Academic literature on the topic 'Water stress'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water stress.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Water stress"
Umare, Akshay C., and Saifan Makandar. "Stress Analysis With Different Geometry of Water Tank." Journal of Advances and Scholarly Researches in Allied Education 15, no. 2 (April 1, 2018): 608–11. http://dx.doi.org/10.29070/15/56935.
Full textVárallyay, Gy. "Soil-water stress." Cereal Research Communications 37, no. 2 (June 2009): 315–19. http://dx.doi.org/10.1556/crc.37.2009.suppl.7.
Full textAult, Toby. "Island water stress." Nature Climate Change 6, no. 12 (November 24, 2016): 1062–63. http://dx.doi.org/10.1038/nclimate3171.
Full textMeldolesi, Anna. "Water stress survivors." Nature Biotechnology 31, no. 3 (March 2013): 188. http://dx.doi.org/10.1038/nbt0313-188a.
Full textHosnedl, V., and H. Honsová. "Barley seed sensitivity to water stress at germination stage." Plant, Soil and Environment 48, No. 7 (December 21, 2011): 293–97. http://dx.doi.org/10.17221/4370-pse.
Full textPospisilova, J., H. Synkova, and J. Rulcova. "Cytokinins and Water Stress." Biologia plantarum 43, no. 3 (September 1, 2000): 321–28. http://dx.doi.org/10.1023/a:1026754404857.
Full textMarshall, K. "WATER STRESS DOWN SOUTH." Journal of Experimental Biology 215, no. 7 (March 7, 2012): vi. http://dx.doi.org/10.1242/jeb.064097.
Full textCzech, Viktória, Edit Cseh, and Ferenc Fodor. "ARSENATE INDUCES WATER STRESS." Journal of Plant Nutrition 34, no. 1 (December 2010): 60–70. http://dx.doi.org/10.1080/01904167.2011.531359.
Full textSchuab, S. R. P., A. L. Braccini, C. A. Scapim, J. B. França-Neto, D. K. Meschede, and M. R. Ávila. "Germination test under water stress to evaluate soybean seed vigour." Seed Science and Technology 35, no. 1 (April 1, 2007): 187–99. http://dx.doi.org/10.15258/sst.2007.35.1.17.
Full textPenella, C., S. G. Nebauer, S. López-Galarza, A. SanBautista, A. Rodríguez-Burruezo, and A. Calatayud. "Evaluation of some pepper genotypes as rootstocks in water stress conditions." Horticultural Science 41, No. 4 (November 25, 2014): 192–200. http://dx.doi.org/10.17221/163/2013-hortsci.
Full textDissertations / Theses on the topic "Water stress"
Umponstira, Chanin. "Ozone and water stress interactions." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341462.
Full textAl-Najafi, Mohammad Abdul Aziz. "Root shrinkage in relation to water stress." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279828.
Full textPerez, Jose 1950. "WATER AND NITROGEN EFFECTS ON THE CROP WATER STRESS INDEX OF COTTON." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275339.
Full textSpinelli, Gerardo. "Water Stress And Water Use Of Almonds In California| Linking Plant Water Status And Canopy Transpiration." Thesis, University of California, Davis, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3723733.
Full textAlmond water use was investigated at the leaf, plant and canopy level under a range of irrigation conditions in commercial orchards in California. Understanding plant response to water stress, specifically the behavior of plant transpiration and water use during periods of water stress, has important implications for irrigation scheduling in agriculture but also for water resources management and policy making.
Leaf gas exchange measurements of stomatal conductance and photosynthetic rate were performed at midday on shaded and on sunlit leaves, with midday stem water potential used to assess plant water stress. An essentially linear decline in both photosynthetic rate (from 25 to 5 μmol m-2 s-1) and stomatal conductance (from 400 to 50 mmol m -2 s-1) as stem water potential declined over the range of -0.5 to -3 MPa was observed in sunlit leaves. These data indicated a strong sensitivity of leaf-level physiological processes to water stress. However, evapotranspiration at the canopy level, measured using Eddy Covariance, did not show a reduction relative to atmospheric demand during periods of water stress. The apparent disconnect observed between leaf conductance, responsive to water stress and canopy evapotranspiration, insensitive to water stress, is the central problem investigated in this study.
When the transpiration data was analyzed in the framework of a "Big Leaf" model, decoupled conditions (i.e. a limited stomatal control of transpiration) were shown to prevail at the experimental site, contrary to previous findings reported in the literature for tall crops such as almond orchards. Low coupling implies only a moderate sensitivity of transpiration to stomatal closure. Measured coupling increased substantially with wind speed but showed a wide range of values at the low wind speeds (<1m s-1) that were observed at the site. At any wind speed however, higher canopy resistance resulted in higher coupling. The high leaf area index observed in the orchard may have been responsible for causing decoupled conditions, because when leaf area decreased as a result of harvesting operations, canopy transpiration appeared to become more sensitive to water stress.
Cumulative daily sap velocity was used as an estimate of plant transpiration. At the plant level, contrasting behaviors were observed in plant transpiration in the presence of water stress, depending on the duration and intensity of the stress. During long soil dry-down periods encompassing several weeks, plant transpiration relative to the evaporative demand of the atmosphere showed a statistically significant decline associated with a decrease in stem water potential and in stomatal closure. However, when the cycle of water stress was short (days), reductions in stem water potential seemed to be associated with an increase in cumulative sapflow velocity. The analysis of these results led to the development of a simple model that describes the theoretical interactions between three dependent variables, namely stem water potential, stomatal conductance and transpiration. The model output suggested that in wet soil, an increase in transpiration may be caused by increasing evaporative demand even if stem water potential and stomatal conductance decrease.
Lehle, F. R., and A. M. Zegeer. "Effects of Oxygen Stress and Water Stress on Cotton (Gossypium hirsutum) Seed Growth." College of Agriculture, University of Arizona (Tucson, AZ), 1989. http://hdl.handle.net/10150/204832.
Full textFrench, Robert John. "Leaf senescence and water stress in wheat seedlings /." Title page, contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phf875.pdf.
Full textOtto, Marina Shinkai Gentil. "Physiological responses of forest species to water stress." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11144/tde-05112015-154241/.
Full textEstresses abióticos e bióticos podem afetar o crescimento das árvores e desempenham um papel importante na determinação da distribuição geográfica das espécies. O objetivo deste estudo, foi elucidar as seguintes questões: (1) o aminoácido GABA e o controle estomático são bons indicadores da tolerância ao estresse hídrico em clones de Eucalyptus? E quais são as diferenças anatômicas entre clones de Eucalyptus tolerantes e sensíveis ao estresse hídrico? (2) existem diferenças de vulnerabilidade a cavitação do xilema entre famílias de Pinus flexilis suscetíveis e resistentes à ferrugem do pinho branco (WPBR) e com diferentes procedências (elevada e baixa altitudes)? Dois estudos foram desenvolvidos para elucidar as questões acima descritas. No capítulo 1, oito clones de Eucalyptus de diferentes procedências e condições climáticas, sendo três clones sensíveis ao estresse hídrico (CNB, FIB e JAR), três clones tolerantes ao estresse hídrico (GG, SUZ e VM) e dois clones plásticos (VER e COP), foram estudados sob duas condições distintas: sob adequado suprimento de água (tratamento controle) e sob condições de estresse hídrico (tratamento estresse). Do primeiro capítulo concluiu-se que o GABA é um aminoácido que possui alta sensibilidade ao estresse hídrico, no entanto, não houve relação entre a concentração de GABA e os níveis de tolerância ao estresse hídrico dos clones. Além disso, todos os clones reduziram a condutância estomática em relação ao aumento do déficit de pressão de vapor (DPV), sendo que, sob condições de estresse hídrico, os clones plásticos e tolerantes à seca (exceto o clone GG) apresentaram menor sensibilidade estomática ao DPV do que os clones sensíveis ao estresse hídrico. Além disso, todos os clones apresentaram diferenças anatômicas, sendo que, diferentemente dos demais, os clones COP (plástico) e SUZ (tolerante) apresentaram mesofilo homogêneo e folhas anfi-hipoestomáticas. Todos os clones aumentaram a quantidade de estômatos e reduziram a espessura foliar das folhas formadas após períodos de estresse hídrico. No segundo capítulo foram avaliadas 12 famílias de Pinus flexilis procedentes de regiões de baixa e alta altitudes, sendo seis famílias contendo um alelo dominante C4 (resistente à WPBR) e seis famílias sem o alelo C4 (suscetíveis à WPBR). Este estudo apresentou uma variação da pressão média da cavitação (MCP) para Pinus flexilis de -3,63 a -4,84 Mpa, e embora tenha havido uma diferença significativa da susceptibilidade a cavitação entre todas as famílias estudadas, esta variável não relacionou-se com a susceptibilidade a doença WPBR e com a região de procedência das famílias. Estes estudos comprovam que a avaliação das respostas fisiológicas das plantas sob condições de estresse hídrico são importantes ferramentas que podem ser utilizadas para complementar as estratégias da seleção de genótipos em programas de melhoramento florestal.
Beckett, Heath. "Remote sensing of water stress in fynbos vegetation." Bachelor's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/25902.
Full textCorreia, Barbara dos Santos. "Water stress and recovery in Eucalyptus: physiological profiles." Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/10165.
Full textEm Portugal, cerca de 700,000 ha foram já plantados com clones de Eucalyptus globulus, selecionados pelas suas elevadas taxas de crescimento, alta produção de polpa e adaptabilidade ambiental. Contudo, a produtividade das plantações de E. globulus tem enfrentado sérias limitações, principalmente devido à fraca disponibilidade de água. A seca é um importante stress abiótico que afeta negativamente o crescimento e o desenvolvimento das plantas, causando um conjunto de respostas fisiológicas, bioquímicas e moleculares. Embora esteja disponível um grande número de estudos que descreve as respostas das plantas ao stress hídrico, apenas alguns trabalhos se debruçam sobre os mecanismos que permitem a recuperação. Além disso, vários estudos descrevem também como diferentes genótipos podem diferir na capacidade de lidar com a seca. Considerando que manter a produção durante o stress hídrico não é o mais relevante, mas sim a capacidade de sobreviver e recuperar rapidamente após a re-hidratação, o objetivo deste estudo foi compreender os mecanismos envolvidos na recuperação, de modo a selecionar coleções clonais adequadas a plantações sustentáveis num clima mediterrânico. Com essa finalidade, dois clones de E. globulus (AL-18 e AL-126) foram submetidos a um período de três semanas em stress hídrico, seguido por uma semana de recuperação. Um perfil fisiológico foi obtido para cada genótipo, pela avaliação do crescimento, estado hídrico, peroxidação lipídica, respostas do aparelho fotossintético, trocas gasosas e concentração de ABA. Os principais resultados deste trabalho levam a concluir que: i) os genótipos escolhidos foram altamente tolerantes às condições testadas; ii) os clones selecionados apresentaram uma resposta similar na maioria dos parâmetros testados (exceto MDA, pigmentos, parâmetros fotossintéticos e ABA); iii) o clone AL-126 foi o mais resiliente à seca, mantendo taxas de crescimento mais elevadas em stress e após re-hidratação.
In Portugal, about 700,000 ha have been established with Eucalyptus globulus clones selected for their high growth rates, high pulp yield and environmental adaptability. However, productivity in E. globulus plantations has encountered serious limitations, mostly because of water availability. Drought is a major abiotic stress negatively affecting plant growth and development that causes an array of physiological, biochemical and molecular responses in plants. Apart from the great number of studies reporting on plant responses to drought stress and on the mechanisms to overcome stressful conditions, only a few reports providing evidence about the capacity of recovery and the underlying processes during recovery from drought are available. Moreover, ecophysiological studies have reported that different genotypes differ in their capacity to cope with drought. Considering that maintenance of production during drought is not the most important consideration, but rather the capacity to survive and recover rapidly after rewatering, the aim of this study was to understand the underlying mechanisms in recovery in order to select suitable clonal collections for sustainable plantations in a Mediterranean climate. For this propose, two E. globulus clones (AL-18 and AL-126) were subjected to a three-week water stress period, followed by one week recovery. A physiological profile was obtained for each genotype, assessing growth, water status, lipid peroxidation, photosynthetic responses, gas exchanges and ABA concentration. The main results of this work led us to conclude that: i) the chosen genotypes were highly tolerant to the conditions tested; ii) the selected clones presented a similar response in most of the tested parameters (except for MDA, pigments, fluorescence parameters and ABA); iii) clone AL-126 was the most resilient to drought, maintaining higher growth rates under stress and after rewatering.
Berenguer, Helder Duarte Paixão. "Eucalyptus predisposition to Neofusicoccum kwambonambiense under water stress." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22330.
Full textIn Portugal, Eucalyptus, particularly Eucalyptus globulus, occupies more than 800 000 ha and, due to being a major source of biomass for fiberboard, industrial charcoal, fuel wood and paper pulp, has become a key genus, with a considerable economic importance. However, E. globulus productivity faces new pressures, with climate change-driven drought as one of the most hostile ones. Drought can lead to growth impairment and yield reduction: directly; or indirectly, through the increase of plant susceptibility to pathogens by a predisposition mechanism. Neofusicoccum kwambonambiense is an endophytic opportunist phytopathogen known to severely affect E. globulus, whose incidence has already been reported in Portugal. Taking all in consideration, it is of major importance to assess the predisposition effect that drought may have on the N. kwambonambiense - E. globulus interaction. For such purpose, four treatment groups were established: E. globulus were firstly subjected to a 66-days acclimation period in which plants were periodically watered (80% of field capacity). After that, two groups were exposed to a progressive water supply restriction. The other two remained well-watered. Once water-stressed plants achieved 18% of field capacity (23 days), a well-watered and a water-stress group were inoculated with N. kwambonambiense. All treatments were kept in these conditions throughout a 65 days’ period, at which moment a set of morphological, physiological and biochemical parameters was obtained. Well-watered plants, despite being infected with N. kwambonambiense, presented an overall photosynthetic increase, which enabled plant defense through the production of sugars, proline and salicylic acid. Oxidative damages (partially observed through malondialdehyde content), were avoided in part due to proline and soluble sugars. Water stress lead to a direct growth impairment confirmed through an indole-acetic-acid content decrease. A water-potential reduction occurred, which, together with abscisic acid, lead to stomatal closure and overall photosynthetic efficiency decline. Oxidative damages weren’t properly managed and further affected E. globulus. Furthermore, N. kwambonambiense was found to promote a jasmonic acid content increase, typical of necrotrophic pathogens, which may suggest a lifestyle change from hemibiotrophic to necrotrophic as plant cells progressively degenerate. Ultimately, water-stressed E. globulus presented larger external lesion extensions and steam cankers and a superior internal fungi progression. Our results conclusively demonstrate that water stress created a better substrate for fungi development and decreased the plant’s ability to respond. Such resulted in higher susceptibility and disease severity confirming predisposition.
Em Portugal, o eucalipto, particularmente o Eucalyptus globulus, ocupa mais de 800 000 ha. Devido a ser uma importante fonte de biomassa para painéis de fibras, carvão industrial, lenha e pasta de papel, tornou-se um género chave de considerável importância económica. Contudo, a produtividade de E. globulus tem encontrado novas pressões, sendo a seca resultante das alterações climáticas, uma das mais hostis. A seca pode levar a uma diminuição do crescimento e produtividade: diretamente; ou indiretamente através do aumento da suscetibilidade a agentes patogénicos através da predisposição. O fungo ascomiceto Neofusicoccum kwambonambiense é um agente fitopatogénico endofítico oportunista que se sabe afetar severamente E. globulus, e cuja presença já fora confirmada em Portugal. Tomando tal em consideração, torna-se importante avaliar o efeito de predisposição que a seca poderá ter na interação N. kwambonambiense - E. globulus. Para tal foram criados quatro grupos de tratamento: E. globulus foram primeiramente sujeitos a um período de aclimatização de 66 dias no qual foram periodicamente irrigados (80% de capacidade de campo). Seguidamente, dois grupos foram sujeitos a uma diminuição progressiva da irrigação. Os outros dois grupos permaneceram bem regados. Uma vez que os tratamentos stressados atingiram 18% de capacidade de campo (23 dias), um grupo bem regado e um grupo stressado foram inoculados com N. kwambonambiense. Todas os tratamentos foram mantidos nestas condições durante um período de 66 dias, findo o qual foi obtido um conjunto de parâmetros morfológicos, fisiológicos e bioquímicos. As plantas bem regadas, apesar de terem sido inoculadas com N. kwambonambiense apresentaram um aumento dos parâmetros fotossintéticos o que terá permitido a defesa da planta através de uma produção amplificada de açúcares, prolina e ácido salicílico. Danos oxidativos (parcialmente observados através do conteúdo em malondialdeído) foram evitados, em parte, devido à ação da prolina e açúcares solúveis. O stress hídrico levou a uma diminuição do crescimento confirmado pela redução do conteúdo em ácido-indole-acético. Ocorreu uma diminuição do potencial hídrico, a qual, em conjunto com o aumento do ácido abscísico, levou ao fecho dos estomas e diminuição da fotossíntese. Os danos oxidativos não foram controlados, afetando o estado do E. globulus. Ademais, o N. kwambonambiense provocou um aumento do conteúdo em ácido jasmónico, típico de agentes patogénicos necrotróficos, o que poderá sugerir que o fungo passou de um estilo de vida hemibiotrófico para necrotrófico, à medida que as células degeneravam. Os E. globulus stressados apresentavam maiores lesões externas e cancros, conjuntamente com uma maior progressão interna do fungo. Os nossos resultados comprovam que a seca criou um melhor substrato para o desenvolvimento do fungo e diminuiu a capacidade de resposta da planta. Tal resultou num aumento da suscetibilidade e severidade da doença confirmando a predisposição.
Books on the topic "Water stress"
Hasegawa, Hiroshi, and Md Mofizur Rahman. Water stress. 2nd ed. Rijeka, Croatia: Intech, 2011.
Find full textAshraf, M., M. Ozturk, and H. R. Athar, eds. Salinity and Water Stress. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9065-3.
Full textAhmad, Parvaiz, ed. Water Stress and Crop Plants. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119054450.
Full textXu, Meng, and Chunhui Li. Application of the Water Footprint: Water Stress Analysis and Allocation. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0234-7.
Full textMicrobial water stress physiology: Principles and perspectives. Chichester: Wiley, 1990.
Find full textRipple, William J. Spectral reflectance relationships to leaf water stress. Corvallis, Or: Environmental Remote Sensing Applications Laboratory - ERSAL, Oregon State University, 1986.
Find full textRiemenschneider, Don E. Water stress promotes early flowering in jack pine. St. Paul, Minn: North Central Forest Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1985.
Find full textservice), SpringerLink (Online, ed. Water Resources in Mexico: Scarcity, Degradation, Stress, Conflicts, Management, and Policy. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textGorman, J. Survey of PWR water chemistry. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1989.
Find full textGorman, J. Survey of PWR water chemistry. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1989.
Find full textBook chapters on the topic "Water stress"
Imadi, Sameen Ruqia, Alvina Gul, Murat Dikilitas, Sema Karakas, Iti Sharma, and Parvaiz Ahmad. "Water stress." In Water Stress and Crop Plants, 343–55. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119054450.ch21.
Full textWickens, Gerald E. "Water Stress." In Ecophysiology of Economic Plants in Arid and Semi-Arid Lands, 111–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03700-3_5.
Full textMckersie, Bryan D., and Ya’acov Y. Leshem. "Water and drought stress." In Stress and Stress Coping in Cultivated Plants, 148–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-3093-8_7.
Full textRejeb, Kilani Ben, Maali Benzarti, Ahmed Debez, Arnould Savouré, and Chedly Abdelly. "Water stress in plants." In Water Stress and Crop Plants, 142–49. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119054450.ch10.
Full textWaller, Peter, and Muluneh Yitayew. "Water and Salinity Stress." In Irrigation and Drainage Engineering, 51–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-05699-9_4.
Full textAdeel, Zafar. "Water Stress and Scarcity." In Routledge Handbook of Water and Development, 229–40. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003095545-26.
Full textMcNabb, David E., and Carl R. Swenson. "Water Stress in New England." In America’s Water Crises, 315–29. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27380-3_16.
Full textdu Plessis, Anja. "Current and Future Water Scarcity and Stress." In Springer Water, 13–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03186-2_2.
Full textMurata, Yoshiyuki, and Izumi C. Mori. "Stomatal regulation of plant water status." In Plant Abiotic Stress, 47–67. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118764374.ch3.
Full textOndrasek, Gabrijel. "Water Scarcity and Water Stress in Agriculture." In Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, 75–96. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8591-9_4.
Full textConference papers on the topic "Water stress"
Rogers, S. A. "Fatigue Cracking Of Cooling Water Pipes." In Stress and Vibration: Recent Developments in Measurement and Analysis, edited by Peter Stanley. SPIE, 1989. http://dx.doi.org/10.1117/12.952912.
Full textWalski, Thomas, Bryce Edwards, Emil Helfer, and Brian E. Whitman. "Scouring Stress for Large Solids." In World Environmental and Water Resources Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41114(371)422.
Full textBrandt, Sara, Richard M. Vogel, and Stacey Archfield. "Indicators of Hydrologic Stress in Massachusetts." In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)536.
Full textMohammadi, Mirali. "Boundary Shear Stress around Bridge Piers." In World Water and Environmental Resources Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40569(2001)255.
Full textTaguchi, M., K. Maeda, and J. Aoyama. "Improvement of filling capability by control of water outgassing from via holes in high-pressure aluminum reflow technology." In STRESS INDUCED PHENOMENA IN METALLIZATION. ASCE, 1998. http://dx.doi.org/10.1063/1.54662.
Full textBarek, Viliam, Jan Horak, Dusan Igaz, Oliver Obrocnik, and Vladimir Kiss. "STRATEGIES FOR MONITORING PLANT WATER STRESS." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/3.1/s13.33.
Full textLeishear, Robert A. "Dynamic Pipe Stresses During Water Hammer: III — Complex Stress Relationships." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1273.
Full textNemoto, K. "Evaluation of Fluid Flow Path in a Single Fracture Undergoing Normal Stress and Shear Offset." In WATER DYANMICS: 3rd International Workshop on Water Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2207095.
Full textSwanson, Matthew, and Tom Goodell. "Overcoming high temperature water ingress in deep shaft mining." In Seventh International Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2014. http://dx.doi.org/10.36487/acg_rep/1410_53_swanson.
Full text"A NOVEL APPROACH TO ALPHA ACTIVITY TRAINING USING WATER BASED ELECTRODES." In Special Session on Biofeedback Systems for Stress Reduction. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0003888904810486.
Full textReports on the topic "Water stress"
Joyce, Brian, and Doreen Salazar. New WEAP PlugIn calculates water stress, disaggregated by sub-basin. Stockholm Environment Institute, December 2023. http://dx.doi.org/10.51414/sei2023.062.
Full textRiemenschneider, Don E. Water Stress Promotes Early Flowering in Jack Pine. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, 1985. http://dx.doi.org/10.2737/nc-rn-331.
Full textJones, R. H., and S. M. Bruemmer. Assessment of stress-corrosion cracking in a water-cooled ITER. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6298660.
Full textGanguly, Auroop R., Poulomi Ganguli, and Devashish Kumar. Water Stress on U.S. Power Production at Decadal Time Horizons. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1339441.
Full textHunter, Kelsey Anne, and Richard Middleton. Offsetting Water Requirements and Stress with Enhanced Water Recovery from CO2 Storage. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1296700.
Full textHunter, Kelsey Anne. Offsetting Water Requirements and Stress with Enhanced Water Recovery from CO2 Storage. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1296706.
Full textMukundan, Rangachary. Accelerated Stress Test (AST) Development for Advanced Liquid Alkaline Water Electrolysis. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1844102.
Full textFeng, Kuishuang, and Xiangjie Chen. Water and Land Stress in Bolivia, Colombia, Ecuador, and Peru under Coupled Climate-Socioeconomic Scenarios. Inter-American Development Bank, September 2023. http://dx.doi.org/10.18235/0005144.
Full textMosquna, Assaf, and Sean Cutler. Systematic analyses of the roles of Solanum Lycopersicum ABA receptors in environmental stress and development. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604266.bard.
Full textDixit, A., A. Pokhrel, D. R. Rai, K. Dixit, and M. Upadhya. Living with Water Stress in the Hills of the Koshi Basin, Nepal. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 2009. http://dx.doi.org/10.53055/icimod.508.
Full text