Academic literature on the topic 'WATER SPRAY INTERACTION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'WATER SPRAY INTERACTION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "WATER SPRAY INTERACTION"
Fthenakis, V. M., K. W. Schatz, U. S. Rohatgi, and V. Zakkay. "Computation of Flow Fields Induced by Water Spraying of an Unconfined Gaseous Plume." Journal of Fluids Engineering 115, no. 4 (December 1, 1993): 742–50. http://dx.doi.org/10.1115/1.2910207.
Full textGordon, B. "Water spray interaction with air-steam mixture." Experimental Thermal and Fluid Science 4, no. 6 (November 1991): 698–713. http://dx.doi.org/10.1016/0894-1777(91)90077-5.
Full textKniss, Andrew R., and Dennis C. Odero. "Interaction between Preemergence Ethofumesate and Postemergence Glyphosate." Weed Technology 27, no. 1 (March 2013): 47–53. http://dx.doi.org/10.1614/wt-d-12-00050.1.
Full textHardalupas, Y., and J. H. Whitelaw. "Interaction Between Sprays From Multiple Coaxial Airblast Atomizers." Journal of Fluids Engineering 118, no. 4 (December 1, 1996): 762–71. http://dx.doi.org/10.1115/1.2835507.
Full textChow, W. K., and Anderson C. Tang. "Experimental Studies on Sprinkler Water Spray—Smoke Layer Interaction." Journal of Applied Fire Science 4, no. 3 (January 1, 1994): 171–84. http://dx.doi.org/10.2190/54b4-5aul-mncv-f825.
Full textNaz, M. Y., S. A. Sulaiman, B. Ariwahjoedi, and Ku Zilati Ku Shaari. "Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles." Scientific World Journal 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/796081.
Full textSivakumar, D., and B. N. Raghunandan. "Jet Interaction in Liquid-Liquid Coaxial Injectors." Journal of Fluids Engineering 118, no. 2 (June 1, 1996): 329–34. http://dx.doi.org/10.1115/1.2817381.
Full textMeroney, Robert N. "CFD modeling of water spray interaction with dense gas plumes." Atmospheric Environment 54 (July 2012): 706–13. http://dx.doi.org/10.1016/j.atmosenv.2012.01.038.
Full textAlsaggaf, Wejdan T. "The Chemistry of Paper in Paper Spray Ionization Mass Spectrometry." International Journal of Chemistry 12, no. 1 (October 10, 2019): 16. http://dx.doi.org/10.5539/ijc.v12n1p16.
Full textGÓRKA, Krzysztof, Bartosz KAŹMIERSKI, and Łukasz KAPUSTA. "Numerical analysis of the flow rig for UWS spray examination in exhaust system-relevant conditions." Combustion Engines 186, no. 3 (September 13, 2021): 103–12. http://dx.doi.org/10.19206/ce-141182.
Full textDissertations / Theses on the topic "WATER SPRAY INTERACTION"
Jones, Alwyn. "The interaction of flames with water sprays." Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338152.
Full textJones, Stephen Huw Meredith. "Interaction of detonation waves with foils and water sprays." Thesis, Cardiff University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.255842.
Full textBörnhorst, Marion [Verfasser]. "Urea-Water Sprays in NOx Emission Control Systems: Interaction with Solid Walls and Deposit Formation / Marion Börnhorst." Düren : Shaker, 2020. http://d-nb.info/1215461917/34.
Full textZUNAID, MOHAMMAD. "ANALYSIS OF AIR AND WATER SPRAY INTERACTION." Thesis, 2017. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16156.
Full textLin, Chien-Hsun, and 林建勳. "Study on the Interactive Characteristics of Smoke Exhaust and Water Spray Equipments." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/53262911603940103663.
Full text國立雲林科技大學
機械工程系碩士班
91
In the modern fire engineering design technology, the sprinkler spray systems are very important facilities for suppression the fire. The smoke venting systems are able to prevent the smoke-logging of a building. Usually, the operation time of sprinkler spray systems is expected. The offsetting effect may be observed within those systems. For example, the smoke venting systems might cause the delay of operation of sprinkler spray systems and results in severely damage of fire or the smoke has the effect of downdraught due to the sprinkler spray which causes the people suffered the smoke-logging in fire site. Thus, this research project investigates the interaction between sprinkler spray and smoke exhaust systems in a building. The goal of this project is to provide a design technology which can complement sprinkler spray and smoke exhaust systems each other. In theories model-analyzing use NIST/BFEL developed computation fluid dynamic fire simulation software to simulate. The results of simulation will be compared with the sprinkler experiment data. To understand the accuracy and rationality of the analysis of the theories mode, and wish it can apply the theories model to the actual building design. The results obtained from the numerical simulations and experiments appeared to be reasonable. Although it shows that the predicted temperatures and sprinkler active time are different from experiment data, the whole variety trend still contain good estimate result.
Ferreira, Diogo Alexandre Arede. "Estudo do impacto de um spray de alta pressão." Master's thesis, 2018. http://hdl.handle.net/10316/86088.
Full textUma das consequências do desenvolvimento tecnológico atual na indústria é a geração indesejada de calor decorrente do trabalho produzido pelos sistemas mecânicos, tornando-se necessária a utilização de sistemas de arrefecimento individuais. Um exemplo será o funcionamento de um motor de combustão interna, onde devido ao volume variável e reação de combustão se atingem elevadas pressões e temperaturas, conduzindo ao aumento da geração de calor. Assim, a evolução destes motores está associada à capacidade de dissipar o excesso de energia de forma a manter as temperaturas em valores que permitam otimizar a eficiência do motor. Neste estudo pretende-se avaliar uma estratégia de arrefecimento por spray de água, método descrito na literatura como comprovadamente eficaz na dissipação de elevados fluxos de calor.O estudo experimental desenvolvido neste trabalho consiste na injeção de um spray de água sobre uma superfície aquecida em ambiente pressurizado, com o objetivo de analisar o seu comportamento térmico em várias condições de trabalho, e correlacioná-lo com as estruturas do escoamento bifásico obtidas por meio de visualização de alta-velocidade. De forma a simular o fenómeno no interior de um motor de combustão interna, as condições de ensaio que fizemos variar foram a pressão ambiente e a temperatura da superfície. Foram calculados os fluxos de calor a partir dos valores adquiridos para a temperatura da superfície com termopares de resposta rápida ($\sim 10\mu s$), radialmente espaçados na superfície de estudo. Seguidamente procedemos à observação macroscópica do impacto do spray, de forma a perceber e explicar quaisquer particularidades ou irregularidades registadas na análise dos fluxos de calor. Este tipo de trabalho contribuirá para desenvolver conhecimento sobre o efeito de um ambiente pressurizado do desempenho térmico da estratégia de arrefecimento com sprays, para que no futuro consigamos aplicar e otimiza-lo na indústria.A partir das medidas de temperaturas, adquiridas com uma elevada taxa de aquisição, e recorrendo ao cálculo dos fluxos de calor, verificamos a reprodutibilidade dos resultados obtidos nesta dissertação, em relação a trabalhos anteriores na mesma instalação. Confirmou-se que o valor máximo de fluxo de calor ocorre a uma pressão ambiente de 10~bar, diminuindo para valores de pressão superiores, sendo mínimo à pressão atmosférica. Nas imagens adquiridas observamos e confirmamos o aumento da população de gotas e, consequentemente, diminuição do seu tamanho, com o aumento da pressão. A evaporação imediata no contacto com a superfície ou a formação de um filme de líquido é observada tanto nos fluxos de calor calculados, como na visualização realizada das estruturas macroscópicas do escoamento bifásico, decorrendo da diferença entre a temperatura da superfície e a temperatura de saturação da água à pressão de ensaio. Assim, verificou-se o predomínio dos fenómenos de reflexão e \emph{splash} das gotas incidentes na superfície quando a diferença de temperatura é superior a 80$^\circ$C e a formação de um filme de líquido quando a diferença se verifica predominantemente abaixo de 50$^\circ$C.Com o aumento da pressão ambiente observou-se a formação de uma pluma térmica de vapores de água ascendentes desde a superfície após o contacto do spray. Sugere-se que este aspecto esteja relacionado com a variação da humidade relativa em função da pressão ambiente. Foi, também, observado que a densidade de micro-partículas que segue o escoamento da pluma térmica é mais intensa com o aumento da pressão ambiente, podendo ser um ponto de partida pertinente para estudos futuros.
Significant developments in today’s industry increased the generation of heat due to the mechanical system’s work. For that reason, there’s the need to evolve the cooling systems and strategies equally to keep the correct functioning while increasing the efficiency of the overall mechanisms. The example that served as the objective of the work done in this assignment is the internal combustion engine, where most advances in efficiency result in higher temperatures and consequently higher heat fluxes to dissipate. In order to increase the compression rate while avoiding the occurrence of the knocking phenomenon, the need to develop and optimize new cooling systems is increasing drastically.The experimental study under analysis in this assignment consists in the injection of a water spray onto a hot surface while evaluating the heat flux in several different conditions to simulate the interior of an internal combustion engine’s piston. The experiments performed in a laboratory facility considered temperatures ranging from 145 to 280 ºC, and internal environment pressures from 1 to 30 bar. The heat fluxes were calculated from the temperature acquisition of type K thermocouples radially spaced among the heated surface. Followed by the macroscopical observation of the phenomenon to explain and compare results obtained by the heat fluxes. This kind of work will be used in the future to correlate the two-phase flow macroscopic hydrodynamic impact mechanisms, associated with transient heat fluxes, with known ambient pressure and wall temperature. The high frequency of temperature acquisition allowed us to validate the conditions created when compared to the existing literature. We observed the maximum heat flux value on the test at 10 bar, followed by its decrease with the further rising of ambient pressure. The most crucial factor in determining whether the surface-spray interface would be dry or wet was the overheating degree that translates in the temperature difference between the surface and the saturation of the water in the test’s ambient pressure. For overheating degree values above 80ºC the most typical interaction of the water goblets with the heated surface would be of rebound and splash, but for the tests where the value was under 50ºC, there would be a clear tendency to develop a liquid film above the surface.With the pressure increase, there was an unforeseen tendency for the density’s rising of the water vapor’s cloud formed on impact and slowly spreading in all directions. This phenomenon is linked to the variation of local relative humidity and the easier achievement of saturation levels allowing goblets to condensate. Thermal distortion of the air immediately above the heated surface was also found to be more evident with the pressure rising. Both these subjects would be interesting to analyze in future studies.
Books on the topic "WATER SPRAY INTERACTION"
Börnhorst, Marion. Urea-Water Sprays in NOx Emission Control Systems: Interaction with Solid Walls and Deposit Formation. Shaker Verlag GmbH, 2020.
Find full textBook chapters on the topic "WATER SPRAY INTERACTION"
Sarkar, Sourav, Joydeep Munshi, Santanu Pramanik, Achintya Mukhopadhyay, and Swarnendu Sen. "Interaction of Water Spray with Flame." In Energy for Propulsion, 151–86. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7473-8_7.
Full textLorrai, M., and L. Fanfani. "Effect of sea spray on the chemistry of granitoid aquifers in coastal areas." In Water-Rock Interaction. Taylor & Francis, 2007. http://dx.doi.org/10.1201/noe0415451369.ch227.
Full textKraus, Eric B., and Joost A. Businger. "Turbulent Transfer Near the Interface." In Atmosphere-Ocean Interaction. Oxford University Press, 1995. http://dx.doi.org/10.1093/oso/9780195066180.003.0009.
Full textMaun, M. Anwar. "Plant communities." In The Biology of Coastal Sand Dunes. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780198570356.003.0016.
Full text"Fig. 14 SEM of free film prepared from an aqueous dispersion of LCC. provides high surface energy for interaction with water molecules. As water evaporates during drying, fine particles of LCC are forced together, deformed, interacted, and coalesced into a film. LCC dispersions containing 3% or lower solids are physically unstable, unless stabilized with a secondary soluble polymer. The aqueous dispersions can be converted into a fine powder (LCPC) or a bead form (LCBC) by using conventional dehydration and spray-drying techniques. The crystallinity of LCPC powder versus its hydrated form is compared in Fig. 15. It ap-." In Pharmaceutical Dosage Forms, 241–42. CRC Press, 1998. http://dx.doi.org/10.1201/9781420000955-30.
Full textConference papers on the topic "WATER SPRAY INTERACTION"
Jasper, Sarah, Jeanette Hussong, and Ralph Lindken. "Visualisation and quantitative analysis of the near nozzle formation and structure of a high pressure water jet in air and water." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4736.
Full textZhang, C. F., R. Huo, Y. Z. Li, and W. K. Chow. "Stability of Smoke Layer Under Sprinkler Water Spray." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72482.
Full textSelvan, Muthu, Muralidhara Suryanarayana Rao, Indu Kharb, Sundararajan Thirumalachari, Vinod Kumar Vyas, and Sivakumar Neelakandan. "Experimental Analysis of Simplex Atomizer Spray and Swirling Flow Interactions in Unconfined Conditions." In ASME 2015 Gas Turbine India Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gtindia2015-1347.
Full textRimbert, Nicolas, M. Hadj-Achour, and M. Gradeck. "Liquid-Liquid Secondary Fragmentation with Solidification." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.5034.
Full textYamaguchi, Daisuke, and Kazuaki Inaba. "Fluid-Structure Interaction in the Nozzle of Collunarium Container." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63792.
Full textGolliher, Eric L., and Shi-chune Yao. "Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66872.
Full textLellek, Stephan, Christoph Barfuß, and Thomas Sattelmayer. "Experimental Study of the Interaction of Water Sprays With Swirling Premixed Natural Gas Flames." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56158.
Full textDhar, Sushmit, Eirik M. Samuelsen, Masoud Naseri, Karl G. Aarsæther, and Kåre Edvardsen. "Spray Icing on ONEGA Vessel- A Comparison of Liquid Water Content Expressions." In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-79919.
Full textZanchetti, Alexandre, Mickael Hassanaly, Hervé Cordier, Antonio Sanna, Namane Mechitoua, and Stéphane Mimouni. "Numerical Two-Phase Flows Simulation and Analysis of the Evolution of the Local Hydrogen Concentration in a PWR Nuclear Containment in the Event of a Severe Accident." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60844.
Full textStrasser, Wayne, Duane Brooker, Joshua Earley, and Paul Fanning. "CFD Investigation of Air-Water Test Stand for Three-Stream Airblast Reactor Feed Injector." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30141.
Full textReports on the topic "WATER SPRAY INTERACTION"
Veron, Fabrice. Dynamic Effects of Airborne Water Droplets on Air-Sea Interactions: Sea-Spray and Rain. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612095.
Full textVeron, Fabrice. Dynamic Effects of Airborne Water Droplets on Air-Sea Interactions: Sea-Spray and Rain. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532799.
Full textVeron, Fabrice. Dynamic Effects of Airborne Water Droplets on Air-Sea Interactions: Sea-Spray and Rain. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada542432.
Full textLichter, Amnon, David Obenland, Nirit Bernstein, Jennifer Hashim, and Joseph Smilanick. The role of potassium in quality of grapes after harvest. United States Department of Agriculture, October 2015. http://dx.doi.org/10.32747/2015.7597914.bard.
Full text