Academic literature on the topic 'Water Storage Measurement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water Storage Measurement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Water Storage Measurement"
Friesen, Jan, Jessica Lundquist, and John T. Van Stan. "Evolution of forest precipitation water storage measurement methods." Hydrological Processes 29, no. 11 (2014): 2504–20. http://dx.doi.org/10.1002/hyp.10376.
Full textKACHANOSKI, R. G., I. J. VAN WESENBEECK, and E. De JONG. "FIELD SCALE PATTERNS OF SOIL WATER STORAGE FROM NON-CONTACTING MEASUREMENTS OF BULK ELECTRICAL CONDUCTIVITY." Canadian Journal of Soil Science 70, no. 3 (1990): 537–42. http://dx.doi.org/10.4141/cjss90-056.
Full textLlorens, P., and F. Gallart. "A simplified method for forest water storage capacity measurement." Journal of Hydrology 240, no. 1-2 (2000): 131–44. http://dx.doi.org/10.1016/s0022-1694(00)00339-5.
Full textTanentzap, Fallon M., Alexandra Stempel, and Peter Ryser. "Reliability of leaf relative water content (RWC) measurements after storage: consequences for in situ measurements." Botany 93, no. 9 (2015): 535–41. http://dx.doi.org/10.1139/cjb-2015-0065.
Full textEhalt Macedo, Heloisa, Ralph Edward Beighley, Cédric H. David, and John T. Reager. "Using GRACE in a streamflow recession to determine drainable water storage in the Mississippi River basin." Hydrology and Earth System Sciences 23, no. 8 (2019): 3269–77. http://dx.doi.org/10.5194/hess-23-3269-2019.
Full textLak, Zana A., Hans Sandén, Mathias Mayer, and Boris Rewald. "Specific root respiration of three plant species as influenced by storage time and conditions." Plant and Soil 453, no. 1-2 (2020): 615–26. http://dx.doi.org/10.1007/s11104-020-04619-9.
Full textJarvie, H. P., J. A. Withers, and C. Neal. "Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity." Hydrology and Earth System Sciences 6, no. 1 (2002): 113–31. http://dx.doi.org/10.5194/hess-6-113-2002.
Full textYang, Bo Gang, and Jin Song Zhang. "Application of GPR in Measurement of Kunming Lake." Applied Mechanics and Materials 392 (September 2013): 787–90. http://dx.doi.org/10.4028/www.scientific.net/amm.392.787.
Full textHidayatullah, Syarifuddin Aprian, Sri Wahyu Suciyati, Gurum Ahmad Pauzi, and Arif Surtono. "Design of Measurement of Water Content with Capacity Method to Determine Old Categories to Save Tapioca Flour." Journal of Energy, Material, and Instrumentation Technology 3, no. 2 (2022): 44–49. http://dx.doi.org/10.23960/jemit.v3i2.100.
Full textCreutzfeldt, B., A. Güntner, S. Vorogushyn, and B. Merz. "The benefits of gravimeter observations for modelling water storage changes at the field scale." Hydrology and Earth System Sciences 14, no. 9 (2010): 1715–30. http://dx.doi.org/10.5194/hess-14-1715-2010.
Full textDissertations / Theses on the topic "Water Storage Measurement"
Chartrand, Shawna Lee. "Field Measurement of the Soil-Water Storage Capacity of Evapotranspiration Covers Using Lysimeters." Thesis, The University of Arizona, 2004. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_etd_hy0007_m_sip1_w.pdf&type=application/pdf.
Full textWhitaker, Martha Patricia Lee. "Estimating bank storage and evapotranspiration using soil physical and hydrological techniques in a gaining reach of the San Pedro River, Arizona." Diss., The University of Arizona, 2000. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2000_373_sip1_w.pdf&type=application/pdf.
Full textO, Brien Olivia. "Domestic water demand for consumers with rainwater harvesting systems." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86514.
Full textNovotný, Jan. "Využití srážkových vod v areálu firmy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371933.
Full textAl-Zaidi, Ebraheam Saheb Azeaz. "Experimental studies on displacements of CO₂ in sandstone core samples." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33183.
Full textCreutzfeldt, Noah Angelo Benjamin. "The effect of water storages on temporal gravity measurements and the benefits for hydrology." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4857/.
Full textAbdalla, Siddig Abdalla Talha. "Measurements and Applications of Radon in South African Aquifer and River Waters." Thesis, Bellville : University of the Western Cape, 2009. http://etd.uwc.ac.za/usrfiles/modules/etd/docs/etd_gen8Srv25Nme4_7089_1275508176.pdf.
Full textDostál, Petr. "Systémy vytápění a chlazení v kancelářských provozech." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409862.
Full textMüller, Jan. "Kondenzační technika a odvody spalin." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226844.
Full textKöcher, Paul. "Hydraulic traits and their relevance for water use strategies in five broad-leaved tree species of a temperate mixed forest." Doctoral thesis, 2012. http://hdl.handle.net/11858/00-1735-0000-0001-BC4A-8.
Full textBooks on the topic "Water Storage Measurement"
Pool, D. R. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona. U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Find full textPool, D. R. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona. U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Find full textPool, D. R. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona. U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Find full textPool, D. R. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona. U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Find full textPool, D. R. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona. U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Find full textPool, D. R. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona. U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Find full textEnvironmental Monitoring for Public Access and Community Tracking Program (U.S.). Delivering timely water quality information to your community: The Lake Access-Minneapolis Project. United States Environmental Protection Agency, National Risk Management Research Laboratory, Office of Research and Development, 2000.
Find full textBartolino, James R. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico. U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Find full textBartolino, James R. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, Central New Mexico. U.S. Geological Survey, Branch of Information Services [distributor], 1999.
Find full textCoots, Randall. Investigation of petroleum products in Black Lake sediment and surface water adjacent to an underground storage tank site. Washington State Dept. of Ecology, 2005.
Find full textBook chapters on the topic "Water Storage Measurement"
Yamauchi, Taro, Yumiko Otsuka, and Lina Agestika. "Influence of Water, Sanitation, and Hygiene (WASH) on Children’s Health in an Urban Slum in Indonesia." In Global Environmental Studies. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7711-3_7.
Full textAlvarez, Daniel, Allan Tram, and Russell J. Holmes. "Measurement and Control of Airborne Molecular Contamination during Wafer Storage and Transport." In Solid State Phenomena. Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-06-x.259.
Full textZhang, Lan-Ying. "THERMAL PERFORMANCE MEASUREMENT OF INTEGRATED COLLECTOR-STORAGE SOLAR WATER HEATER." In Advances In Solar Energy Technology. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-034315-0.50179-8.
Full textStockdale, Elizabeth, Paul Hargreaves, and Anne Bhogal. "Developing soil health indicators for improved soil management on farm." In Advances in measuring soil health. Burleigh Dodds Science Publishing, 2021. http://dx.doi.org/10.19103/as.2020.0079.22.
Full text"Chapter Preservation and Storage of Water Samples." In Analytical Measurements in Aquatic Environments. CRC Press, 2009. http://dx.doi.org/10.1201/9781420082692-6.
Full textGraf, William L. "Simulation of Sediment and Plutonium Dynamics." In Plutonium and the Rio Grande. Oxford University Press, 1995. http://dx.doi.org/10.1093/oso/9780195089332.003.0016.
Full textDai, Lidong, Haiying Hu, Yu He, and Wenqing Sun. "Some New Progress in the Experimental Measurements on Electrical Property of Main Minerals in the Upper Mantle at High Temperatures and High Pressures." In Mineralogy [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101876.
Full textGraf, William L. "The Northern Rio Grande Basin." In Plutonium and the Rio Grande. Oxford University Press, 1995. http://dx.doi.org/10.1093/oso/9780195089332.003.0008.
Full textGraf, William L. "Annual Plutonium Budget for the Rio Grande." In Plutonium and the Rio Grande. Oxford University Press, 1995. http://dx.doi.org/10.1093/oso/9780195089332.003.0013.
Full text"Lusas high as 100°C (212°F). The temperature of soybeans must 25% in the confectionery type. At an ERH of 70% and not exceed 76°C, since discoloration and protein denatura-25°C, the former contains 9.6% moisture and the latter tion will occur [47]. Seed going into storage should not be 13.6% moisture; at 60°C moisture the contents are 8.1 and heat damaged so it will not respire or germinate. 10.9%, respectively [61]. Drying is energy-intensive. Reasonably efficient com-The general practice is to dry seeds to about 75% RH mercial dryers require 830-890 cal/kg (1500-1600 Btu/lb for interim storage, but some oil mill supervisors prefer of moisture removed) [59]. 65% RH for long-term (12 months) storage, especially in The prime factor to be controlled in stabilizing seeds is colder climates. Table 9 shows the maximum moisture lev-relative humidity (%RH), which is the weight of moisture els considered safe for selected oilseeds [62]. Antimicro-per unit weight of air in the atmosphere surrounding the bial preservatives are commonly used in prepared feeds, seed compared to the maximum weight possible (satura-especially during high-humidity summer months, and tion) at that temperature expressed as a percentage. The some farmers preserve high—moisture-content cereals and term equilibrium relative humidity (ERH) simply means oilseeds with propionic acid for feed use. The oilseed RH in the adjacent air after allowing sufficient time for crushing trade does not accept treated seed. moisture in the seed to equilibrate with the air, and can be Relationships between RH and equilibrated moisture determined by analyzing the head space in a sealed equili-content are shown for soybeans in Table 10 [63]. Levels to brated container. Another allied term is water activity, Av„, which soybeans will equilibrate, in various temperatures which is ERH expressed as a decimal rather than a per-and RHs of the surrounding air, are shown in Figure 3 [64]. centage. Direct-reading instruments are available for Relationships between temperature, moisture content, and measuring RH, ERH, and A. Manual methods for deter-allowable storage time of soybeans are shown in Figure 4 mining RH include the use of a sling psychrometer to ob-[64]. tain "wet bulb" and "dry bulb" temperatures and reference to relative humidity charts. Unfortunately, many people 5. Storage still prefer to relate seed stability to percent moisture con-Designs of storage (Fig. 2C) facilities are dictated by needs tent—a far less meaningful measurement. for aeration of seed and its angle of repose—the minimum Bacteria and yeasts have much higher ERH require-angle in degrees at which a pile maintains its slope [65]. ments for growth than molds (fungi). Table 8 shows that This sometimes is reflected in the pitch of conical roofs on some fungi will grow at any of the relative humidity ranges storage bins. Similarly, downspouts and the conical bot-shown, although few toxin-producing fungi grow at below toms of bins must have pitches steeper than the angle of 75% RH [60]. repose for the respective seed or meal to flow smoothly. During equilibration, available water from the seed and Higher moisture and oil contents increase the angles of re-atmosphere is attracted to the water-absorbing seed com-pose. Angles of repose and bulk densities of some major ponents but not to the oil. Thus, high-oil-content seeds oilseeds and products are presented in Table 11. (peanut, sunflower seed, and rapeseed/canola) must be Readily flowing seeds typically are stored in vertical-dried to lower moisture levels for safe storage than lower-walled silos. In contrast, undelinted cottonseed from the gin oil-content seeds like soybeans. For example, oil-type sun-is stored on cement floors in piles whose shape is dictated flower seeds contain about 42% oil, compared to about by its angle of repose. In areas with wet falls, winters, and TABLE 8 Equilibrium Moisture Contents of Common Grains, Oilseeds, and Feed Ingredients at 65-90% Relative Humidity (25°C) and Fungi Likely to Be Encountered Equilibrium moisture contents (%) Relative Starchy cereal seeds, humidity debated oilseed Peanut, sunflower (%) meals, alfalfa pellets Soybean seed, Rapeseed/Canola Fungi 65-70 12-14 11-12 6-8 Aspergillus halophilicus 70-75 13-15 12-14 7-10 A. restrictus, A. glaucus, Wallemia sebi 75-80 14-16 14-16 8-11 A. candidus, A. ochraceus, plus the above 80-85 15-18 16-19 9-13 A. flavus, Penicillium spp., plus the above 85-90 17-20 19-23 10-16 Any of the above Ref. 60." In Handbook of Cereal Science and Technology, Revised and Expanded. CRC Press, 2000. http://dx.doi.org/10.1201/9781420027228-30.
Full textConference papers on the topic "Water Storage Measurement"
Cui, Aihong, Jianfeng Li, Qiming Zhou, Guofeng Wu, and Qingquan Li. "Hydrological drought measurement using GRACE terrestrial water storage anomaly." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8898939.
Full textStegmann, Martin, and Jan Steinweg. "Development of a Buried Hot Water Storage - Measurement and Simulation." In ISES Solar World Congress 2011. International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.29.27.
Full textHan, Rubing, Zhimao Xu, and Yutao Qing. "Experiment Research on Insulation Effect of Water Storage Roof Brick In Winter." In 2015 4th International Conference on Sensors, Measurement and Intelligent Materials. Atlantis Press, 2016. http://dx.doi.org/10.2991/icsmim-15.2016.198.
Full textZhang, Mengchuan, Yanwen Duan, Jiajun He, et al. "Dynamic Characterization of Water Blockage During Water-Gas Alternated Flooding in the Underground Gas Storage." In 56th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2022. http://dx.doi.org/10.56952/arma-2022-2327.
Full textRivera, Matthew, and Randall Manteufel. "Experimental Measurement of Vacuum Assisted Drying of Spent Nuclear Fuel." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52377.
Full textRiabenko, Oleksandr, Volodymyr Tymoshchuk, Dmytro Poplavskyi, and Oksana Halych. "Methods of Automated Full-scale Measurement of Wave Parameters in Water Reservoirs of Pumped Storage Power Plants." In 2020 IEEE 7th International Conference on Energy Smart Systems (ESS). IEEE, 2020. http://dx.doi.org/10.1109/ess50319.2020.9160330.
Full textBahar, Mohammad Mohammazadeh, and Keyu Liu. "Measurement Of The Diffusion Coefficient Of CO2 In Formation Water Under Reservoir Conditions: Implications For CO2 Storage." In SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/116513-ms.
Full textKurata, Osamu, Norihiko Iki, Takayuki Matsunuma, et al. "Remote Measurement and Heat Demand Control of CHP System With Heat Storage at Sapporo City University." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39906.
Full textAguilar, Jonathan, Leslie Bromberg, Alexander Sappok, Paul Ragaller, Jean Atehortua, and Xiaojin Liu. "Catalyst Ammonia Storage Measurements Using Radio Frequency Sensing." In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3572.
Full textMedved, Jan, and Ladislav Vargovcik. "Decommissioning of the A-1 NPP Long-Term Storage Facility." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16299.
Full textReports on the topic "Water Storage Measurement"
Friedman, Shmuel, Jon Wraith, and Dani Or. Geometrical Considerations and Interfacial Processes Affecting Electromagnetic Measurement of Soil Water Content by TDR and Remote Sensing Methods. United States Department of Agriculture, 2002. http://dx.doi.org/10.32747/2002.7580679.bard.
Full textLers, Amnon, Majid R. Foolad, and Haya Friedman. genetic basis for postharvest chilling tolerance in tomato fruit. United States Department of Agriculture, 2014. http://dx.doi.org/10.32747/2014.7600014.bard.
Full textNeal, JS. Measurements of Water and B4C Content of Rackable Can Storage Boxes for HEU Storage at the HEUMF at the Y-12 National Security Complex. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/885648.
Full textBeverly E. Law and Christoph K. Thomas. The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites. Final report. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1024861.
Full textMeasurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona. US Geological Survey, 1997. http://dx.doi.org/10.3133/wri974125.
Full text