "The magnetic water treatment." Thesis, Сумський державний університет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/33564.

Full text
Abstract:
There are many intensification destinations for water purification. The most common is the use of effective technological schemes, modernization and development of new methods. Their implementation in practice is not always possible due to technical, economic and other reasons. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/33564
APA, Harvard, Vancouver, ISO, and other styles
4

Morrison, Wilke. "Water treatment analysis guide." Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/30896.

Full text
Abstract:
The treatment of water up to potable/drinkable standards is a complex process, with many variables and parameters impacting on each other. In South Africa drinking water delivered to consumers must meet the requirements as recorded in the South African National Standards (SANS). Today, more so than ever, there are a number water sources that can be exploited and treated to provide safe drinking water, namely; surface water (dams and rivers), sea water, ground water and treated wastewater. The focus of this dissertation is on surface water; however, reference is made in the first sections with regards to sea water and ground water. The first step in designing a treatment process begins with analysis of the raw water source. Unfortunately, there is not a one size fits all approach and it is left up to the process engineer to find the correct method of investigation. This can be a daunting task, especially if lacking in experience and available information. The first part of this dissertation focusses on just that. It prescribes the method of sampling and aims to provide the reader with context on when to and what to test for. It goes further to suggest how the results may influence the process design and how certain contaminants can be removed. It also draws the attention to the sampling timeframe required, to obtain representative information, encompassing fluctuations in water quality. The second part of this dissertation describe the methods for designing a conventional water treatment system, comprising; aeration, coagulation, flocculation, dissolved air floatation, sedimentation, filtration and disinfection. It also comments on the water quality that warrants certain process steps to assist the process engineer in choosing the correct configuration. For most steps the design approach of two or more technologies are presented. This allows the process engineer to consider which technology best suits the application at hand. The design procedures are programmed into an, excel based, software model, which permits quick and easy design. A brief description of how the software model can be used is also covered. The results given by the software model is validated through a set of examples, appended to this document. Ultimately it is concluded that although this dissertation provides a guide for designing a treatment process it is not an encompassing tool that considers all the intricacies involved. That is, there are too many factors involved and considerations required, and cannot all be captured in one dissertation such as this. As such, it is finally recommended that any design attempts should be conducted by a suitably qualified and experienced process engineer that may use this dissertation to augment their design development.
APA, Harvard, Vancouver, ISO, and other styles
5

Keränen, A. (Anni). "Water treatment by quaternized lignocellulose." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526215143.

Full text
Abstract:
Abstract Water-related problems are increasing globally, and new, low-cost technologies are needed to resolve them. Lignocellulosic waste materials contain reactive functional groups that can be used to provide a bio-based platform for the production of water treatment chemicals. Research on bio-based ion exchange materials in the treatment of real wastewaters is needed. In this thesis, anion exchange materials were prepared through chemical modification (epichlorohydrin, ethylenediamine and triethylamine) using five Finnish lignocellulosic materials as bio-based platforms. Scots pine sawdust and bark (Pinus sylvestris), Norway spruce bark (Picea abies), birch bark (Betula pendula/pubescens) and peat were chosen due to their local availability and abundance. The focus was placed on NO3- removal, but uptake of heavy metals, such as nickel, was also observed and studied. Studies on maximum sorption capacity, mechanism, kinetics, and the effects of temperature, pH and co-existing anions were used to elucidate the sorption behaviour of the prepared materials in batch and column tests. All five materials removed over 70% of NO3- at pH 3–10 (initial conc. 30 mg N/l). Quaternized pine sawdust worked best (max. capacity 32.8 mg NO3-N/g), and also in a wide temperature range (5–70°C). Column studies on quaternized pine sawdust using mining wastewater and industrial wastewater from a chemical plant provided information about the regeneration of exhausted material and its suitability for industrial applications. Uptake of Ni, V, Co and U was observed. Column studies proved the easy regeneration and reusability of the material. For comparison, pine sawdust was also modified using N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride and utilized to remove NO3- from groundwater and industrial wastewater. A maximum sorption capacity of 15.3 mg NO3-N/g was achieved for the synthetic solution. Overall, this thesis provides valuable information about bio-based anion exchange materials and their use in real waters and industrial applications
Tiivistelmä Edullisia ja kestäviä vedenkäsittelytekniikoita tarvitaan kasvavien vesiongelmien ratkaisemiseen. Lignoselluloosaa, kuten sahanpurua, syntyy suuria määriä teollisuuden sivutuotteena. Sen reaktiivisia funktionaalisia ryhmiä voidaan modifioida kemiallisesti ja valmistaa siten biopohjaisia vedenkäsittelykemikaaleja. Tutkimustietoa oikeiden jätevesien puhdistuksesta biopohjaisilla ioninvaihtomateriaaleilla tarvitaan lisää, jotta materiaalien käyttöä voidaan kehittää ja edistää. Tässä väitöstyössä valmistettiin anioninvaihtomateriaaleja modifioimalla kemiallisesti viittä suomalaista lignoselluloosamateriaalia: männyn sahanpurua ja kuorta (Pinus sylvestris), kuusen kuorta (Picea abies), koivun kuorta (Betula pendula/pubescens) ja turvetta. Menetelmässä käytettiin epikloorihydriiniä, etyleenidiamiinia ja trietyyliamiinia orgaanisessa liuotinfaasissa. Työssä keskityttiin erityisesti nitraatin poistoon sekä synteettisistä että oikeista jätevesistä. Materiaalien soveltuvuutta teollisiin sovelluksiin arvioitiin maksimisorptiokapasiteetin, sorptioisotermien, kinetiikka- ja kolonnikokeiden sekä pH:n, lämpötilan ja muiden anionien vaikutusta tutkivien kokeiden avulla. Kaikki viisi kationisoitua tuotetta poistivat yli 70 % nitraatista laajalla pH-alueella (3–10). Kationisoitu männyn sahanpuru osoittautui parhaaksi materiaaliksi (32,8 mg NO3-N/g), ja se toimi laajalla lämpötila-alueella (5–70°C). Kolonnikokeet osoittivat sen olevan helposti regeneroitavissa ja uudelleenkäytettävissä. Tuotetta testattiin myös kaivos- ja kemiantehtaan jäteveden käsittelyyn, ja kokeissa havaittiin hyviä nikkeli-, uraani-, vanadiini- ja kobolttireduktioita. Männyn sahanpurua modifioitiin vertailun vuoksi myös kationisella monomeerilla, N-(3-kloro-2-hydroksipropyyli)trimetyyliammoniumkloridilla. Tuotteen maksimisorptiokapasiteetiksi saatiin 15,3 mg NO3-N/g ja se poisti nitraattia saastuneesta pohjavedestä. Kokonaisuudessaan väitöskirjatyö tarjoaa uutta tietoa biopohjaisten ioninvaihtomateriaalien valmistamisesta ja niiden soveltuvuudesta oikeiden teollisuusjätevesien käsittelyyn
APA, Harvard, Vancouver, ISO, and other styles
6

Kazi, Noor Mohammed. "Pneumatic flocculation in water treatment." Thesis, Nottingham Trent University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Välikangas, T. (Taru). "Secondary materials in water treatment." Master's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201702071114.

Full text
Abstract:
In the World the availability of the clean drinking water is a serious problem. The appearance of this problem is different in developed and developing countries. Even though water treatment technologies are widely studied and improved, the developing countries do not have the same economic capacities to utilize the sufficient treatment methods. This thesis concentrates on the utilization of secondary materials in water treatment as adsorbents. These materials are potential for the low-cost treatment of water. For the testing of the secondary materials, two pollutants were chosen as model compounds: organic pharmaceutical diclofenac and inorganic arsenic As(V), since they have been recognized to be problematic in water treatment. Two industrial by-products were chosen as secondary materials to be tested as adsorbents. Sachtofer is a by-product from titanium dioxide TiO2 production and Red mud is a waste material originating from aluminium oxide Al2O3 production. Third material tested was sand from Brazil obtained via cooperation with the Federal Institute of Goias in Goiania, Brazil. In this thesis a commercial adsorbent CFH-12 (Kemira) was chosen as a reference material. The literature part of the thesis contains theoretical considerations on the utilization of adsorption in water treatment. In addition the effect of organic and inorganic impurities in water bodies are discussed in a general level. The experimental part of the thesis presents first the characterization results of the secondary materials. The specific surface areas (BET) were measured for all the secondary materials. The surface structures were studied with scanning electron microscopy (SEM). For some of the adsorbents, the pH of the point of zero charge was determined as well as the elemental composition with XRF. One part of this thesis concentrated on studying the effect of pre-treatment on the adsorption efficiency of the materials. In this case, the adsorption materials were washed with distilled water and treated with hydrochloric acid. The adsorption experiments were carried out as batch experiments. Diclofenac concentration during the experiments was analyzed with spectrophotometry and HPLC. The best removal, i.e. 16% of diclofenac was achieved with HCl-activated Brazilian sand. With Red mud the HCl-activated sample was the most effective with 8% removal. The HCl-activated Sachtofer removed only 4% of diclofenac. The change in the arsenic concentration during the experiments was analyzed by ICP-MS. With Sachtofer, all three pre-treated samples removed 100% of arsenic. All Red mud and Brazilian sand samples were able to remove arsenic in significant amount. Though, after HCl-activation, the removal of arsenic was higher giving 98% for Red mud and 100% for the Brazilian sand. The diclofenac removal was assumed to be difficult and the 16% removal was a quite good result. The problem seems to be too high pH. By adjusting pH to a lower level, the higher removal efficiency might be achievable. All arsenic removal results were promising, and with all the material samples the removal was higher than 90%. These results confirm that the secondary materials are potential adsorbents for in water treatment. With certain adsorbents, the removal was high even without any pre-treatment. This is economically interesting possibility that should be studied more, especially due to the possibility of improving the water treatment in developing countries
Puhtaan juomaveden puute on todellinen ongelma maailmassa. Se on ongelma jossa erityisesi kehittyvät ja kehittyneet maat ovat eriarvoisessa asemassa. Vaikka vedenpuhdistusprosesseja tutkitaan paljon ja ne ovat pitkälle kehittyneitä, ei kehittyvillä mailla ole välttämättä taloudellisia resursseja hyödyntää riittävää vedenpohditus tekniikkaa. Tässä työssä on tutkittu kierrätysmateriaalien hyötykäyttöä adsorbentteinä vedenpuhdistuksessa. Puhdistettaviksi malliaineeksi valittiin orgaaninen lääkeaine diklofenakki sekä epäorgaaninen arseeni As(V), koska niiden on havaittu aiheuttavan ongelmia nykyisissä vedenpuhdistusprosesseissa. Adsorptiomateriaaleina tässä työssä käytettiin teollisuuden sivutuotteina syntyneitä Sachtoferia joka on titaanidioksidin valmistuksen sivutuote, sekä punaliejua, joka alumiinioksidin valmistuksessa syntynyttä jätemateriaalia. Kolmantena materiaalina testattiin Brasilialaista -hiekkaa, jota saatiin tutkimustarkoituksiin yhteistyön kautta, Federal Institute of Goias, Goiania, Brasilia toimittamana. Työhön haluttiin valita myös yksi kaupallinen adsorptiomateriaali joka toimisi referenssimateriaalina, ja tämän vuoksi valitsimme adsorptiomateriaaliksi Kemiran CFH-12 -tuotteen. Työn kirjallisuus osiossa selvitetään adsorption teoriaa sekä sen hyödyntämistä vesienpuhdistuksessa. Myös orgaanisen ja epäorgaanisten haitta-aineiden vaikutuksia veden laatuun tarkastellaan yleisellä tasolla. Kokeellisen osan alussa työssä käytettyjen adsorbenttien ominaisuuksia tutkittiin erilaisilla menetelmillä, joilla arvioitiin materiaalien kykyä adsorboida malliaineita. Materiaaleille määritettiin mm. pH jossa materiaalin pintavaraus on nolla (point of zero charge). Lisäksi materiaaleille tehtiin BET-analyysi ominaispinta-alan selvittämiseksi ja niiden pintaa ja rakennetta tutkittiin elektronimikroskoopilla. Osalle aineista tehtiin myös alkuaineanalyysi. Työssä haluttiin myös tutkia vaikuttaisiko materiaalien esikäsittely adsorptiotehokkuuteen. Tämän vuoksi adsorptiomateriaaleja pestiin tislatulla vedellä sekä käsiteltiin suolahapolla. Adsorptiokokeet toteutettiin laboratoriomittakaavassa panoskokeina. Diklofenakin pitoisuutta seurattiin kokeen aikana spektrofotometrillä sekä HPLC analyysi menetelmällä. Paras tulos diklofenakin poistossa saatiin HCl -aktivoidulla Brasilialaisella hiekalla, jolloin poistuma oli 16 %. Punaliejulla käsitellyistä näytteistä paras poistuma, 8 %, saatiin myös HCl -aktivoidulla näytteellä. HCl -aktivoidulla Sachtoferilla poistuma oli vain 4 %. Arseenin pitoisuuden muutosta kokeen aikana analysoitiin ICP-MS menetelmällä. Kaikkilla kolmella Sachtofer -näytteellä arseenin poistuma oli 100 %. Kaikki punalieju ja Brasilialainen hiekka näytteet adsorboivat arseenia merkittävästi. Kuitenkin HCl -käsitellyillä näytteillä poistuma oli paras, punaliejulle 98 % ja Brasilialaiselle hiekalle 100 %. Diklofenakin poistamisen vedestä oletettiin olevan haastavaa, ja saavutettu 16 % poistuma oli hyvä tulos. Ongelmana diklofenakin poistossa oli todennäköisesti liian korkea pH ja mikäli pH:ta onnistutaan säätämään enemmän happamaksi, poistuma voisi olla korkeampi. Arseenin adsorptio kokeiden tulokset olivat todella lupaavia, ja kaikilla materiaaleilla poistuma oli vähintään 90 %. Näiden tulosten perusteella voidaan todeta että kierrätysmateriaalit ovat hyvin potentiaalinen vaihtoehto vedenkäsittelyadsorbenteiksi. Osa materiaaleista toimi arseenin poistossa tehokkaasti myös ilman esikäsittelyä. Tämä on taloudelliselta kannalta mielenkiintoinen tulos, jota tulisi tutkia lisää, erityisesti kehittyvien maiden vedenpuhdistuksen tehokkuuden parantamiseksi
APA, Harvard, Vancouver, ISO, and other styles
8

Hassinger, Elaine, Thomas A. Doerge, and Paul B. Baker. "Choosing Home Water Treatment Devices." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1994. http://hdl.handle.net/10150/156940.

Full text
Abstract:
1 pp.
Water Facts: Number 7
There are many home water treatment manufacturers, dealers, and products in today's market. Choosing the best water treatment device for your home can be difficult. This article offers advice in choosing your home water treatment by discussing, the reliability, product performance, dealer reputation, and cost of installation.
APA, Harvard, Vancouver, ISO, and other styles
9

Hubler, David K. "Modeling Electrochemical Water Treatment Processes." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265367.

Full text
Abstract:
Several electrochemical processes are modeled at process levels and atomic scales. Processes are presented for acid generation and ion exchange media regeneration, along with corresponding process models. Transport and reaction processes in individual ion exchange beads are also modeled. Acids of mild strength (pH = ~1-2) are generated from electrolyte solutions and their strength is effectively modeled as a function of time. The regeneration of ion exchange media is also modeled, to close agreement with measurements, and the process model is reconciled with a model for solute flux from an individual ion exchange bead. Together, the models show that the "gentle" regeneration process is controlled by the plating rate. Processes interior to the particle are controlled by diffusion, but all processes are faster than the characteristic time for plating. In a separate process, an electrochemical method is used to produce hypochlorite for disinfection. The process generates perchlorate as a toxic byproduct. Density function theory is used to construct an atomic-scale model of the mechanism for producing perchlorate, as well as the aging of the boron-doped diamond anode used in the process. The mechanism shows that the boron-doped diamond surface plays an important role in chemisorbing and stabilizing radicals of oxychlorine anions, allowing the radicals to live long enough to react and form higher ions like perchlorate. Wear mechanisms that occur on the anode are shown to oxidize and etch the surface, changing its chemical functionality over time. As the surface ages, the overpotential for water oxidation is decreased, decreasing the efficiency of the electrode.
APA, Harvard, Vancouver, ISO, and other styles
10

Esposto, Stefano. "Sustainable water treatment in emergency." Doctoral thesis, La Sapienza, 2006. http://hdl.handle.net/11573/916907.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Water treatment"

1

Pizzi, Nicholas G. Water treatment. 4th ed. Denver, CO: American Water Works Association, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Association, American Water Works, ed. Water treatment. 3rd ed. Denver, CO: American Water Works Association, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Association, American Water Works, ed. Water treatment. 2nd ed. Denver, CO: American Water Works Association, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Association, American Water Works, ed. Water treatment. 4th ed. Denver, Colo: American Water Works Association, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Demadis, Kostas. Water treatment processes. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noor, Zainura Zainon, and Noor Salehan Mohammad Sabli, eds. Sustainable Water Treatment. Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017].: CRC Press, 2017. http://dx.doi.org/10.1201/9781315116792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ray, Chittaranjan, and Ravi Jain, eds. Drinking Water Treatment. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1104-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crittenden, John C., R. Rhodes Trussell, David W. Hand, Kerry J. Howe, and George Tchobanoglous. MWH's Water Treatment. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118131473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martin, Kimber, ed. Basic water treatment. 4th ed. Cambridge: Royal Society of Chemistry, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Water treatment handbook. 6th ed. [Paris: Degrémont], 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Water treatment"

1

Chapman, Richard G. "Water Treatment." In Power Plant Engineering, 464–520. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0427-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kavanaugh, Michael C. "Water Treatment." In Process Technologies for Water Treatment, 1–22. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-8556-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tucker, John W. "Water Treatment." In Marine Fish Culture, 155–74. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4911-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spellman, Frank R. "Water Treatment." In The Drinking Water Handbook, 213–66. Boca Raton : Taylor & Francis, CRC Press, 2018: CRC Press, 2017. http://dx.doi.org/10.1201/9781315159126-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spellman, Frank R. "Water Treatment." In The Science of Water, 443–504. Fourth edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003094197-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trösch, Walter. "Water treatment." In Technology Guide, 394–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88546-7_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tatlock, Walter. "Water Treatment." In Carbonated Soft Drinks: Formulation and Manufacture, 16–47. Oxford, UK: Blackwell Publishing Ltd, 2007. http://dx.doi.org/10.1002/9780470996034.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bozzuto, Carl. "Water Treatment." In Boiler Operator's Handbook, 231–49. 3rd ed. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207368-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mathias, Simon A. "Water Treatment." In Hydraulics, Hydrology and Environmental Engineering, 665–92. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-41973-7_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spellman, Frank R. "Water Treatment." In The Drinking Water Handbook, 221–46. 4th ed. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781032659022-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Water treatment"

1

Marsid, Maryuswan, and Suryo Suwito. "Produced Water Treatment." In SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/27177-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

salahat, Inayat. "WASTE WATER TREATMENT." In المؤتمر العلمي الدولي التاسع - "الاتجاهات المعاصرة في العلوم الاجتماعية، الانسانية، والطبيعية". شبكة المؤتمرات العربية, 2018. http://dx.doi.org/10.24897/acn.64.68.212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zayat, Mohamed El. "Odor Treatment for Advanced Wastewater Treatment Technology." In World Environmental and Water Resources Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479889.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pipe-Martin, C. "Dissolved organic carbon removal by biological treatment." In WATER POLLUTION 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/wp080431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tezcan Ün, Ü., A. S. Koparal, and Ü. Bakir Öğütveren. "Treatment of slaughterhouse wastewater with iron electrodes." In WATER POLLUTION 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/wp080541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kawagoe, D. "Effect of Hydrothermal Treatment on Sinterability of Hydroxyapatite." In WATER DYANMICS: 3rd International Workshop on Water Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2207086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kodali, Ravi Kishore. "Smart waste water treatment." In 2017 IEEE Region 10 Symposium (TENSYMP). IEEE, 2017. http://dx.doi.org/10.1109/tenconspring.2017.8070092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pesatova, Radmila. "WATER�TREATMENT�IN�HOUSEHOLDS." In SGEM2012 12th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2012. http://dx.doi.org/10.5593/sgem2012/s13.v3053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mathew, Benoie P. "Produced Water Management - Nimr Water Treatment project." In SPE Middle East Health, Safety, Environment & Sustainable Development Conference and Exhibition. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/170335-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wołowiec, Magdalena, Małgorzata Komorowska-Kaufman, Alina Pruss, Grzegorz Rzepa, and Tomasz Bajda. "Sorption of H2S on Water Treatment Residuals Generated during Drinking Water Treatment." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2884.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Water treatment"

1

Siegel, Malcolm Dean. Arsenic in water treatment. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/975247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Theiling, Charles. A review of algal phytoremediation potential to sequester nutrients from eutrophic surface water. Engineer Research and Development Center (U.S.), October 2023. http://dx.doi.org/10.21079/11681/47720.

Full text
Abstract:
Harmful algal blooms (HABs) and coastal hypoxic zones are evidence of cultural nutrient enrichment affecting public health and water supplies, aquatic ecosystem health, and economic well-being in the United States. Recognition of the far-reaching impacts of Midwest agriculture has led to establishing nutrient reduction objectives for surface waters feeding the Gulf of Mexico, Lake Erie, and many smaller water bodies. Municipal nutrient enrichment impacts have been addressed by increasing levels of sewage treatment and waste management through the Clean Water Act era, but HABs rebounded in the 1990s because of non-point source nutrient enrichment. HAB control and treatment includes watershed and waterbody treatments to reduce loading and address outbreaks. Systems to remove nutrients from impaired waters are expensive to build and operate. This review of algal production systems summarizes emerging algal water treatment technologies and considers their potential to effectively sequester nutrients and atmospheric carbon from hundreds of eutrophic reservoirs and DoD wastewater treatment facilities while producing useful biomass feedstock using solar energy. Algal water treatment systems including open ponds, photobioreactors, and algal turf scrubbers® can be used to grow biomass for biofuel, wastewater treatment, and commercial products. This review recommends continuing research on surface water nutrient reduction potential with algal turf scrubber productivity pilot studies, preliminary site design, and biomass utilization investigations.
APA, Harvard, Vancouver, ISO, and other styles
3

Everett, Randy L., Tom Mayer, Malynda A. Cappelle, William E. ,. Jr Holub, Howard L. ,. Jr Anderson, Susan Jeanne Altman, Frank McDonald, and Allan Richard Sattler. Nanofiltration treatment options for thermoelectric power plant water treatment demands. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/1051721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

TAYLOR-PASHOW, KATHRYN. EFFICIENT WATER TREATMENT FOR HIGH SALINITY WATER - LITERATURE SURVEY. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1673313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bergsman, K. H. ,. Westinghouse Hanford. Integrated water treatment system test strategy. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/325688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tomberlin, Gregg R., Jesse D. Dean, and Michael Deru. Electrochemical Water Treatment for Cooling Towers. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1489333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Farnand, B., and T. Krug. Oilfield produced water treatment by ultrafiltration. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/302687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gallagher, John R. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/791058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Magda, Karoly. SNS RFQ Cooling Water Chemical Treatment. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1344273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Skone, Timothy J. Marcellus Shale Water Treatment with Crystallization. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1509082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography