Academic literature on the topic 'WATER LOADED NANOFLUID'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'WATER LOADED NANOFLUID.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "WATER LOADED NANOFLUID"
Prabu, M., D. Kulandaivel, K. Ramesh, and M. Shoban Babu. "Numerical Heat Transfer Analysis of Ag-Doped- CuO Nanofluids in Radiator with UDF codes in Ansys fluent." International Journal for Research in Applied Science and Engineering Technology 11, no. 1 (January 31, 2023): 1073–80. http://dx.doi.org/10.22214/ijraset.2023.48762.
Full textAlhummiany, H. "Novel Nanofluid Based on Water-Loaded Delafossite CuAlO2 Nanowires: Structural and Thermal Properties." Journal of Nanomaterials 2018 (2018): 1–6. http://dx.doi.org/10.1155/2018/4076960.
Full textRudrabhiramu, Rokkala, Kiran Kumar Kupireddi, and Kuchibotla Mallikarjuna Rao. "Study of Thermal Characteristics Augmentation of the Aluminium Oxide Nano Fluid with Different Base Fluids." International Journal of Heat and Technology 39, no. 6 (December 31, 2021): 2000–2005. http://dx.doi.org/10.18280/ijht.390639.
Full textLanjewar, Abhishek, Bharat Bhanvase, Divya Barai, Shivani Chawhan, and Shirish Sonawane. "Intensified Thermal Conductivity and Convective Heat Transfer of Ultrasonically Prepared CuO–Polyaniline Nanocomposite Based Nanofluids in Helical Coil Heat Exchanger." Periodica Polytechnica Chemical Engineering 64, no. 2 (June 3, 2019): 271–82. http://dx.doi.org/10.3311/ppch.13285.
Full textKumar, P. Manoj, Rajasekaran Saminathan, Mohammed Tharwan, Haitham Hadidi, P. Michael Joseph Stalin, G. Kumaresan, S. Ram, et al. "Study on Sintered Wick Heat Pipe (SWHP) with CuO Nanofluids under Different Orientation." Journal of Nanomaterials 2022 (August 25, 2022): 1–12. http://dx.doi.org/10.1155/2022/7158228.
Full textAlhummiany, H. "Corrigendum to “Novel Nanofluid Based on Water-Loaded Delafossite CuAlO2 Nanowires: Structural and Thermal Properties”." Journal of Nanomaterials 2018 (July 19, 2018): 1. http://dx.doi.org/10.1155/2018/9583485.
Full textSannad, Mohamed, Ahmed Kadhim Hussein, Awatef Abidi, Raad Z. Homod, Uddhaba Biswal, Bagh Ali, Lioua Kolsi, and Obai Younis. "Numerical Study of MHD Natural Convection inside a Cubical Cavity Loaded with Copper-Water Nanofluid by Using a Non-Homogeneous Dynamic Mathematical Model." Mathematics 10, no. 12 (June 15, 2022): 2072. http://dx.doi.org/10.3390/math10122072.
Full textSahota, Lovedeep, Swati Arora, Harendra Pal Singh, and Girijashankar Sahoo. "Thermo-physical characteristics of passive double slope solar still loaded with MWCNTs and Al2O3-water based nanofluid." Materials Today: Proceedings 32 (2020): 344–49. http://dx.doi.org/10.1016/j.matpr.2020.01.600.
Full textMourad, Abed, Aissa Abderrahmane, Obai Younis, Riadh Marzouki, and Anas Alazzam. "Numerical Simulations of Magnetohydrodynamics Natural Convection and Entropy Production in a Porous Annulus Bounded by Wavy Cylinder and Koch Snowflake Loaded with Cu–Water Nanofluid." Micromachines 13, no. 2 (January 26, 2022): 182. http://dx.doi.org/10.3390/mi13020182.
Full textMannu, Rashmi, Vaithinathan Karthikeyan, Murugendrappa Malalkere Veerappa, Vellaisamy A. L. Roy, Anantha-Iyengar Gopalan, Gopalan Saianand, Prashant Sonar, et al. "Facile Use of Silver Nanoparticles-Loaded Alumina/Silica in Nanofluid Formulations for Enhanced Catalytic Performance toward 4-Nitrophenol Reduction." International Journal of Environmental Research and Public Health 18, no. 6 (March 15, 2021): 2994. http://dx.doi.org/10.3390/ijerph18062994.
Full textDissertations / Theses on the topic "WATER LOADED NANOFLUID"
DHARAMVEER. "ENERGY AND EXERGY ANALYSES OF ACTIVE SOLAR STILLS USING WATER LOADED NANOFLUID." Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19091.
Full textYu-HuiChiou and 邱育慧. "Conjugate cooling characteristics of Al2O3-water nanofluid flow in a rectangular mini-channel under steady/sudden-pulsed power load– A numerical simulation." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/99988588244550335256.
Full text國立成功大學
機械工程學系
104
In this study, we use numerical simulation method to discuss the conjugation cooling characteristics of Al2O3 nanofluid flow in a rectangular mini-channel. The aim of the present study is to discuss the results of two cases; the first case is to investigate the influence of buoyancy to the temperature and velocity in the mini-channel with/without thermal buoyancy effect. The second one is to investigate the effect of impeding the dramatic change in temperature under sudden pulsed power load with ceiling embedded with/without Micro-Encapsulated Phase Change Material (MEPCM). The geometries of the mini-channel are 4.016 mm in width, 1.004 mm in height, and 74.2 mm in length with the fin thickness of 2.008 mm. In order to describe the three dimensional heat transfer and fluid flows of the water-based suspensions in a single mini-channel, pseudo vorticity velocity formulation and energy equation are coupled to solve the temperature and velocity profile in the mini-channel. Numerical simulations for the laminar forced convection in mini-channel have been performed with parameters in the following ranges: the volumetric fraction of Al2O3 nanofluid, and ; the volumetric flow rate entering mini-channel, (equivalently, ); and the heat flux imposed on the bottom surface of the rectangular mini-channel . The diameter of the particle in Al2O3 nanofluid is 20 nm. The mini-channel is iso-flux heated with heat flux of and on the bottom, and the heat flux of the rectangular mini-channel is . The numerical results obtained for the channel with ARch = 0.25, ARbw =0.5, ARcw = 0.5, and Wsw = 0.5 clearly reveal that using the Al2O3 nanofluid to replace the pure water as the coolant in the rectangular mini-channel can reduce the bulk mean temperature in the fluid, enhance the averaged heat transfer coefficient, and reduce the overall resistance in the rectangular mini-channel, respectively. Al2O3 nanofluid has greater thermal conductivity than pure water and the thermal conductivity increases with increasing concentration. With the thermal buoyancy effect, the bulk mean temperature of the fluid is 1°C lower than that without the effect and the averaged heat transfer coefficient is enhanced about 5.2%. Furthermore, the thermal buoyancy effect reduces overall thermal resistance in the rectangular mini-channel about 3.5%. Plus, lower Reynolds number leads to greater difference in temperature and heat transfer coefficient.With sudden pulsed power load, the ceiling temperature with MEPCM is 2°C lower than that without MEPCM; however, the bulk mean temperature of the fluid reduces only 0.2°C.
Jian-ChinLiao and 廖健欽. "Heat Dissipation Characteristics of Al2O3-Water Nanofluid Flow in a Mini-Channel Heat Sink under Steady/Surged heat Load - An Experimental Study." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/52350667253379135310.
Full text國立成功大學
機械工程學系
104
The present study aims to investigate an experimental study concerning forced convective heat dissipation characteristics of Al2O3-water nanofluid flow in a mini-channel heat sink under steady/sudden-pulsed power load. Two multi-channel heat sinks featuring a length of 50 mm and a width of 25.1 mm were fabricated of oxygen-free copper with eight parallel mini-channels, each with an inlet cross-section of 1 mm in width and 3 mm in height with their ceiling embedded with or without a layer of a microencapsulated phase change material (MEPCM). The steady state experimental results obtained reveal that using the Al2O3-water nanofluid to replace the pure water as the coolant through the mini-channel heat sink can give rise to an enhancement of 41%, in the average heat transfer coefficient over that of using the pure water. In the aspect of incorporating the heat sink with its ceiling embedded MEPCM layer and hence the potential latent heat absorption effect, the steady state forced convection results reveal somewhat insignificant effects on cooling performance of Al2O3-water nanofluid. On the other hand, under the sudden-pulsed heat loads, the cooing effectiveness of using the Al2O3-water nanofluid in the heat sink with ceiling embedded MEPCM layer appears further uplifted in comparison with that without embedded MEPCM layer.
Book chapters on the topic "WATER LOADED NANOFLUID"
Singh, Desh Bandhu, and G. N. Tiwari. "Thermal Modeling of Solar Stills." In Solar Thermal Systems: Thermal Analysis and its Application, 90–153. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050950122010007.
Full textConference papers on the topic "WATER LOADED NANOFLUID"
Li, Jie, Clement Kleinstreuer, and Yu Feng. "Computational Analysis of Thermal Performance and Entropy Generation of Nanofluid Flow in Microchannels." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75007.
Full textShit, Sakti Pada, N. K. Ghosh, and Sudipta Pal. "Thermal conductivity of water base nanofluids containing loaded graphene nanosheets using molecular dynamics simulation." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001590.
Full textVishwakarma, Vivek, Nitin Singhal, Vikrant Khullar, Himanshu Tyagi, Robert A. Taylor, Todd P. Otanicar, and Ankur Jain. "Space Cooling Using the Concept of Nanofluids-Based Direct Absorption Solar Collectors." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87726.
Full text