Academic literature on the topic 'Water resources and environmental modelling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water resources and environmental modelling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Water resources and environmental modelling"

1

McCuen, Richard H. "Time series modelling of water resources and environmental systems." Journal of Hydrology 167, no. 1-4 (May 1995): 399–400. http://dx.doi.org/10.1016/0022-1694(95)90010-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Argent, Robert M. "Information modelling in water resources: an Australian perspective." Stochastic Environmental Research and Risk Assessment 28, no. 1 (June 15, 2013): 137–45. http://dx.doi.org/10.1007/s00477-013-0754-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kübeck, Ch, W. van Berk, and A. Bergmann. "Modelling raw water quality: development of a drinking water management tool." Water Science and Technology 59, no. 1 (January 1, 2009): 117–24. http://dx.doi.org/10.2166/wst.2009.766.

Full text
Abstract:
Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.
APA, Harvard, Vancouver, ISO, and other styles
4

Haines, Sophie. "Reckoning Resources." Science & Technology Studies 32, no. 4 (December 13, 2019): 97–118. http://dx.doi.org/10.23987/sts.64650.

Full text
Abstract:
Participants in Belize’s water sector encounter challenges in identifying and living within shifting environments, and in conducting the work of expectation given ambiguities in rainfall patterns, historical records, institutional resources and political interests. Policymakers, scientists and practitioners generate and organise different kinds of foreknowledge as they anticipate future quantities, qualities and distribution of water, amid questions about the patterning of expertise and the nature of water as a resource. I present three ethnographic vignettes to address: the navigation of nonknowledge in water policy implementation; the frictions that arise in modelling workshops where trainees generate data-driven maps of future environments; and the situated sensing of environmental change. Building on a concept of ‘reckoning’ that highlights cross-cutting technical, relational, political and affective dimensions of meaning-making, I situate these foreknowledge practices in the socio-material contexts of environmental perception, socio-economic development, and the political lives of anticipation.
APA, Harvard, Vancouver, ISO, and other styles
5

Koch, H., S. Liersch, and F. F. Hattermann. "Integrating water resources management in eco-hydrological modelling." Water Science and Technology 67, no. 7 (April 1, 2013): 1525–33. http://dx.doi.org/10.2166/wst.2013.022.

Full text
Abstract:
In this paper the integration of water resources management with regard to reservoir management in an eco-hydrological model is described. The model was designed to simulate different reservoir management options, such as optimized hydropower production, irrigation intake from the reservoir or optimized provisioning downstream. The integrated model can be used to investigate the impacts of climate variability/change on discharge or to study possible adaptation strategies in terms of reservoir management. The study area, the Upper Niger Basin located in the West African Sahel, is characterized by a monsoon-type climate. Rainfall and discharge regime are subject to strong seasonality. Measured data from a reservoir are used to show that the reservoir model and the integrated management options can be used to simulate the regulation of this reservoir. The inflow into the reservoir and the discharge downstream of the reservoir are quite distinctive, which points out the importance of the inclusion of water resources management.
APA, Harvard, Vancouver, ISO, and other styles
6

Ziemińska-Stolarska, Aleksandra, and Jerzy Skrzypski. "Review of Mathematical Models of Water Quality." Ecological Chemistry and Engineering S 19, no. 2 (January 1, 2012): 197–211. http://dx.doi.org/10.2478/v10216-011-0015-x.

Full text
Abstract:
Review of Mathematical Models of Water Quality Water is one of the main elements of the environment which determine the existence of life on the Earth, affect the climate and limit the development of civilization. Water resources management requires constant monitoring in terms of its qualitative-quantitative values. Proper assessment of the degree of water pollution is the basis for conservation and rational utilization of water resources. Water quality in lakes and dams is undergoing continuous degradation caused by natural processes resulting from eutrophication and due to anthropogenic reasons. One of the tools that are used to solve problems of surface water pollution is modelling of changes which take place in lake waters and associated water quality changes. In the last thirty years a rapid development of mathematical modelling of water resources quality has been observed. A number of computer models have been designed which are successfully applied in practice in many countries, including Poland. This paper presents an overview of mathematical models for assessment of water quality in dam reservoirs. Description of the WASP program which will be used for modelling water quality in the Sulejow Reservoir was the focal point.
APA, Harvard, Vancouver, ISO, and other styles
7

Maier, Holger R. "Application of natural computing (computational intelligence) methods to water resources and environmental modelling." Mathematical and Computer Modelling 44, no. 5-6 (September 2006): 413–14. http://dx.doi.org/10.1016/j.mcm.2006.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dunn, S. M., N. Chalmers, M. Stalham, A. Lilly, B. Crabtree, and L. Johnston. "Modelling the influence of irrigation abstractions on Scotland’s water resources." Water Science and Technology 48, no. 10 (November 1, 2003): 127–34. http://dx.doi.org/10.2166/wst.2003.0556.

Full text
Abstract:
Legislation to control abstraction of water in Scotland is limited and for purposes such as irrigation there are no restrictions in place over most of the country. This situation is set to change with implementation of the European Water Framework Directive. As a first step towards the development of appropriate policy for irrigation control there is a need to assess the current scale of irrigation practices in Scotland. This paper presents a modelling approach that has been used to quantify spatially the volume of water abstractions across the country for irrigation of potato crops under typical climatic conditions. A water balance model was developed to calculate soil moisture deficits and identify the potential need for irrigation. The results were then combined with spatial data on potato cropping and integrated to the sub-catchment scale to identify the river systems most at risk from over-abstraction. The results highlight that the areas that have greatest need for irrigation of potatoes are all concentrated in the central east-coast area of Scotland. The difference between irrigation demand in wet and dry years is very significant, although spatial patterns of the distribution are similar.
APA, Harvard, Vancouver, ISO, and other styles
9

RIPPON, P. W., and A. J. WYNESS. "Integrated Catchment Modelling as a Water Resources Management Tool." Water and Environment Journal 8, no. 6 (December 1994): 671–79. http://dx.doi.org/10.1111/j.1747-6593.1994.tb01164.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wardlaw, R. B., M. Hulme, and A. Y. Stuck. "Modelling the Impacts of Climatic Change on Water Resources." Water and Environment Journal 10, no. 5 (October 1996): 355–64. http://dx.doi.org/10.1111/j.1747-6593.1996.tb00064.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Water resources and environmental modelling"

1

Huang, Shaochun. "Modelling of environmental change impacts on water resources and hydrological extremes in Germany." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5974/.

Full text
Abstract:
Water resources, in terms of quantity and quality, are significantly influenced by environmental changes, especially by climate and land use changes. The main objective of the present study is to project climate change impacts on the seasonal dynamics of water fluxes, spatial changes in water balance components as well as the future flood and low flow conditions in Germany. This study is based on the modeling results of the process-based eco-hydrological model SWIM (Soil and Water Integrated Model) driven by various regional climate scenarios on one hand. On the other hand, it is supported by statistical analysis on long-term trends of observed and simulated time series. In addition, this study evaluates the impacts of potential land use changes on water quality in terms of NO3-N load in selected sub-regions of the Elbe basin. In the context of climate change, the actual evapotransipration is likely to increase in most parts of Germany, while total runoff generation may decrease in south and east regions in the scenario period 2051-2060. Water discharge in all six studied large rivers (Ems, Weser, Saale, Danube, Main and Neckar) would be 8 – 30% lower in summer and autumn compared to the reference period (1961 – 1990), and the strongest decline is expected for the Saale, Danube and Neckar. The 50-year low flow is likely to occur more frequently in western, southern and central Germany after 2061 as suggested by more than 80% of the model runs. The current low flow period (from August to September) may be extended until the late autumn at the end of this century. Higher winter flow is expected in all of these rivers, and the increase is most significant for the Ems (about 18%). No general pattern of changes in flood directions can be concluded according to the results driven by different RCMs, emission scenarios and multi-realizations. An optimal agricultural land use and management are essential for the reduction in nutrient loads and improvement of water quality. In the Weiße Elster and Unstrut sub-basins (Elbe), an increase of 10% in the winter rape area can result in 12-19% more NO3-N load in rivers. In contrast, another energy plant, maize, has a moderate effect on the water environment. Mineral fertilizers have a much stronger effect on the NO3-N load than organic fertilizers. Cover crops, which play an important role in the reduction of nitrate losses from fields, should be maintained on cropland. The uncertainty in estimating future high flows and, in particular, extreme floods remain high due to different RCM structures, emission scenarios and multi-realizations. In contrast, the projection of low flows under warmer climate conditions appears to be more pronounced and consistent. The largest source of uncertainty related to NO3-N modelling originates from the input data on the agricultural management.
Wasserressourcen werden in Quantität und Qualität von Veränderungen in der Umwelt, insbesondere von Änderungen des Klimas und der Landnutzung, in signifikantem Maße beeinflusst. In dieser Arbeit wurden die Auswirkungen von Klimavariabilität und Klimawandel auf die Wasserressourcen und Extremereignisse wie Hoch- und Niedrigwasser in Deutschland untersucht. Die Analyse erfolgte auf der einen Seite modellgestützt, wobei die Ergebnisse aus verschiedenen regionalen Klimamodellen durch ein ökohydrologisches Modell in Änderungen in den hydrologischen Prozessen transformiert wurden, zum anderen aber auch datengestützt, z.B. durch die statistische Interpretation von beobachteten und simulierten Zeitreihen. Zusätzlich wurden die Auswirkungen von Landnutzungsänderungen auf Umsatz von Stickstoff in der Landschaft und im Wasser untersucht, wobei dasselbe ökohydrologische Modell zum Einsatz kam. Im Rahmen des Klimawandels wird zur Mitte dieses Jahrhunderts die aktuelle Evapotranspiration in den meisten Teilen Deutschlands mit großer Wahrscheinlichkeit zunehmen. Die täglichen Abflussmengen der fünf größten Flussgebiete in Deutschland (Ems, Weser, Elbe, Obere Donau und Rhein) werden dieser Untersuchung zur Folge im Sommer und Herbst um 8%-30% geringer sein als in der Referenzperiode (1961-1990). 80% der Szenariensimulationen stimmen darin überein, dass die 50-jährigen Niedrigwasserereignisse zum Ende dieses Jahrhunderts mit großer Wahrscheinlichkeit häufiger in den westlichen, den südlichen und den zentralen Teilen Deutschlands auftreten werden. Die gegenwärtige Niedrigwasserperiode (August-September) könnte sich zudem dann bis in den späten Herbst ausweiten. Für alle Flüsse werden höhere Winterabflüsse erwartet, wobei diese Zunahme für die Ems am stärksten ausfällt (ca. 18%). Mit größerer Unsicherheit sind dagegen die Aussagen zur Entwicklung der Hochwasser behaftet. Aus den Ergebnissen, die durch unterschiedliche regionale Klimamodelle und Szenarien getrieben wurden, kann jedoch kein allgemeingültiges Muster für die Änderungen der 50-jährigen Hochwässer ausgemacht werden. Eine optimierte Landnutzung und ein optimiertes Landmanagement sind für die Reduzierung der NO3-Einträge in die Oberflächengewässer essentiell. In den Einzusgebieten der Weißen Elster und der Unstrut (Elbe) kann eine Zunahme von 10% in der Anbaufläche von Winterraps zu einer 12-19% höheren NO3 Fracht führen. Mais, eine weitere Energiepflanze, hat hingegen einen mäßigeren Effekt auf die Oberflächengewässer. Die Höhe der Gabe von mineralischen Düngern beeinflußt zudem in starkem Maße die Nitratbelastung von Flüssen. Zwischenfrüchte können den NO3-Austrag im Sommer zusätzlich erheblich verringern. Insgesamt bleibt die Unsicherheit in der Vorhersage von Spitzenabflüssen und im Besonderen von Extrem-Hochwässern als Folge unterschiedlicher regionaler Klimamodelle, Emissionsszenarien und Realisationen sehr hoch. Im Gegensatz dazu erscheinen die Projektionen zu den Niedrigwasserereignissen unter wärmeren Bedingungen sehr viel deutlicher und einheitlicher. Die größte Unsicherheit in der Modellierung von NO3 dagegen sind die Eingangsdaten z.B. für das lokale landwirtschaftliche Management.
APA, Harvard, Vancouver, ISO, and other styles
2

Moulds, Simon. "Toward integrated modelling systems to assess vulnerability of water resources under environmental change." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/45312.

Full text
Abstract:
Land use, land cover and land management change threatens the sustainability of ecosystem services upon which individuals and communities depend. However, quantifying the effects of large-scale environmental change on regional water resources and climate is challenging because of a lack of appropriate data as well as fundamental limitations of environmental models. This thesis focuses on the development of integrated modelling systems for representing feedback mechanisms between human activities and the environment at regional scales. India is selected as a case study because of the unprecedented scale of environmental change in this country over recent decades. Land use change modelling is identified as a viable method for reconstructing historical land use/land cover at regional scales. This is facilitated through the development of a new modelling framework which allows users to perform the entire modelling workflow in the same environment and provides a consistent interface to different spatial allocation models. Hence, the modelling framework enables model intercomparison and ensemble experiments. It furthermore promotes reproducible science because it allows applications to be expressed programmatically. An adapted version of the Change in Land Use and its Effects (CLUE) land use change model is used to reconstruct historical land use/land cover in India between 1956–2010. The model algorithm explicitly accounts for competition between land use/land cover categories as a result of dynamic socio-economic and biophysical conditions. A further dataset showing the irrigated area of various crops is developed by spatially disaggregating historical agricultural inventory data based on maps of cropland extent and biophysical suitability. Land use/land cover maps are supplied to an offline historical simulation of the Joint UK Land and Environment Simulator (JULES), a process-based land surface model, to generate soil moisture values across the Gangetic plain. Simulated soil moisture values are modified to account for the effects of irrigation. The procedure exploits the characteristics of the irrigated area dataset in order to account for the growing season of individual crops. Existing tools for coordinating complex workflows in the hydrological sciences are strongly coupled to underlying modelling frameworks. As a result, they lack flexibility and often necessitate refactoring of the source code of model components. Exploring these issues further, an experiment is devised in which the data processing language R is set up as a workflow orchestration tool for hydrological data analysis and modelling. A new software package implements a set of classes for representing multi-dimensional hydrological data and to provide a common interface to hydrological models. The experimental set-up is demonstrated through two example applications drawn from hydrology and the emerging discipline of socio-hydrology. These serve to highlight the flexibility of the R system for workflow orchestration and model coupling but also draw attention to several areas for future development.
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Shaochun [Verfasser], and Axel [Akademischer Betreuer] Bronstert. "Modelling of environmental change impacts on water resources and hydrological extremes in Germany / Shaochun Huang. Betreuer: Axel Bronstert." Potsdam : Universitätsbibliothek der Universität Potsdam, 2012. http://d-nb.info/1023607468/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hassan, Muhammad. "Exploratory groundwater modelling in data-scarce environments : the shallow aquifer of river Yobe basin, north east Nigeria." Thesis, Cranfield University, 2002. http://dspace.lib.cranfield.ac.uk/handle/1826/11343.

Full text
Abstract:
This thesis addresses the issues of modelling a groundwater system in a data-scarce environment, the Yobe river basin, north east Nigeria. Despite significant investment in the past towards water resources developments, basic data on groundwater resources are limited. Short-term studies by Consultants contain some weaknesses and have not fully investigated the mechanisms of flow to and from the aquifer. Fieldwork studies conducted during this work and in the past (Alkali, 1995) showed that the shallow aquifer system is hydrogeologically complex. Concerns such as the relative magnitudes of recharge mechanisms to the aquifer, hydrologic conditions of the aquifer, a large change in river stage, presence of unconfined 'windows' for vertical recharge, and the fact that the region is located in a semi-arid region need to be addressed. This increased the concerns for the need to explore the system through modelling. Modeling can give insights into the whole system behaviour which other approaches cannot provide. Therefore modelling was carried out and it has provided valuable insights into the complex system. This thesis reports on the procedure of developing a groundwater model that is basic and exploratory based on limited data. Detailed conceptual model was developed using data from previous workers and from a fieldwork undertaken in this study. The conceptual model provided key hydrogeological information on the various physical processes and how they interact with the shallow Fadama alluvial aquifer. It describes the aquifer as around 10 m thick and about 4 km wide with the river partially penetrating it. The aquifer consists of areas that are confined and some that are unconfined. The river is ephemeral and its stage changes rapidly over 4 m. Recharge mechanisms to the aquifer consist of vertical recharge from rainfall and overland flooding through permeable topsoil, river to aquifer flow and 'leakage' through low permeability cover. The conceptual model was idealized and translated into a computational groundwater model using MODFLOW. The model investigated the role of each components of flow in determining the overall water balance of the system. The relationship between river stage and river coefficient in the study of river-aquifer interaction was investigated. Finally the response of the aquifer system to pumping was explored. Groundwater head output from the model was used in the calculation of the various flow components. The main findings and conclusions of the work are that: (i) a comprehensive conceptual model is fundamental in developing a numerical groundwater model; (ii) the exploratory model developed using limited data is plausible because it is hydrologically credible and fits the available data; (iii) the water balance shows that the river to aquifer flow dominates the recharge from rainfall and overland flooding. Contrary to initial belief, the largest river to aquifer flow occurs before the river reaches its peak; (iv) flows between river and aquifer are insensitive to variation of river coefficient with river stage. The limiting factor in the exchange of water between them is the hydraulic gradient and the transmissivity of the aquifer; (v) in representing the river with a constant river coefficient, the coefficient has a threshold value above which the river-aquifer interaction does not change significantly; (vi) over-pumping of the aquifer will decrease river flow to disadvantage of downstream users; (vii) the replenishment of the aquifer can be improved by pumping it at a modest rate.
APA, Harvard, Vancouver, ISO, and other styles
5

Barbour, Emily. "Quantitative modelling for assessing system trade-offs in environmental flow management." Phd thesis, Canberra, ACT : The Australian National University, 2015. http://hdl.handle.net/1885/109583.

Full text
Abstract:
This research aims to better enable the management of environmental flows through exploring the opportunities and challenges in using quantitative models for decision making. It examines the development and application of ecological response models, river system models, and multi-objective optimisation for improved ecological outcomes and the identification of trade-offs. In doing so, the thesis endeavours to capture a deeper and more holistic understanding of uncertainty in the application of quantitative models, to assist in making more informed decisions in water resource management. The thesis includes three main components. Firstly, an ecological response model is developed to advance previous methods by: (1) adopting a systems approach to representing water availability for floodplain vegetation, considering rainfall and groundwater in addition to riverine flooding; (2) including antecedent conditions in estimating current ecological condition; and (3) including uncertainty in modelling ecological response through the use of upper and lower prediction bounds and multiple conceptual models derived through expert elicitation. Secondly, the ecological response model is evaluated using sensitivity and uncertainty analysis. Global sensitivity analysis was used to identify model components that are both uncertain and have critical impact on results, and demonstrated that conceptualisation of ecological response had the greatest impact on predicted ecological condition. A novel application of Bayesian analysis was then used to evaluate different expert derived models against observed data, considering multiple sources of uncertainty. The analysis demonstrates a number of remaining challenges in modelling ecological systems, where model performance depends upon assumptions that are highly uncertain. The third and final component evaluates opportunities and challenges in using multi-objective optimisation, to assist in water resource management and the improvement of ecological outcomes. This component begins with a synthesis of previous studies drawing upon literature from hydrology, ecology, optimisation and decision science, and identifies a number of strategies for improvement. The synthesis is followed by a case study on the Lachlan catchment of the Murray-Darling Basin, Australia. The case study uses multi-objective optimisation to explore different environmental flow rules using a river system model combined with the expert-based ecological models. In doing so, it addresses the challenges of objective setting and problem framing in the context of significant uncertainty. The case study evaluates results generated using the optimisation framework in terms of likely actual decision outcomes. The research identifies a need to revisit fundamental questions regarding system understanding and objective framing in the light of rapidly improving computational capacity and sophistication. This is particularly relevant in the case of ecological management, where objectives form an interplay between ecological science and social values. Modelling tools provide valuable pathways to system learning and communication, yet a deeper understanding and evaluation of model behaviour in the context of actual decisions is needed. The methods presented in this thesis aim to provide a step toward addressing the challenges of working with uncertain information, incomplete knowledge, and integration across multiple disciplines within a decision-making environment. Through the methods developed here, the research seeks to advance the science of model development and application.
APA, Harvard, Vancouver, ISO, and other styles
6

Tshimanga, Raphael Muamba. "Hydrological uncertainty analysis and scenario-based streamflow modelling for the Congo River Basin." Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1006158.

Full text
Abstract:
The effects of climate and environmental change are likely to exacerbate water stress in Africa over the next five decades. It appears obvious, therefore, that large river basins with considerable total renewable water resources will play a prominent role in regional cooperation to alleviate the pressure of water scarcity within Africa. However, managing water resources in the large river basins of Africa involves problems of data paucity, lack of technical resources and the sheer scale of the problem. These river basins are located in regions that are characterized by poverty, low levels of economic development and little food security. The rivers provide multiple goods and services that include hydro-power, water supply, fisheries, agriculture, transportation, and maintenance of aquatic ecosystems. Sustainable water resources management is a critical issue, but there is almost always insufficient data available to formulate adequate management strategies. These basins therefore represent some of the best test cases for the practical application of the science associated with the Predictions in Ungauged Basins (PUB). The thesis presents the results of a process-based hydrological modelling study in the Congo Basin. One of the primary objectives of this study was to establish a hydrological model for the whole Congo Basin, using available historical data. The secondary objective of the study was to use the model and assess the impacts of future environmental change on water resources of the Congo Basin. Given the lack of adequate data on the basin physical characteristics, the preliminary work consisted of assessing available global datasets and building a database of the basin physical characteristics. The database was used for both assessing relationships of similarities between features of physiographic settings in the basin (Chapters 3 and 4), and establishing models that adequately represent the basin hydrology (Chapters 5, 6, and 7). The representative model of the Congo Basin hydrology was then used to assess the impacts of future environmental changes on water resources availability of the Congo Basin (Chapter 8). Through assessment of the physical characteristics of the basin, relationships of similarities were used to determine homogenous regions with regard to rainfall variability, physiographic settings, and hydrological responses. The first observation that comes from this study is that these three categories of regional groups of homogenous characteristics are sensible with regards to their geographical settings, but the overlap and apparent relationships between them are weak. An explanation of this observation is that there are insufficient data, particularly associated with defining sub-surface processes, and it is possible that additional data would have assisted in the discrimination of more homogenous groups and better links between the different datasets. The model application in this study consisted of two phases: model calibration, using a manual approach, and the application of a physically-based a priori parameter estimation approach. While the first approach was designed to assess the general applicability of the model and identify major errors with regard to input data and model structure, the second approach aimed to establish an understanding of the processes and identify useful relationships between the model parameters and the variations in real hydrological processes. The second approach was also designed to quantify the sensitivity of the model outputs to the parameters of the model and to encompass information sharing between the basin physical characteristics and quantifying the parameters of the model. Collectively, the study’s findings show that these two approaches work well and are appropriate to represent the real hydrological processes of Congo Basin. The secondary objective of this study was achieved by forcing the hydrological model developed for the Congo Basin with downscaled Global Climate Model (GCMs) data in order to assess scenarios of change and future possible impacts on water resources availability within the basin. The results provide useful lessons in terms of basin-wide adaptation measures to future climates. The lessons suggest that there is a risk of developing inappropriate adaptation measures to future climate change based on large scale hydrological response, as the response at small scales shows a completely different picture from that which is based on large scale predictions. While the study has concluded that the application of the hydrological model has been successful and can be used with some degree of confidence for enhanced decision making, there remain a number of uncertainties and opportunities to improve the methods used for water resources assessment within the basin. The focus of future activities from the perspective of practical application should be on improved access to data collection to increase confidence in model predictions, on dissemination of the knowledge generated by this study, and on training in the use of the developed water resources assessment techniques.
APA, Harvard, Vancouver, ISO, and other styles
7

Crookes, Douglas John. "Modelling the ecological-economic impacts of restoring natural capital, with a special focus on water and agriculture, at eight sites in South Africa." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71628.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: The restoration of natural capital has ecological, hydrological and economic benefits. Are these benefits greater than the costs of restoration when compared across a range of dissimilar sites? This study examines the impact of restoration at eight case study sites distributed throughout South Africa. The benefits of restoration include improved grazing values and crop yields, improvements in water yield and quality, soil carbon improvements, wild products, lumber, fuelwood and electricity. The impact of restoration on all forms of natural capital (i.e. cultivated, replenishable, renewable and non-renewable) is therefore quantified. The costs of restoration include depreciation on capital expenditure, labour costs, equipment and bond refinancing costs. The literature review done during this study presents three frameworks. The first framework classifies social science using the classification scheme of Burrell and Morgan. It shows that system dynamics modelling and neoclassical economics share the same epistemological and ontological characteristics, both of these fall within the naturalistic paradigm, which also characterises most of scientific research. System dynamics modelling and neoclassical economics, however, digress in the Flood and Jackson classification scheme, which is the second framework for classifying social science. Neoclassical economics is characterised by a small number of elements and few interactions between the elements. Systems dynamics modelling, on the other hand, is characterised by a large number of elements and many interactions between the elements. The nature-freedom ground motive is subject to a number of criticisms, including the fact that it introduces dualistic thinking into the analysis, as well as that it does not adequately address normative or moral issues. The framework of Dooyeweerd, the third framework, is presented as a means of transcending the nature-freedom ground motive. Although the nature-freedom ground motive is largely utilised in this study, the analysis does transcend the traditional economic approach in a number of areas. These include, for example, a focus on transdisciplinary methods, disequilibria, adopting a case study approach, and empirical estimation instead of theoretical models. The restoration case studies in this study are examples of individual complex systems. Eight system dynamics models are developed to model interactions between the economic, ecological and hydrological components of each of the case studies. The eight system dynamics models are then used to inform a risk analysis process that culminates in a portfolio mapping exercise. This portfolio mapping exercise is then used to identify the characteristics and features of the different case study sites based on the risk profile of each sites. This study is the first known application of system dynamics, risk analysis and portfolio mapping to an environmental restoration project. This framework could potentially be used by policymakers confronted with budgetary constraints to select and prioritise between competing restoration projects.
AFRIKAANSE OPSOMMING: Die restorasie van natuurlike kapitaal het ekologiese, hidrologiese en ekonomiese voordele. Maar is hierdie voordele groter as die kostes verbonde aan restorasie wanneer dit oor verskeie ongelyksoortige terreine vergelyk word? Hierdie studie bestudeer die impak van restorasie op agt verskillende studie terreine versprei regoor Suid-Afrika. Die voordele van restorasie sluit die volgende in: beter weiding waardes en oes opbrengste, verbeterde water lewering en water kwaliteit, verbetering van grondkoolstof, wilde produkte, hout, brandstofhout en elektrisiteit. Die impak van restorasie op alle vorme van natuurlike kapitaal (gekultiveerd, aanvulbaar, hernubaar en nie-hernubaar) is daarom gekwantifiseer. Die kostes van restorasie sluit in ‘n vermindering in kapitaal uitgawes, arbeidskoste, toerusting en verband herfinansieringskoste. Die literatuurstudie hou drie raamwerke voor. Die eerste raamwerk klassifiseer sosiale wetenskappe volgens die Burrel en Morgan klassifikasie skema. Dit wys daarop dat dinamiese stelsel modellering en neoklassieke ekonomie dieselfde epistemologiese en ontologiese eienskappe deel; beide val binne die naturalistiese paradigma, wat dan ook meeste wetenskaplike navorsing tipeer. Stelseldinamiese modellering en neoklassieke ekonomie wyk egter af na die Flood and Jackson klassifikasie skema, wat die tweede raamwerk is waarvolgens sosiale wetenskappe geklassifiseer word. Neoklassieke ekonomie word gekenmerk aan 'n klein aantal elemente en 'n beperkte hoeveelheid interaksie. Stelseldinamiese modellering het egter 'n groot aantal elemente met veel meer interaksies tussen hierdie elemente. Die natuur-vryheid grondmotief is onderworpe aan 'n aantal punte van kritiek, insluitende die feit dat dit dualistiese denke in analise inbring. Verder spreek dit ook nie voldoende die normatiewe of morele kwessies aan nie. Die raamwerk van Dooyeweerd, wat dan die derde raamwerk is, word voorgestel as 'n wyse waarop die natuur-vryheid grond-motief getransendeer kan word. Alhoewel die natuur-vryheid grondmotief grootliks gebruik word in hierdie studie, transendeer die analise die tradisionele ekonomiese benadering op 'n aantal gebiede. Hierdie gebiede sluit die volgende in: 'n fokus op transdissiplinere metodes, onewewigtigheid, 'n gevallestudie benadering, en empiriese skatting in plaas van teoretiese modelle. Die restorasie gevallestudies wat in hierdie studie gebruik word is voorbeelde van individuele komplekse sisteme. Agt dinamiese stelsel modelle word ontwikkel om die interaksies tussen ekonomiese, ekologiese en hidrologiese komponente in elke gevallestudie te modelleer. Hierdie agt stelseldinamiese modelle word dan gebruik in 'n risiko analise proses wat uitloop op 'n portefeulje plot oefening. Hierdie portefeulje plot oefening word dan gebruik om eienskappe en kenmerke van verskeie gevallestudie terreine te identifiseer gebaseer op die risiko profiel van elke terrein. Hierdie studie is die eerste bekende toepassing van dinamiese stesels, risiko analise en portefeulje plot tot 'n omgewingsrestorasie projek. Hierdie raamwerk kan potensieël gebruik word deur beleidskrywers wat met begrotings beperkinge gekonfronteer word om tussen restorasie projekte te kies en om hulle te prioritiriseer.
APA, Harvard, Vancouver, ISO, and other styles
8

Emigh, Anthony James. "Predicting floods from space: a case study of Puerto Rico." Thesis, University of Iowa, 2019. https://ir.uiowa.edu/etd/6730.

Full text
Abstract:
Floods are a significant threat to communities around the world and require substantial resources and infrastructure to predict. Limited local resources in developing nations make it difficult to build and maintain dense sensor networks like those present in the United States, creating a large disparity in flood prediction across borders. To address this disparity, I operated the Iowa Flood Center Top Layer model to predict floods in Puerto Rico without relying on in-situ data measurements. Instead, all model forcing was provided by satellite remote sensing datasets that offer near-global coverage. I used three datasets gathered via satellite remote sensing to build and operate watershed streamflow models: elevation data obtained by the Space Shuttle Endeavour through the Shuttle Radar Topography Mission (SRTM), rainfall estimates gathered by a constellation of satellites through the Global Precipitation Measurement Mission (GPM), and evapotranspiration rate estimates collected by Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Aqua and Terra satellites. While these satellite remote sensing datasets make observations of nearly the entire world, their spatiotemporal resolution is coarse compared to conventional on-the-ground measurements. Hydrologic models were assembled for 75 basins upstream of streamflow gages monitored by the United States Geologic Survey (USGS). Model simulations were compared to real-time measurements at these gages. Continuous simulations spanning 58 months achieve poor Nash Sutcliffe Efficiency and Klinge Gupta Efficiency of -112.0 and -0.5, respectively. The sources of error that influence model performance were investigated, underlining some limitations of relying solely on satellite data for operational flood prediction efforts.
APA, Harvard, Vancouver, ISO, and other styles
9

Bohdanowicz, Paulina. "Responsible resource management in hotels : attitudes, indicators, tools and strategies." Doctoral thesis, Stockholm : Department of Energy Technology, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chong, Natalie. "Beyond Evidence-Based Decision Support : Exploring the Multi-Dimensional Functionality of Environmental Modelling Tools. Comparative Analysis of Tool." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1005.

Full text
Abstract:
À l’heure où les horizons d’une croissance et d’une consommation infinies sont remis en cause, les appels aux développements de solutions de plus en plus robustes, flexibles et intégrées pour gérer les problèmes environnementaux inédits ont conduit à l’avènement d’un nouveau paradigme, transformant de manière radicale les pratiques de la science et de la gestion. L’importance accrue accordée aux approches collaboratives, intégrées et participatives a soutenu l’essor d’arrangements entre science, pratique et politique, tout en rendant nécessaire la création de nouveaux outils pour accompagner la mise en œuvre d’une réglementation de plus en plus exigeante. Dans le contexte de la gestion des ressources en eau, les modèles sont apparus comme des outils cruciaux, plébiscités par des scientifiques et des praticiens, pour leur capacité à faire avancer la compréhension scientifique du fonctionnement des systèmes hydrologiques à renseigner les politiques publiques et la planification de l’eau dans les bassins versants. Une grande diversité d’outils de modélisation a été développée pour analyser les processus physiques, chimiques et biologiques à l’œuvre, à des échelles spatiales et temporelles diverses et avec des degrés de complexité variés. Par ailleurs, les modèles sont censés fournir aux praticiens des outils concrets au service de politiques fondées sur des faits scientifiques (‘evidence-based policy’), en permettant de transposer des problèmes complexes en solutions techniques « gérables ». Pour autant, leur application pratique est loin d’être proportionnelle à l’investissement en temps et en ressources dédié à leur développement. Cette thèse vise à éclairer le fossé persistant entre science, pratique et politique dans le contexte d’un nouveau paradigme pour la science et la gestion, à travers le prisme des outils de modélisation et de leur rôle à l’interface science-pratique-politique. Nous utilisons une approche qualitative et nous nous appuyons sur deux exemples empiriques : le PIREN-Seine en France et le CRC for Water Sensitive Cities en Australie. Bien que les deux exemples partagent des défis, des méthodes et des objectifs similaires, la richesse de leur comparaison repose sur la différence fondamentale dans leurs approches et leurs stratégies.Ce faisant, nous explorons les moteurs, implications et conséquences potentielles des changements de paradigme parallèles à l’œuvre de la science et la gestion, en nous concentrant sur trois aspects : 1/ l’utilisation et l’utilité des outils de modélisation pour soutenir la gestion, la planification et les politiques publiques concernant les ressources en eau ; 2/ les différentes modalités qui permettent d’aborder l’incertitude dans l’aide à la décision reposant sur des modèles ; 3/ la signification ou la portée de nouveaux arrangements entre science, pratique et politique. En retraçant l’histoire de la production et de l’utilisation des outils de modélisation dans les deux exemples, nous cherchons tout d’abord à comprendre la relation nuancée entre « utilisation » et « utilité », en offrant un aperçu des facteurs qui les influencent. Nous nous intéressons ensuite à la question de l’incertitude en analysant la manière dont chercheurs et praticiens affrontent le défi fondamental de l’incertitude dans l’aide à la décision fondée sur les modèles. En considérant les processus complexes, socialement négociés, qui s’inscrivent dans le contexte de la prise de décision, nous nous concentrons sur la construction sociale de l’ignorance et sur sa fonction. Nous examinons enfin, à un niveau macro socio-économique, l’évolution des pratiques engendrée par le changement de paradigme dans la science et la gestion. Parmi ces changements, nous proposons une interprétation de l’émergence et des fonctions des « organisations frontières », et le rôle qu’elles sont amenées à jouer dans la recherche de solutions robustes, flexibles et durables
As the sun sets on the age of unlimited growth and consumption, the call for progressively robust, adaptive and integrated solutions to address ‘wicked’ environmental problems has ushered in a new paradigm that has fundamentally changed the practices of both science and management. Emphasis on collaborative, integrative and participative approaches has given rise to burgeoning science-practice-policy arrangements while necessitating new tools to support the implementation of increasingly demanding regulation. In the context of water resources, models have emerged as fundamental tools favoured by scientists and practitioners alike, owing to their ability to advance scientific understanding of water systems functioning, while at the same time supporting key decisions in the management, policy and planning of river basins. A wide range of modelling tools have been developed to study the numerous physical, chemical, and biological processes at work, on different spatial and temporal scales, with varying levels of complexity. At the same time, models provide practitioners with a practical tool for supporting ‘evidence-based’ policy by transposing complex problems into technical, ‘manageable’ solutions. Yet, their application in practice has proven far from proportional to the amount of time and resources that have been invested in their development.This thesis aims to elucidate the enduring divide between science, practice and policy in the context of a new paradigm of science and management through the lens of modelling tools and their role at the science-practice-policy interface. Using a qualitative approach, we draw from two empirical examples: the PIREN-Seine in France and the CRC for Water Sensitive Cities in Australia. While both share similar challenges, methods and objectives, the fundamental difference in their strategies and approaches offers a rich foundation for comparison. In doing so, we explore the driving forces, implications and potential consequences of the parallel paradigm shifts in science and management, focusing on three main aspects: 1/ the use and utility of modelling tools to support water management, policy and planning; 2/ the different modalities of addressing uncertainty in model-based decision support, and; 3/ the role of new science-practice-policy arrangements. By first retracing the history of production and use of modelling tools in both examples, we seek to understand the nuanced relationship between ‘use’ and ‘utility’, offering insight into influencing factors. Next, we turn to the question of uncertainty by analysing how researchers and practitioners reconcile the fundamental challenge of uncertainty in model-based decision support. Delving deeper into the complex, negotiated social process that comprises the decision-making context, we focus on the social construction of ignorance and its role in decision-making. Finally, we examine the macro-level changes brought about by the paradigm shift in science and management. Amidst these changes, we seek to understand the emergence and functions of ‘boundary organisations’ in this new epoch, and their role in the quest for robust, adaptive and sustainable solutions
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Water resources and environmental modelling"

1

Hipel, Keith W. Time series modelling of water resources and environmental systems. Amsterdam: Elsevier, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Workshop, on Hydrologic and Environmental Modelling in the Mekong Basin (2000 Phnom Penh Cambodia). Proceedings of the Workshop on Hydrologic and Environmental Modelling in the Mekong Basin. Phnom Penh, Cambodia: Technical Support Division, Mekong River Commission, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Indo-Soviet Workshop on Evaluation & Modelling of Impacts on Environment of Water Resources Projects (1985 New Delhi, India). Indo-Soviet Workshop on Evaluation & Modelling of Impacts on Environment of Water Resources Projects, 17-18 September 1985: Proceedings. New Delhi: The Board, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anisfeld, Shimon C. Water resources. Washington: Island Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Piero, Melli, and Zannetti P, eds. Environmental modelling. Southampton: Computational Mechanics Publications, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Water resources. Washington: Island Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1923-, Cairns John, Patrick Ruth 1907-, and International Convocation for World Environmental Regeneration (1983 : New York, N.Y.), eds. Managing water resources. New York: Praeger, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rao, Chintalacheruvu Madhusudana, K. C. Patra, D. Jhajharia, and Sangeeta Kumari, eds. Advanced Modelling and Innovations in Water Resources Engineering. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4629-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

A, Pykh I͡U︡, ed. Sustainable water resources management. Southampton, UK: WIT Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Environmental laws and water resources management. New Delhi: Radiant Publishers, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Water resources and environmental modelling"

1

Surinaidu, L., V. V. S. Gurunadha Rao, and Y. R. Satyaji Rao. "Hydrogeophysics and Numerical Solute Transport Modelling Techniques for Environmental Impact Assessment." In Water Resources and Environmental Engineering I, 157–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2044-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xuan, Tu Le, Hung Le Manh, Hoang Tran Ba, Thanh Dang Quang, Vo Quoc Thanh, and Duong Tran Anh. "3D Numerical Modelling for Hydraulic Characteristics of a Hollow Triangle Breakwater." In Advances in Research on Water Resources and Environmental Systems, 265–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17808-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghouili, Nesrine, Mounira Zammouri, Faten Jarraya-Horriche, Fadoua Hamzaoui-Azzaza, and José Joel Carrillo-Rivera. "Groundwater Flow Modelling of a Multilayer Aquifer in Semi-arid Context." In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, 287–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01572-5_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nguyen, Van Minh, Kim Chau Tran, and Thanh Thuy Nguyen. "Modelling the Influences of River Water Level on the Flooding Situation of Urban Areas: A Case Study in Hanoi, Vietnam." In Advances in Research on Water Resources and Environmental Systems, 121–31. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17808-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zeferino, Joel, Maria Rosário Carvalho, Tânia Ferreira, Maria Catarina Silva, Maria José Afonso, Liliana Freitas, Ana Rita Lopes, et al. "Forecasting and Mass Transport Modelling of Nitrates in the Esposende–Vila Do Conde Nitrate Vulnerable Zone (Portugal)." In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, 95–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01572-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Castelletti, Andrea, Francesca Pianosi, and Rodolfo Soncini-Sessa. "Stochastic and Robust Control of Water Resource Systems: Concepts, Methods and Applications." In System Identification, Environmental Modelling, and Control System Design, 383–401. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-974-1_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Latif, Yasir, Yaoming Ma, Weiqiang Ma, Muhammad Sher, and Yaseen Muhammad. "Snowmelt Runoff Simulation During Early 21st Century Using Hydrological Modelling in the Snow-Fed Terrain of Gilgit River Basin (Pakistan)." In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, 73–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01572-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saeedrashed, Younis Saida. "Hydrologic and Hydraulic Modelling of the Greater Zab River-Basin for an Effective Management of Water Resources in the Kurdistan Region of Iraq Using DEM and Raster Images." In Environmental Remote Sensing and GIS in Iraq, 415–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21344-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Awange, Joseph, and John Kiema. "Water Resources." In Environmental Geoinformatics, 431–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03017-9_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Awange, Joseph L., and John B. Kyalo Kiema. "Water Resources." In Environmental Geoinformatics, 341–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34085-7_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Water resources and environmental modelling"

1

Sashikumar, N., M. S. Mohankumar, and K. Sridharan. "Modelling an Intermittent Water Supply." In World Water and Environmental Resources Congress 2003. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40685(2003)261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hohaia, Nick, Elizabeth Fassman, William F. Hunt, and Kelly A. Collins. "Hydraulic and Hydrologic Modelling of Permeable Pavement." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thakur, Balbhadra, Ranjan Parajuli, Ajay Kalra, and Sajjad Ahmad. "Exploring CCHE2D and Its Sediment Modelling Capabilities." In World Environmental and Water Resources Congress 2018. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481424.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boxall, J. B., and N. Dewis. "Identification of Discolouration Risk Through Simplified Modelling." In World Water and Environmental Resources Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40792(173)26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wilkens, Jort, Nils Asp, Klaus Ricklefs, and Roberto Mayerle. "Medium-Scale Morphodynamic Modelling in the Meldorf Bight." In World Water and Environmental Resources Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40569(2001)268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reeves, Mike, and Mark Lewy. "Modelling of Groundwater Infiltration in Urban Drainage Networks." In World Water and Environmental Resources Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40569(2001)464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morbidelli, R., C. Corradini, C. Saltalippi, A. Flammini, and E. Rossi. "An Experimental Hydrometeorological Investigation to Address Infiltration-Redistribution Modelling." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jia, Yafei, Carlos Alonso, Andrew Simon, Robert Wells, and Sam S. Y. Wang. "Modelling Flow and Vegetation Effects in a Curved Channel." In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Glover, Peter B. M., and James G. Fookes. "Network and Transient Modelling of Dual Pressure Distribution Systems." In World Environmental and Water Resources Congress 2007. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40927(243)457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abdellatif, M., W. Atherton, and R. Alkhaddar. "Modelling Peaks over Threshold under the Effects of Climate Change." In World Environmental And Water Resources Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412312.346.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Water resources and environmental modelling"

1

Sudicky, E. A., and S. K. Frey. Merits and development strategies for a regional water resources modelling platform for southern Ontario - Great Lakes Basin. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/297741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Russell, H. A. J., and S. K. Frey. Canada One Water: integrated groundwater-surface-water-climate modelling for climate change adaptation. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329092.

Full text
Abstract:
Canada 1 Water is a 3-year governmental multi-department-private-sector-academic collaboration to model the groundwater-surface-water of Canada coupled with historic climate and climate scenario input. To address this challenge continental Canada has been allocated to one of 6 large watershed basins of approximately two million km2. The model domains are based on natural watershed boundaries and include approximately 1 million km2 of the United States. In year one (2020-2021) data assembly and validation of some 20 datasets (layers) is the focus of work along with conceptual model development. To support analysis of the entire water balance the modelling framework consists of three distinct components and modelling software. Land Surface modelling with the Community Land Model will support information needed for both the regional climate modelling using the Weather Research & Forecasting model (WRF), and input to HydroGeoSphere for groundwater-surface-water modelling. The inclusion of the transboundary watersheds will provide a first time assessment of water resources in this critical international domain. Modelling is also being integrated with Remote Sensing datasets, notably the Gravity Recovery and Climate Experiment (GRACE). GRACE supports regional scale watershed analysis of total water flux. GRACE along with terrestrial time-series data will serve provide validation datasets for model results to ensure that the final project outputs are representative and reliable. The project has an active engagement and collaborative effort underway to try and maximize the long-term benefit of the framework. Much of the supporting model datasets will be published under open access licence to support broad usage and integration.
APA, Harvard, Vancouver, ISO, and other styles
3

Whelan, G., J. P. McDonald, and C. Sato. Environmental consequences to water resources from alternatives of managing spent nuclear fuel at Hanford. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10196539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frey, S. K., S. J. Berg, and E. A. Sudicky. A feasibility study of merits and development strategies for a regional water resources modelling platform for southern Ontario - Great Lakes Basin. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/298816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paradis, D. Water Resources Characterisation and Modelling (WRCM) Project: summary of the 2020-21 mid-year activities Summary of the 2020-21 Mid-Year Activities. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/327587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shani, Uri, Lynn Dudley, Alon Ben-Gal, Menachem Moshelion, and Yajun Wu. Root Conductance, Root-soil Interface Water Potential, Water and Ion Channel Function, and Tissue Expression Profile as Affected by Environmental Conditions. United States Department of Agriculture, October 2007. http://dx.doi.org/10.32747/2007.7592119.bard.

Full text
Abstract:
Constraints on water resources and the environment necessitate more efficient use of water. The key to efficient management is an understanding of the physical and physiological processes occurring in the soil-root hydraulic continuum.While both soil and plant leaf water potentials are well understood, modeled and measured, the root-soil interface where actual uptake processes occur has not been sufficiently studied. The water potential at the root-soil interface (yᵣₒₒₜ), determined by environmental conditions and by soil and plant hydraulic properties, serves as a boundary value in soil and plant uptake equations. In this work, we propose to 1) refine and implement a method for measuring yᵣₒₒₜ; 2) measure yᵣₒₒₜ, water uptake and root hydraulic conductivity for wild type tomato and Arabidopsis under varied q, K⁺, Na⁺ and Cl⁻ levels in the root zone; 3) verify the role of MIPs and ion channels response to q, K⁺ and Na⁺ levels in Arabidopsis and tomato; 4) study the relationships between yᵣₒₒₜ and root hydraulic conductivity for various crops representing important botanical and agricultural species, under conditions of varying soil types, water contents and salinity; and 5) integrate the above to water uptake term(s) to be implemented in models. We have made significant progress toward establishing the efficacy of the emittensiometer and on the molecular biology studies. We have added an additional method for measuring ψᵣₒₒₜ. High-frequency water application through the water source while the plant emerges and becomes established encourages roots to develop towards and into the water source itself. The yᵣₒₒₜ and yₛₒᵢₗ values reflected wetting and drying processes in the rhizosphere and in the bulk soil. Thus, yᵣₒₒₜ can be manipulated by changing irrigation level and frequency. An important and surprising finding resulting from the current research is the obtained yᵣₒₒₜ value. The yᵣₒₒₜ measured using the three different methods: emittensiometer, micro-tensiometer and MRI imaging in both sunflower, tomato and corn plants fell in the same range and were higher by one to three orders of magnitude from the values of -600 to -15,000 cm suggested in the literature. We have added additional information on the regulation of aquaporins and transporters at the transcript and protein levels, particularly under stress. Our preliminary results show that overexpression of one aquaporin gene in tomato dramatically increases its transpiration level (unpublished results). Based on this information, we started screening mutants for other aquaporin genes. During the feasibility testing year, we identified homozygous mutants for eight aquaporin genes, including six mutants for five of the PIP2 genes. Including the homozygous mutants directly available at the ABRC seed stock center, we now have mutants for 11 of the 19 aquaporin genes of interest. Currently, we are screening mutants for other aquaporin genes and ion transporter genes. Understanding plant water uptake under stress is essential for the further advancement of molecular plant stress tolerance work as well as for efficient use of water in agriculture. Virtually all of Israel’s agriculture and about 40% of US agriculture is made possible by irrigation. Both countries face increasing risk of water shortages as urban requirements grow. Both countries will have to find methods of protecting the soil resource while conserving water resources—goals that appear to be in direct conflict. The climate-plant-soil-water system is nonlinear with many feedback mechanisms. Conceptual plant uptake and growth models and mechanism-based computer-simulation models will be valuable tools in developing irrigation regimes and methods that maximize the efficiency of agricultural water. This proposal will contribute to the development of these models by providing critical information on water extraction by the plant that will result in improved predictions of both water requirements and crop yields. Plant water use and plant response to environmental conditions cannot possibly be understood by using the tools and language of a single scientific discipline. This proposal links the disciplines of soil physics and soil physical chemistry with plant physiology and molecular biology in order to correctly treat and understand the soil-plant interface in terms of integrated comprehension. Results from the project will contribute to a mechanistic understanding of the SPAC and will inspire continued multidisciplinary research.
APA, Harvard, Vancouver, ISO, and other styles
7

Durden, Susan, Tyson Vaughan, and Brook Herman. Other social effects and social vulnerability analysis : existing resources. Engineer Research and Development Center (U.S.), June 2022. http://dx.doi.org/10.21079/11681/44662.

Full text
Abstract:
The following technical note (TN) provides a summary of existing resources available to the US Army Corps of Engineers’ (USACE) districts that address benefits in the Other Social Effects account for evaluating the effects of water resource projects. Consideration of social factors is key to a complete, robust, water-resources analysis, and these resources provide planners and project development teams with approaches and tools for their consideration. "social effects—the constituents of life that influence personal and group definitions of satisfaction, well-being, and happiness —OSE Primer, 3" This TN is limited in scope and does not cover ecosystem goods and services or environmental-quality metrics that can also be used to assess benefits outside of economic benefits from water-resource projects. The following resources and their associated metrics are presented in a manner that is focused on assisting districts during the project-planning phase, although the metrics can be used to assess benefits or impacts during other project phases as well (for example, construction, operations, and maintenance).
APA, Harvard, Vancouver, ISO, and other styles
8

Gagnon, Paul, Jeanette Gallihugh, Shawn Komlos, Susan Durden, E. Vaughan, Elizabeth Murray, and Trudy Estes. Incorporating social and environmental outputs in decision-making : workshop outcomes. Engineer Research and Development Center (U.S.), October 2022. http://dx.doi.org/10.21079/11681/45700.

Full text
Abstract:
This document summarizes the notable outcomes of the workshop “Quantifying and Incorporating Social and Environmental Outputs in Decision-Making—Research and Development Needs and Strategy Workshop.” The workshop was held 24 and 25 July 2019 in Alexandria, Virginia, at the US Army Corps of Engineers’ (USACE) Institute for Water Resources (IWR). The workshop sought to identify gaps in knowledge, methods, data, and tools and to identify types of subject matter experts who would be needed for the research team. A total of 22 participants attended the facilitated workshop, representing a broad array of expertise: economists, scientists, planners, social scientists, project managers, and researchers from a number of USACE organizations and partnering academics across the United States. Together, these attendees reviewed existing policy and research and prioritized future work to fill gaps in methods and procedures for incorporating social and environmental inputs across a broad range of USACE projects.
APA, Harvard, Vancouver, ISO, and other styles
9

Hodul, M., H. P. White, and A. Knudby. A report on water quality monitoring in Quesnel Lake, British Columbia, subsequent to the Mount Polley tailings dam spill, using optical satellite imagery. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330556.

Full text
Abstract:
In the early morning on the 4th of August 2014, a tailings dam near Quesnel, BC burst, spilling approximately 25 million m3 of runoff containing heavy metal elements into nearby Quesnel Lake (Byrne et al. 2018). The runoff slurry, which included lead, arsenic, selenium, and vanadium spilled through Hazeltine Creek, scouring its banks and picking up till and forest cover on the way, and ultimately ended up in Quesnel Lake, whose water level rose by 1.5 m as a result. While the introduction of heavy metals into Quesnel Lake was of environmental concern, the additional till and forest cover scoured from the banks of Hazeltine Creek added to the lake has also been of concern to salmon spawning grounds. Immediate repercussions of the spill involved the damage of sensitive environments along the banks and on the lake bed, the closing of the seasonal salmon fishery in the lake, and a change in the microbial composition of the lake bed (Hatam et al. 2019). In addition, there appears to be a seasonal resuspension of the tailings sediment due to thermal cycling of the water and surface winds (Hamilton et al. 2020). While the water quality of Quesnel Lake continues to be monitored for the tailings sediments, primarily by members at the Quesnel River Research Centre, the sample-and-test methods of water quality testing used, while highly accurate, are expensive to undertake, and not spatially exhaustive. The use of remote sensing techniques, though not as accurate as lab testing, allows for the relatively fast creation of expansive water quality maps using sensors mounted on boats, planes, and satellites (Ritchie et al. 2003). The most common method for the remote sensing of surface water quality is through the use of a physics-based semianalytical model which simulates light passing through a water column with a given set of Inherent Optical Properties (IOPs), developed by Lee et al. (1998) and commonly referred to as a Radiative Transfer Model (RTM). The RTM forward-models a wide range of water-leaving spectral signatures based on IOPs determined by a mix of water constituents, including natural materials and pollutants. Remote sensing imagery is then used to invert the model by finding the modelled water spectrum which most closely resembles that seen in the imagery (Brando et al 2009). This project set out to develop an RTM water quality model to monitor the water quality in Quesnel Lake, allowing for the entire surface of the lake to be mapped at once, in an effort to easily determine the timing and extent of resuspension events, as well as potentially investigate greening events reported by locals. The project intended to use a combination of multispectral imagery (Landsat-8 and Sentinel-2), as well as hyperspectral imagery (DESIS), combined with field calibration/validation of the resulting models. The project began in the Autumn before the COVID pandemic, with plans to undertake a comprehensive fieldwork campaign to gather model calibration data in the summer of 2020. Since a province-wide travel shutdown and social distancing procedures made it difficult to carry out water quality surveying in a small boat, an insufficient amount of fieldwork was conducted to suit the needs of the project. Thus, the project has been put on hold, and the primary researcher has moved to a different project. This document stands as a report on all of the work conducted up to April 2021, intended largely as an instructional document for researchers who may wish to continue the work once fieldwork may freely and safely resume. This research was undertaken at the University of Ottawa, with supporting funding provided by the Earth Observations for Cumulative Effects (EO4CE) Program Work Package 10b: Site Monitoring and Remediation, Canada Centre for Remote Sensing, through the Natural Resources Canada Research Affiliate Program (RAP).
APA, Harvard, Vancouver, ISO, and other styles
10

Corriveau, L., J. F. Montreuil, O. Blein, E. Potter, M. Ansari, J. Craven, R. Enkin, et al. Metasomatic iron and alkali calcic (MIAC) system frameworks: a TGI-6 task force to help de-risk exploration for IOCG, IOA and affiliated primary critical metal deposits. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329093.

Full text
Abstract:
Australia's and China's resources (e.g. Olympic Dam Cu-U-Au-Ag and Bayan Obo REE deposits) highlight how discovery and mining of iron oxide copper-gold (IOCG), iron oxide±apatite (IOA) and affiliated primary critical metal deposits in metasomatic iron and alkali-calcic (MIAC) mineral systems can secure a long-term supply of critical metals for Canada and its partners. In Canada, MIAC systems comprise a wide range of undeveloped primary critical metal deposits (e.g. NWT NICO Au-Co-Bi-Cu and Québec HREE-rich Josette deposits). Underexplored settings are parts of metallogenic belts that extend into Australia and the USA. Some settings, such as the Camsell River district explored by the Dene First Nations in the NWT, have infrastructures and 100s of km of historic drill cores. Yet vocabularies for mapping MIAC systems are scanty. Ability to identify metasomatic vectors to ore is fledging. Deposit models based on host rock types, structural controls or metal associations underpin the identification of MIAC-affinities, assessment of systems' full mineral potential and development of robust mineral exploration strategies. This workshop presentation reviews public geoscience research and tools developed by the Targeted Geoscience Initiative to establish the MIAC frameworks of prospective Canadian settings and global mining districts and help de-risk exploration for IOCG, IOA and affiliated primary critical metal deposits. The knowledge also supports fundamental research, environmental baseline assessment and societal decisions. It fulfills objectives of the Canadian Mineral and Metal Plan and the Critical Mineral Mapping Initiative among others. The GSC-led MIAC research team comprises members of the academic, private and public sectors from Canada, Australia, Europe, USA, China and Dene First Nations. The team's novel alteration mapping protocols, geological, mineralogical, geochemical and geophysical framework tools, and holistic mineral systems and petrophysics models mitigate and solve some of the exploration and geosciences challenges posed by the intricacies of MIAC systems. The group pioneers the use of discriminant alteration diagrams and barcodes, the assembly of a vocab for mapping and core logging, and the provision of field short courses, atlas, photo collections and system-scale field, geochemical, rock physical properties and geophysical datasets are in progress to synthesize shared signatures of Canadian settings and global MIAC mining districts. Research on a metamorphosed MIAC system and metamorphic phase equilibria modelling of alteration facies will provide a foundation for framework mapping and exploration of high-grade metamorphic terranes where surface and near surface resources are still to be discovered and mined as are those of non-metamorphosed MIAC systems.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography