Academic literature on the topic 'Water Footprint Assessment (WFA)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water Footprint Assessment (WFA).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Water Footprint Assessment (WFA)"

1

Bong, P. X. H., M. A. Malek, and Z. Z. Noor. "A Review on Water Footprint Assessment and Water-Food-Energy Nexus for Electronic and Food Products." International Journal of Engineering & Technology 7, no. 4.35 (November 30, 2018): 48. http://dx.doi.org/10.14419/ijet.v7i4.28.22321.

Full text
Abstract:
Water Footprint Assessment (WFA) has emerged as a new interdisciplinary field of study, that specialize in the study of water use, scarcity, and pollution, in respect to production, consumption, and trade of water-intensive products and services. It consists of the analysis of various techniques and practices, policy plans, and governance mechanisms that contributed to the rise of sustainability, efficiency, and equitability of water footprints. This study focuses on WFA specifically for electronic and food manufacturing products. It determined contributions of different players namely the governments, companies, investors and civil society. This study typically reviews water use in relation to demand for electronic products, food and energy used. It appraisals the sustainable water use translated into coherent food, energy, incentives and trade policies. Water-Food-Energy (WFE) nexus from the perspective of electronic and food manufacturing products are also reviewed. In this study, the challenges in estimating water footprints and WFE nexus for electronics and food manufacturing products include the understanding of various levels of demand, geographical, temporal variations, assessment of uncertainties involved, and the assessment of water-footprint related problems and solutions. The outcomes showed that combining several methods of WFA can obtain adequate results for the water footprint accounting. The WFE nexus is preferred to use life-cycle assessment (LCA) method to identify the environmental impacts. The significances of this study are to raise the awareness on water usage in the supply chain process of the electronic and food products then recommend good practices in water usage.
APA, Harvard, Vancouver, ISO, and other styles
2

Qian, Weiran, Juxiang Zhu, Fangli Chen, Xiang Ji, Xiaopeng Wang, and Laili Wang. "Water footprint assessment of viscose staple fiber garments." Water Supply 21, no. 5 (February 11, 2021): 2217–32. http://dx.doi.org/10.2166/ws.2021.040.

Full text
Abstract:
Abstract The viscose fiber industry forms a large part of the textile industry and is a typical water consumption and wastewater discharge industry. As a tool to quantify environmental impacts in terms of water resources, the water footprint assessment (WFA) is a control method for the textile and apparel industry to measure water consumption and wastewater discharge. In this study, the water footprints of viscose staple fiber blouses and blended men's suits were comprehensively evaluated based on the ISO 14046 standard and the life cycle assessment (LCA) polygon method. The WFA results from our study indicate that the production stage of viscose staple fiber garments has the most significant water resource environmental load. Specifically, the water footprint related to the production of viscose staple fiber for three types of clothing accounted for more than 50% of the total water footprint, with men's 100% viscose staple fiber suits having the largest impact on water resources and the environment. Furthermore, our results indicate that the water alkaline footprint is primarily influenced by the viscose staple fiber production as well as the dyeing and finishing processes. NaOH and Na2CO3 are the main pollutants that caused the water alkaline footprint. In addition, the water ecotoxicity footprint was the major driving factor of water resource environmental load. Zn2+ is the main pollutant that caused the water ecotoxicity footprint.
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, B. K. C., Ming Yu Xiong, and Guo Ping Zhang. "Mining Impacts on the Environment - Water Footprint Assessment of Copper Cathode and Copper Concentrate." Advanced Materials Research 1130 (November 2015): 644–47. http://dx.doi.org/10.4028/www.scientific.net/amr.1130.644.

Full text
Abstract:
Water is the source of life and an essential resource for our global economy. It empowers agricultural and industrial production and development, and fosters the nature and ecosystems. With increasing water scarcity, growing population, climate change and extreme weather conditions, together with stricter water regulations, decline in ore grade and increasing controversy on water use between mining operations and local communities, effective governance of shared water resources and protecting water quality is an economic imperative and social responsibility for mining companies. Water Footprint Assessment (WFA) is a holistic methodological framework that allows integrated assessment for operational and supply-chain water use and the associated water footprint sustainability in different sectors at various spatial and temporal scales. This paper presents a WFA for two copper products – copper cathode and copper concentrate produced by Zijin Mining (China) based on the data from 2012 and 2013. The aim of this study is to evaluate the water consumption within the operations and supply chains, to understand the product sustainability and identify water footprint reduction targets to minimize its associated social and environmental impact on natural resources in the catchment. The two copper products were produced from two different processes, hence their different associated water footprints. Evaporation due to the vast area of heap leach pad is the main contribution to the blue water footprint (WF) for copper cathode whereas supply chain WF is negligible. The grey WF is found to be due to total copper concentration in the effluent discharge. This assessment goes beyond water footprint accounting stage and includes the environmental sustainability of the direct water footprint. Opportunities for efficiency improvement across the two processing plants and prevention strategies to reduce impacts on the environment are also discussed. The comprehensive approach makes the WFA unique from other water use assessments and shows its value in water sustainability strategy making.
APA, Harvard, Vancouver, ISO, and other styles
4

Menendez, H. M., and L. O. Tedeschi. "The characterization of the cow-calf, stocker and feedlot cattle industry water footprint to assess the impact of livestock water use sustainability." Journal of Agricultural Science 158, no. 5 (July 2020): 416–30. http://dx.doi.org/10.1017/s0021859620000672.

Full text
Abstract:
AbstractPerception of freshwater use varies between nations and has led to concerns of how to evaluate water use for sustainable food production. The water footprint of beef cattle (WFB) is an important metric to determine current levels of freshwater use and to set sustainability goals. However, current WFB publications provide broad WF values with inconsistent units preventing direct comparison of WFB models. The water footprint assessment (WFA) methodologies use static physio-enviro-managerial equations, rather than dynamic, which limits their ability to estimate cattle water use. This study aimed to advance current WFA methods for WFB estimation by formulating the WFA into a system dynamics methodology to adequately characterize the major phases of the beef cattle industry and provide a tool to identify high-leverage solutions for complex water use systems. Texas is one of the largest cattle producing areas in the United States, a significant water user. This geolocation is an ideal template for WFB estimation in other regions due to its diverse geography, management-cultures, climate and natural resources. The Texas Beef Water Footprint model comprised seven submodels (cattle population, growth, nutrition, forage, WFB, supply chain and regional water use; 1432 state variables). Calibration of our model replicated initial WFB values from an independent study by Chapagain and Hoekstra in 2003 (CH2003). This CH2003 v. Texas production scenarios evaluated model parameters and assumptions and estimated a 41–66% WFB variability. The current model provides an insightful tool to improve complex, unsustainable and inefficient water use systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Chan, B. K. C., M. Y. Xiong, C. Chen, G. P. Zhang, and N. Franke. "A preliminary water footprint assessment of copper production in China." Water Supply 14, no. 6 (May 31, 2014): 1018–25. http://dx.doi.org/10.2166/ws.2014.059.

Full text
Abstract:
Scarcer water resources, stricter water regulations, decline in ore grade and increasing controversy on water use between local communities and mining operators have raised awareness of good water stewardship as being vital to running commercially viable mining operations. Water footprint assessment (WFA) is a holistic methodological framework that allows detailed quantification of direct and indirect water use in different sectors at various spatial and temporal scales. The ultimate aim of this study is to identify water footprint (WF) reduction targets, formulate response strategies to minimize water consumption and pollution and therefore improve the environmental, social and economic sustainability of the mining processes. The assessment will eventually serve as a model for other mines in northern China with water scarcity issues. The paper describes the preliminary WFA of copper cathodes, with particular emphasis on the methodology, approach, degree of details and areas for consideration. It focuses from ore extraction to final discharge to the river. Significant WF contribution is found in the process rather than the supply chain. The explorative approach applied in this real case scenario and the findings contribute to the literature body of the WFA field. This case study can provide helpful guidance for WFA practitioners when applying this methodological framework in addressing particular issues in mining processes.
APA, Harvard, Vancouver, ISO, and other styles
6

Hoekstra, Arjen Y., Ashok K. Chapagain, and Pieter R. van Oel. "Progress in Water Footprint Assessment: Towards Collective Action in Water Governance." Water 11, no. 5 (May 23, 2019): 1070. http://dx.doi.org/10.3390/w11051070.

Full text
Abstract:
We introduce ten studies in the field of water footprint assessment (WFA) that are representative of the type of papers currently being published in this broad interdisciplinary field. WFA is the study of freshwater use, scarcity, and pollution in relation to consumption, production, and trade patterns. The reliable availability of sufficient and clean water is critical in sustaining the supply of food, energy, and various manufactured goods. Collective and coordinated action at different levels and along all stages of commodity supply chains is necessary to bring about more sustainable, efficient, and equitable water use. In order to position the papers of this volume, we introduce a spectrum for collective action that can give insight in the various ways different actors can contribute to the reduction of the water footprint of human activities. The papers cover different niches in this large spectrum, focusing on different scales of governance and different stages in the supply chain of products. As for future research, we conclude that more research is needed on how actions at different spatial levels and how the different players along supply chains can create the best synergies to make the water footprint of our production and consumption patterns more sustainable.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, G. P., A. Y. Hoekstra, and R. E. Mathews. "Water Footprint Assessment (WFA) for better water governance and sustainable development." Water Resources and Industry 1-2 (March 2013): 1–6. http://dx.doi.org/10.1016/j.wri.2013.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Güney, Emre, and Nuray Demirel. "Water Footprint Assessment of Carbon in Pulp Gold Processing in Turkey." Sustainability 13, no. 15 (July 29, 2021): 8497. http://dx.doi.org/10.3390/su13158497.

Full text
Abstract:
This paper presents water the footprint assessment (WFA) of carbon in pulp (CIP) gold processing. The main objectives of the study are determining grey and blue water footprints and identifying the hotspots of the process. Results revealed that the total blue water footprint, including the extraction and processing of the gold, was found to be 452.40 m3/kg Au, and the grey WF to be 2300.69 m3/kg Au. According to the results, the lost return flow on the direct blue WF side has the largest contribution, with a value of 260.61 m3/kg Au, and the only source of the lost return flow is the tailing pond. On the indirect side, it is seen that the oxygen consumption used for the leaching process has the highest value, with 37.38 m3/kg. Among the nine contaminants in the mine tailings, the critical component responsible for the grey water footprint is by far arsenic, with a value of 1777 m3/kg Au. The results will be used to make recommendations for reducing water consumption in mining operations, for a better design for the environment. The study is a pioneering study, being the first implementation of water footprint assessment in a gold mine in Turkey.
APA, Harvard, Vancouver, ISO, and other styles
9

Menendez, Hector M., and Luis O. Tedeschi. "97 Impact of Regionalized Forage Quality and Quantity and Feed Grain Water Use on the Daily Texas Beef Cattle Water Footprint and Supply Chain Efficiency." Journal of Animal Science 98, Supplement_2 (November 1, 2020): 30. http://dx.doi.org/10.1093/jas/skz397.068.

Full text
Abstract:
Abstract Livestock water use sustainability is a growing concern in the beef cattle sector. The Water Footprint Assessment (WFA) method has been used to quantify the water footprint (WF) of beef products but does not suggest any specific management strategies to decrease the WF of beef cattle (WFB) within and across the beef supply chain. The WFB is primarily influenced by forage and grain production water uses (m3/t), which are directly linked to dry matter (kg/d) and water intake (L/d) and cattle growth (kg/d). Therefore, the objective of this study was to assess the alteration of forage quality and above-ground biomass production (t/ha) of annual ryegrass (Lolium multiflorum) and bermudagrass (Cynodon dactylon), in addition to published WF estimates for corn (Zea mays) and soybean (Glycine max) production (m3/t) on the daily Texas WFB. A dynamic Texas Beef Water Footprint Model (TXWFB) was developed to predict WFB, using the System Dynamic methodology and equations from the Ruminant Nutrition System (RNS) and Beef Nutrient Requirements (NASEM) models. Results indicated that forage and crop biomass production is a high-leverage solution to offset the daily Texas WFB (%∆ = -55 to 130). The alteration of forage TDN had less of an impact on the Texas WFB (%∆ = -39 to 17). An ANOVA with a Tukey Posthoc test indicated that all WFB scenarios were significantly different (P < 0.05) except for the low versus base TDN under low water use conditions scenario. The variability in the use of green and blue waters for grains indicated that the final WFB, in the feedlot phase, may be lower than the WFB in the cow-calf or stocker stages under certain efficiency conditions. Identification of high and low-leverage solutions may help Texas cattle stakeholders implement systemic strategies that aid in the efforts for sustainable beef water use.
APA, Harvard, Vancouver, ISO, and other styles
10

Bong, P. X. H., M. A. Malek, N. H. Mardi, and Marlia M. Hanafiah. "Cradle-to-Gate Water-Related Impacts on Production of Traditional Food Products in Malaysia." Sustainability 12, no. 13 (June 29, 2020): 5274. http://dx.doi.org/10.3390/su12135274.

Full text
Abstract:
Modern technology and life-style advancements have increased the demand for clean water. Based on this trend it is expected that our water resources will be under stress leading to a high probability of scarcity. This study aims to evaluate the environmental impacts of selected traditional food manufacturing products namely: tempe, lemang, noodle laksam, fish crackers and salted fish in Malaysia. The cradle-to-gate approach on water footprint assessment (WFA) of these selected traditional food products was carried out using Water Footprint Network (WFN) and Life Cycle Assessment (LCA). Freshwater eutrophication (FEP), marine eutrophication (MEP), freshwater ecotoxicity (FETP), marine ecotoxicity (METP) and water consumption (WCP), LCA were investigated using ReCiPe 2016 methodology. Water footprint accounting of blue water footprint (WFblue), green water footprint (WFgreen) and grey water footprint (WFgrey) were established in this study. It was found that total water footprint for lemang production was highest at 3862.13 m3/ton. The lowest total water footprint was found to be fish cracker production at 135.88 m3/ton. Blue water scarcity (WSblue) and water pollution level (WPL) of these selected food products were also determined to identify the environmental hotspots. Results in this study showed that the WSblue and WPL of these selected food products did not exceed 1%, which is considered sustainable. Based on midpoint approach adopted in this study, the characterization factors for FEP, MEP, FETP, METP and WCP on these selected food products were evaluated. It is recommended that alternative ingredients or product processes be designed in order to produce more sustainable lemang.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Water Footprint Assessment (WFA)"

1

Danielsson, Lina. "Water footprint calculationfor truck production." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220449.

Full text
Abstract:
Water is an irreplaceable resource, covering around two thirds of Earth´s surface, although only one percent is available for use. Except from households, other human activities such as agriculture and industries use water. Water use and pollution can make water unavailable to some users and places already exposed for water scarcity are especially vulnerable for such changes. Increased water use and factors such as climate change make water scarcity to a global concern and to protect the environment and humans it will be necessary to manage this problem. The concept of water footprint was introduced in 2002 as a tool to assess impact from freshwater use. Since then, many methods concerning water use and degradation have been developed and today there are several studies made on water footprint. Still, the majority of these studies only include water use. The aim of this study was to evaluate three different methods due to their ability to calculate water footprint for the production of trucks, with the qualification that the methods should consider both water use and emissions. Three methods were applied on two Volvo factories in Sweden, located in Umeå and Gothenburg. Investigations of water flows in background processes were made as a life cycle assessment in Gabi software. The water flows were thereafter assessed with the H2Oe, the Water Footprint Network and the Ecological scarcity method. The results showed that for the factory in Umeå the water footprint values were 2.62 Mm3 H2Oe, 43.08 Mm3 and 354.7 MEP per 30,000 cabins. The variation in units and values indicates that it is complicated to compare water footprints for products calculated with different methods. The study also showed that the H2Oe and the Ecological scarcity method account for the water scarcity situation. A review of the concordance with the new ISO standard for water footprint was made but none of the methods satisfies all criteria for elementary flows. Comparison between processes at the factories showed that a flocculation chemical gives a larger water footprint for the H2Oe and the Ecological scarcity method, while the water footprint for the WFN method and carbon footprint is larger for electricity. This indicates that environmental impact is considered different depending on method and that a process favorable regarding to climate change not necessarily is beneficial for environmental impact in the perspective of water use.
Vatten är en ovärderlig resurs som täcker cirka två tredjedelar av jordens yta men där endast en procent är tillgänglig för användning. Människan använder vatten till olika ändamål, förutom i hushåll används vatten bland annat inom jordbruk och industrier. Vattenanvändning och utsläpp av föroreningar kan göra vatten otillgängligt, vilket kan vara extra känsligt i de områden där människor redan lider av vattenbrist. Den ökade vattenanvändningen tillsammans med exempelvis klimatförändringar bidrar till att göra vattenbrist till en global angelägenhet och det kommer att krävas åtgärder för att skydda människor och miljö. År 2002 introducerades begreppet vattenfotavtryck som ett verktyg för att bedöma miljöpåverkan från vattenanvändning. Sedan dess har begreppet utvecklats till att inkludera många olika beräkningsmetoder men många av de befintliga studierna har uteslutit föroreningar och bara fokuserat på vattenkonsumtion. Syftet med denna rapport var att utvärdera tre olika metoder med avseende på deras förmåga att beräkna vattenfotavtryck vid produktion av lastbilar, med villkoret att metoderna ska inkludera både vattenkonsumtion och föroreningar. I studien användes tre metoder för att beräkna vattenfotavtrycket för två Volvo fabriker placerade i Umeå och Göteborg. En livscykelanalys utfördes i livscykelanalysverktyget Gabi, för att kartlägga vattenflöden från bakgrundsprocesser. Därefter värderades vattenflödena med metoderna; H2Oe, WFN och Ecological scarcity. Resultatet för fabriken i Umeå gav för respektive metod ett vattenfotavtryck motsvarande 2,62 Mm3 H2Oe, 43,08 Mm3 respektive 354,7 MEP per 30 000 lastbilshytter. Variationen i enheter och storlek tyder på att det kan vara svårt att jämföra vattenfotavtryck för produkter som beräknats med olika metoder. Studien visade att H2Oe och Ecological scarcity tar hänsyn till vattentillgängligheten i området. En granskning av metodernas överensstämmelse med den nya ISO standarden för vattenfotavtryck gjordes men ingen av metoderna i studien uppfyllde alla kriterier. Av de processer som ingår i fabrikerna visade det sig att vattenfotavtrycket för H2Oe och Ecological scarcity metoden var störst för en fällningskemikalie. För den tredje metoden och koldioxid var avtrycket störst för elektriciteten. Detta tyder på att olika metoder värderar miljöpåverkan olika samt att de processer som anses bättre ur miljösynpunkt för klimatförändringar inte nödvändigtvis behöver vara bäst vid vattenanvändning.
APA, Harvard, Vancouver, ISO, and other styles
2

Wärmark, Katarina. "Assessment of water footprint for civil construction projects." Thesis, Institutionen för vatten och miljö, Sveriges Lantbruksuniversitet (SLU), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-257147.

Full text
Abstract:
Water is an irreplaceable resource and the strain on it is getting tougher. Around 40 per cent of the water withdrawn in Europe is for industrial use. With a growing population and an increased demand for food and energy per capita, the demand and pressure on our water resources will increase. CEEQUAL is a rating scheme for the civil construction industry and has raised the water footprint as an important sustainability issue to consider when choosing building materials. There is however little knowledge within the industry of how to do this. This paper offers information regarding available water footprint tools and gives a practical example using two of the most developed methods; the Water Footprint Network (WFN) method and Life Cycle Analysis (LCA). The case study showed that the results are very dependent on which method one chooses. The LCA method gives a bigger footprint since it is more inclusive than the WFN method. There are however some similarities when looking at which of the materials that are high-risk and low-risk materials when it comes to freshwater footprint. Among the studied products, steel was the material that uses and consumes the most water per kilogram, and could also be imported from water scarce areas. Fill material had a low water consumption and use per kilogram, but the huge amount used in the project makes it the material that used and consumed most water in total. Fill material is most often produced locally because of the large amount used, and was therefore not as significant when weighting the results by a water stress index. Calculating a water footprint can be used as a part of declaring the environmental performance of a project by including it in an Environmental Product Declaration (EPD), a sustainability report or by setting up an Environmental Profit and Loss (E P&L) account for water. It can also be used to identify and assess risks related to water use.
Färskvatten är en begränsad, men förnybar resurs som på grund av sina unika egenskaper saknar substitut i många processer och användningsområden. Resursen är ojämnt fördelad över världen och många lever idag i vattenstressade regioner. I Europa står industrisektorn för cirka 40 procent av det totala vattenuttaget. Med en växande befolkning och ökad efterfrågan på mat och energi per capita kommer konkurrensen om vattenresurserna att bli hårdare. Vi måste därför anpassa oss efter denna verklighet och framtid och börja använda våra färskvattenresurser mer effektivt. Certifieringssystemet CEEQUAL har lyft vattenavtryck för byggprodukter som en viktig fråga vid val av material. Inom branschen vet man i dagsläget inte hur man ska hantera den frågan och utgångspunkten för denna rapport är att ge vägledning bland de metoder som finns tillgängliga idag samt att ge ett praktiskt exempel på två av de mest utvecklade metoderna, Water Footprint Network (WFN) metoden och livscykelanalys (LCA). Som ett praktiskt exempel utfördes en fallstudie som visade att resultatet av en vattenavtrycksanalys beror väldigt mycket på vilken metod som väljs, vilket innebär att harmonisering inom branschen är viktigt. LCA-metoden ger ett större avtryck än WFNmetoden då metoden inkluderar fler typer av vattenanvändning. Av de studerade materialen visade sig stål vara det som både använder och förbrukar mest vatten per kilogram. Det är också ett material som i betydande grad importeras från regioner som kan vara vattenstressade. Fyllnadsmaterial var ett av materialen med lägst vattenavtryck per kilogram, men då det används i så stora mängder i anläggningsprojekt är det detta material som bidrar med störst totalt vattenavtryck. På grund av den stora mängd som används utvinns fyllnadsmaterial dock oftast lokalt. Detta gör att vattenavtryckets signifikans minskar när det viktas med ett vattenstressindex, då det generellt finns gott om vatten i Sverige. Vattenavtryck kan användas till deklaration av potentiell påverkan på vattenresurser genom att inkludera resultatet i en miljövarudeklaration eller hållbarhetsrapport. Det kan även användas i ett naturkapitalkonto (E P&L) för vatten eller för att identifiera risker kopplade till vattenanvändning samt ge vägledning vid materialval och val av leverantör.
APA, Harvard, Vancouver, ISO, and other styles
3

Muthukumar, Raveena. "LCA Based Water Footprint Assessment for a White Shirt." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288513.

Full text
Abstract:
The white shirt is widely chosen attire by the people for its comfort and aesthetics. With rising population growth and demand for clothing, the production of white cotton shirts will be increased. The production of the white cotton shirt has various environmental impacts and also leads to water scarcity issues. Awareness must be increased with the brands, organisations and consumer about the water scarcity issues. With the help of water footprint analysis it is possible to calculate the water impacts in the supply chain of the product. It is also equally important to calculate the water footprint of the entire LCA of shirt as the use phase plays a prominent role.  The thesis is conducted to understand the water footprint and also assess the water performance for a white cotton shirt. The main purpose of the study is as follows: To find the water footprint impacts for the lifecycle of a white shirt produced and sold  To find the major water hotspots in Textile supply chain while producing a Shirt  A LCA based water footprint assessment is carried out for white shirt. A water scarcity indicator (WSI) is used to calculate the water impacts involved in the lifecycle of the shirt. The thesis is conducted such that there are two cases, namely, case 1 and case 2. Case 1 includes cotton cultivation, fabric manufacturing, distribution and retail, use phase and waste disposal. Case 2 includes fabric manufacturing, distribution and retail, use phase and coproduct in the form of a shirt. In these cases avoided burden approach with allocation method is used to conduct the study. The major WSI hotspots in LCA of the white shirt are cotton cultivation and washing, drying and finishing laundry(in use phase).  A sensitivity analysis is carried out from the results of the thesis, majorly focusing on the identified hotspots and sensitive parts. The WSI impacts on sourcing organic cotton and reducing the wash cycle (in use phase) were identified. From the sensitivity analysis, it was clear that sourcing organic cotton by the company and reducing the wash cycles by the consumer tremendously reduced the WSI and water scarcity issues. Sensitivity analysis also showed that more the shirt is avoided, more benefits is considered. Further research and recommendation are stated based on the result and analysis.
Den vita skjortan är allmänt vald klädsel av folket för sin komfort och estetik. Med ökande befolkningstillväxt och efterfrågan på kläder kommer produktionen av vita bomullströjor att öka. Produktionen av den vita bomullsskjortan har olika miljöpåverkan och leder också till problem med vattenbrist. Medvetenheten måste ökas med varumärkena, organisationerna och konsumenterna om vattenbristen. Med hjälp av analys av vattenavtryck är det möjligt att beräkna vattenpåverkan i produktens försörjningskedja. Det är också lika viktigt att beräkna vattenavtrycket för hela LCA-tröjan eftersom användningsfasen spelar en framträdande roll.  Avhandlingen genomförs för att förstå vattenavtrycket och även bedöma vattenprestanda för en vit bomullsskjorta. Huvudsyftet med studien är följande:  Att hitta effekterna på vattenavtrycket för livscykeln för en vit skjorta som produceras och säljs Att hitta de viktigaste hotspotsna i textilförsörjningskedjan när du producerar en skjorta  En LCA-baserad utvärdering av vattenavtryck utförs för vit skjorta. En vattenbristindikator (WSI) används för att beräkna de vattenpåverkan som är involverade i skjortans livscykel. Avhandlingen genomförs så att det finns två fall, nämligen fall 1 och fall 2. Fall 1 inkluderar bomullsodling, tygtillverkning, distribution och detaljhandel, användningsfas och avfallshantering. Fall 2 omfattar tygtillverkning, distribution och detaljhandel, användningsfas och samprodukt i form av en skjorta. I dessa fall används metod för att undvika bördor med fördelningsmetod för att genomföra studien. De stora WSI-hotspotsna i LCA för den vita skjortan är bomullsodling och tvätt, torkning och efterbehandling av tvätt (i användningsfas).  En känslighetsanalys utförs från avhandlingens resultat med huvudsakligen fokus på identifierade hotspots och känsliga delar. WSI-effekterna på att köpa organisk bomull och minska tvättcykeln (i användningsfas) identifierades. Från känslighetsanalysen var det tydligt att inköp av ekologisk bomull från företaget och minskade tvättcykler av konsumenten kraftigt minskade problem med WSI och vattenbrist. Ytterligare forskning och rekommendation anges baserat på resultat och analys.
APA, Harvard, Vancouver, ISO, and other styles
4

Pahlow, Markus, Jen Snowball, and Gavin Fraser. "Water footprint assessment to inform water management and policy making in South Africa." SciELO, 2015. http://hdl.handle.net/10962/68813.

Full text
Abstract:
Publisher version
One method to inform decisions with respect to sustainable, efficient and equitable water allocation and use is water footprint assessment (WFA). This paper presents a preliminary WFA of South Africa (SA) based on data for the period 1996-2005. Crop production was found to contribute about 75% of the total water footprint of national production. The total water footprint of crop production is mainly composed of five crops: maize, fodder crops, sugarcane, wheat and sunflower seed, which account for 83% of the crop water footprint. The average water footprint of a South African consumer is 1 255 m3/yr, below the world average of 1 385 m3/yr, and is dominated by the consumption of meat (32%) and cereals (29%). About one fifth of this water footprint of consumption is external to SA. While SA is a net virtual water importer, the virtual water trade analysis revealed that a large share of blue water consumption is related to export. Sustainability concerns are that the major river basins face severe blue-water scarcity for extended periods of the year, and that water pollution levels related to nitrogen and phosphorus were found to be unsustainable in all river basins in SA. Efficient allocation and use of water is investigated by means of comparing the consumptive water footprint to global benchmark values, as well as the economic green- and blue-water productivity and the economic land productivity of the crops cultivated in SA. Furthermore, crops with specific potential for biofuel production are assessed. Lastly, recommendations to address the identified issues are given.
APA, Harvard, Vancouver, ISO, and other styles
5

Vinyes, i. Guix Elisabet. "Environmental assessment of Catalan fruit production focused on carbon and water footprint." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/393899.

Full text
Abstract:
Durant l'última dècada, el sector agrícola ha passat de les pràctiques tradicionals a mètodes més intensius per tal d'augmentar la seva productivitat, com a resposta a la creixent demanda d'una població creixent. En conseqüència la producció d'aliments ha desencadenat una important contribució a l'esgotament dels recursos naturals i l'impacte ambiental. Per desenvolupar una gestió ambiental adequada, és essencial per a les indústries de conèixer els principals indicadors ambientals dels seus productes i processos : emissions, consum d’energia i consum d'aigua, generació de residus, eficiència, etc. Tot això pot ajudar als productors a millorar la gestió dels seus sistemes productius, donar un valor ambiental afegit al seu producte, i proporcionar més informació ambiental als consumidors. Tenint en compte que la poma i préssec són dues fruites significatives en els països mediterranis, i que la majoria de les publicacions sobre els impactes ambientals de la producció de fruita es basen en un únic any productiu, aquest estudi intenta realitzar un anàlisi ambiental de la producció de poma i préssec utilitzant amb un enfocament d'Anàlisi del Cicle de Vida (ACV), amb la finalitat de proporcionar nova informació ambiental sobre la fruita, i també introduir una anàlisi des de la perspectiva plurianual per tal d’identificar la variabilitat dels impactes ambientals relacionats amb el rendiment anual d’una plantació, les condicions geogràfiques i climàtiques. Els resultats s'expressen en termes de petjada de carboni i petjada hídrica, per tal de comparar aquests conceptes des d'un punt de vista metodològic, i també informar al sector de les fruita i dels consumidors. La petjada de carboni, quantifica les emissions CO2 equivalents relacionades amb el cicle de vida d'un producte o servei en termes d'escalfament global. La petjada hídrica mesura l'aigua que es consumeix per desenvolupar un producte d'un bé o un servei. Aquest estudi segueix un marc interdisciplinari, tenint en compte les següents etapes en el procés de producció de la fruita: fase agrícola, comercialització, distribució, el consum i disposició final, així com l’obtenció dels materials i substàncies relacionats amb la producció de fruita. Els sistemes estudiats són horts de poma i préssec situats a Catalunya. Les dades utilitzades han estat recollides directament dels horts de la Unitat d'Horticultura Ambiental de l'Institut de Recerca per a l'Agricultura i l'Alimentació i Tecnologia (IRTA), ubicat a la província de Lleida, i abarca entre 9-15 anys de producció real. Aquesta tesi contribueix a detectar els punts crítics de l'impacte ambiental relacionat amb la producció de fruita des d’una perspectiva d'anàlisi del cicle de vida, així com avaluar les metodologies existents per calcular la petjada de carboni i d’aigua, a més de desenvolupar nous aspectes metodològics, i generar noves dades sobre el tema, que seran útils pels productors de fruita i també pels altres actors involucrats en la producció de fruita. Encara que l'estudi demostra que l'ACV és una eina útil per estimar l'impacte associat a un producte o un procés, i també pel càlcul de la petjada de carboni i la petjada hídrica, encara hi ha algunes qüestions per resoldre pel que fa la qualitat de les dades i base de dades disponibles per quantificar l’impacte ambiental, ja que a vegades és necessari treballar amb dades genèriques, que poden generar variabilitat en els resultats.
Durante la última década, el sector agrícola ha pasado de las prácticas tradicionales a métodos más intensivos con el fin de aumentar su productividad, como respuesta a la creciente demanda de una población creciente. En consecuencia la producción de alimentos ha generado una importante contribución al agotamiento de los recursos naturales y el cambio climático. Para desarrollar una gestión ambiental adecuada es esencial para las industrias conocer los principales indicadores ambientales de sus productos y procesos: emisiones, consumo de energía y agua, generación de residuos, eficiencia, etc. Conocer esta información puede ayudar a los productores a mejorar la gestión de sus sistemas productivos, dar un valor ambiental añadido a sus productos, y también proporcionar más información a los consumidores. Teniendo en cuenta que la manzana y melocotón son dos frutas significativas en los países mediterráneos, y la mayoría de las publicaciones sobre los impactos ambientales de la produccion de fruta se basan en un año productivo único, este estudio pretende realizar un análisis ambiental de la producción de manzana y melocotón utilizando la metodología del Análisis de Ciclo de Vida (ACV), con el fin de proporcionar nueva información ambiental sobre la fruta, y también introducir un análisis de la perspectiva plurianual para identificar la variabilidad de los impactos ambientales relacionados con el rendimiento anual de las plantaciones, las condiciones geográficas y climáticas. Los resultados se expresarán en términos de huella de carbono y de agua, con el fin de comparar estos conceptos desde un punto de vista metodológico, y que para que la información pueda servir para informar sector de la fruta y de los consumidores. La huella de carbono cuantifica las emisiones de CO2 equivalentes relacionadas con el ciclo de vida de un producto o servicio en términos de calentamiento global. La huella hídrica cuantifica el agua que se consume para desarrollar un producto de un bien o un servicio. Este estudio sigue un marco interdisciplinario, teniendo en cuenta las siguientes etapas en el proceso de producción de la fruta: fase agrícola, distribución, consumo, residuos, así como el sistema relacionado con los materiales y sustancias relacionados con la producción de fruta. Los sistemas estudiados son huertos de manzano y melocotón situados en Cataluña. Los datos utilizados han sido recogidos directamente de un huerto de la Unidad de Horticultura Ambiental en el Instituto de Investigación para la Agricultura y la Alimentación y Tecnología (IRTA), ubicado en la provincia de Lleida en el noreste de España, el estudio abarca entre 9-15 años de producción real. Esta tesis contribuye a detectar los puntos críticos del impacto ambiental relacionados con la producción de fruta con una perspectiva de ACV, así como evaluar las ventajas y debilidades de las metodologías existentes para calcular la huella de carbono y huella de agua, además de desarrollar nuevos aspectos metodológicos y la generación de nuevos datos sobre el tema para los productores de frutas y otros actores involucrados en ciclo de producción de fruta. Aunque el estudio demuestra que el ACV es una herramienta útil para estimar el impacto asociado a un producto o proceso y para el cálculo de los indicadores huella de carbono i huella hídrica, existen todavía algunas cuestiones por resolver en cuanto a la calidad de las bases de datos de impacto ambiental y los datos disponibles, porque a veces, es necesario trabajar con datos genéricos.
During the last decade, the agricultural sector has changed from traditional practices to more intensive methods in order to increase their productivity, as a response to the growing demand of an increasing population. Consequently food production has become an important contribution to the depletion of natural resources and climate change. To develop a proper environmental management it is essential for industries to know the main environmental indicators of their products and production processes: emissions, energy and water consumption, waste generation, efficiency, etc. It also can help producers to improve their production system management, give an added environmental value to their product, and provide more information to consumers. Considering that apple and peach are two significant fruits in the Mediterranean countries, and most publications on environmental impacts of fruit productions are based on one single productive year, this study attempts to perform an environmental analysis of apple and peach production using Life Cycle Assessment (LCA) approach, in order to provide new environmental information of fruit, and also introduce a multiyear perspective analysis to identify the variability of the environmental impacts related to annual orchard yield, geographic and climatic conditions. The results will be expressed in terms of Carbon footprint (CF) and Water Footprint (WF) terms, In order to compare these concepts from a methodological point of view, and how those can be introduced to inform fruit sector and the consumers. The CF measures the emissions of CO2eq related with the life cycle of a product or services in terms of Global warming. WF measures the water consumed to develop a product a good or a service in terms of litres. This study follows an interdisciplinary framework, considering the following stages in the process of fruit production: agricultural stages, retail, consumption ad disposal, as well as the back-ground system related with materials and substances production. The systems studied are apple and peach orchards located in Catalonia. Data used have been collected directly from an orchard of the Environmental Horticulture Unit at the Institute of Agriculture and Food Research and Technology (IRTA) located in the North East of Spain, and covers between 9-15 years of real production. This dissertation contributes to detect the hot spots of the environmental impact related to fruit production with a perspective of LCA, as well as evaluate the advantages and weakness the existing methodologies to calculate the Carbon and water Footprints, besides developing methodological aspects and generating new data on the topic and fruit producers and all the actors involved in fruit production. Although the study demonstrates that LCA is a useful tool for estimating the impact associated with a product or process and calculate the CF and WF indicators, there are still some issues to be resolved regarding to the quality of environmental impact databases and data available because sometimes, it is needed to work with generic data, and it can generate variability in the results.
APA, Harvard, Vancouver, ISO, and other styles
6

Egeskog, Ylva, and Jannik Scheer. "Life Cycle and Water Footprint Assessment of Palm Oil Biodiesel Production in Indonesia." Thesis, KTH, Energi och klimatstudier, ECS, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ZUCCHINELLI, MARIA. "ASSESSMENT OF WATER FOOTPRINT METHODOLOGIES TO EVALUATE THE IMPACTS OF FOOD PRODUCTION AND CONSUMPTION ON WATER RESOURCES." Doctoral thesis, Università Cattolica del Sacro Cuore, 2021. http://hdl.handle.net/10280/95713.

Full text
Abstract:
La produzione globale di cibo provoca impatti sia sull’ ambiente che sulla salute umana. Tra le molteplici sfide che la comunità globale deve affrontare, le risorse di acqua dolce della Terra sono state identificate come pericolosamente soggette a una crescente pressione sia in termini quantitativi che qualitativi. Una profonda comprensione del nesso acqua-cibo è pertanto cruciale per lo sviluppo sostenibile. Nella presente tesi è stato applicato il concetto di Water Footprint (WF) calcolata attraverso differenti metodologie – ovvero attraverso approcci di tipo volumetrico e per la quantificazione dei potenziali impatti – al fine di stimare gli impatti sul consumo di acqua conseguenti produzione e consumo di cibo. Per valutare diverse tecniche di produzione, sono state confrontate le prestazioni ambientali di due vigneti coltivati con metodi di agricoltura convenzionale e biologica. Inoltre, sono stati studiati gli impatti sulle risorse idriche in relazione a diversi scenari di consumo alimentare in Italia e Danimarca, per indagare come le scelte alimentari dei consumatori rappresentino una strategia di riduzione degli impatti sull’ acqua. Nel calcolo degli impatti ambientali, i risultati hanno evidenziato il ruolo chiave dell'origine dei prodotti alimentari consumati, insieme alla tipologia dei prodotti e la riduzione di sprechi alimentari.
Global food production has increasingly affected both the environment and human health in substantial and remarkable ways. Among the many concerns global community has to face, Earth’s freshwater resources have been identified as dangerously subject to increasing pressure in the form of consumptive water use and pollution. A deep understanding of the water-food nexus is crucial to support the exploration of more suitable avenues for a sustainable development. In this work, the concept of water footprint (WF) presented by different methodologies – volumetric and impacts oriented approach – has been applied to link impacts on water consumption to the food production and consumption. With regard to the study of the production side, comparison of environmental performances of two vineyard where conventional and organic viticulture were applied, has been performed. Additionally, impacts on water resources related to different Italian and Danish dietary patterns have been investigated to understand the positive impacts that demand-side solutions can have. The studies highlighted that the origin of consumed foodstuffs played a key role in the calculation of local environmental impacts. Finally, the analysis showed that consumer’s choices could tackle environmental impact on water use by changing their consumption patterns, selecting less water-demanding products and reducing food waste.
APA, Harvard, Vancouver, ISO, and other styles
8

Flach, Rafaela. "Global Systems, Local Impacts: A Spatially-Explicit Water Footprint and Virtual Trade Assessment of Brazilian Soy Production." Thesis, Linköpings universitet, Tema Miljöförändring, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119703.

Full text
Abstract:
Global trade and increasing food demand are important drivers of impacts in the water system across scales. This study coupled a spatially-explicit physical account of trade between Brazilian municipalities with a water footprint accounting model, in order to analyse water footprints of Brazilian soy produced for domestic and international consumption, and assess their relevance in the context of water scarcity and competing demands for water resources. The water footprints of Brazilian soy production were assessed for different levels of spatial-explicitness for comparison. The Swedish water footprints were analysed within this framework to illustrate the use of the methodology. As a result, temporal and geographical patterns of variability of water the footprints related to Brazilian soy production, attributed to different consumers in the global market, were identified. The study found the methodology to unveil important processes connected to economic and trade drivers, as well as to variability in climate and production yields. It was found that important regional variability was not considered or fully understood when accounting for water footprints as a national aggregate. Opportunities for improvement and further research were also discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Moberg, Emma. "The water footprint of coffee production in Miraflor, Nicaragua." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281133.

Full text
Abstract:
A water footprint is a tool for assessing the impacts of freshwater use by mapping the water use of the production of a good or a service, a process in a production chain, a business or even of a whole country. One of the most commonly used methods for calculating the water footprint was developed by the Water Footprint Network (WFN). The objective of this study was to account for the water footprint of the production of coffee in the area of Miraflor, Nicaragua, using the WFN method. The study aimed to highlight where improvements can be made regarding water resources management, both with respect to the quantity of the water appropriated in the different process steps, as well as concerning the treatment of residues of the coffee production. The results of the study show a water footprint of 20 049 m3 per ton of harvested coffee in Miraflor. This equals a consumption of more than 6 000 000 m3 of water when considering the overall production of the harvest of 2015/2016. The results pinpoint the growing phase as crucial with 98.1 % of the total water footprint. Nicaragua and the region where Miraflor is located are having increasing problems with water scarcity due to drought and contamination of water resources. Together with these circumstances, the results of the study show that the current management should be improved in order to minimize the impacts on local water resources and the environment. It is mainly the application of pesticides and fertilizers in the cultivation of the coffee that give rise to the large water footprint. Furthermore, the current management violates the law restricting the discharge of effluent waters from coffee processing plants. Another important factor contributing to the water footprint yields in the consumption of rainwater via evapotranspiration by the crops in field. In order to reduce the water footprint there should be a more conscious use of pesticides and fertilizers as well as a development in the treatment of the effluent water. The latter factor can be elaborated by considering new installations where even smaller ones probably could make a considerable change. Other management practices to decrease the water footprint consist of generating a higher yield per hectare of land.
Vattenfotavtryck är ett verktyg för att bedöma miljöpåverkan från användningen av vatten. Med ett vattenfotavtryck kartläggs hur vatten används för produktionen av en vara, för en process i en produktionskedja, ett företag eller för ett helt land. En av de mest använda metoderna för beräkning av vattenfotavtryck utvecklades av Water Footprint Network (WFN). Syftet med denna studie var att genom användning av WFN:s metod beräkna vattenfotavtrycket för produktionen av kaffe i området Miraflor i Nicaragua. Studien ämnade visa var förbättringar kan göras i vattenresurshanteringen, både vad gäller mängden vatten som används i de olika produktionsstegen som i behandlingen av restvattnet från kaffeproduktionen. Resultatet från studien visar ett vattenfotavtryck på 20 049 m3 per ton skördat kaffe i Miraflor. Sett till hela skörden för säsongen 2015/2016 ger detta ger en total konsumtion av mer än 6 000 000 m3 vatten. Resultatet påvisar att vegetationsperioden är den i särklass största bidragande faktorn till kaffeproduktionens vattenfotavtryck med 98,1 % av det totala avtrycket. Nicaragua och regionen där Miraflor ligger har alltjämt ökande problem med vattenbrist på grund av torka och föroreningar av vattenresurser. Studiens resultat visar tillsammans med denna bakgrund att nuvarande tekniker i kaffeproduktionen i Miraflor bör förbättras för att minimera konsekvenser för lokala vattenresurser och miljön. Främst är det användningen av bekämpningsmedel och gödsel som ger upphov till det stora vattenfotavtrycket. Kaffeproduktionen orsakar därtill överträdelser av gällande bestämmelser om värden på vattenkvalitetsparameterar i restvatten från kaffeproduktion. En ytterligare betydande faktor för vattenfotavtrycket som påvisas i studien är konsumtionen av regnvatten via evapotranspiration från grödorna i fält. För att minska vattenfotavtrycket bör i första hand en mer medveten användning av bekämpningsmedel och gödsel införas. Därtill bör det ske en förbättring i hanteringen av utsläppsvatten. Den senare faktorn kan utvecklas genom att nya installationer införs där även mindre sådana troligtvis skulle ge en betydande skillnad. Andra metoder för att minska vattenfotavtrycket ligger i att generera en högre skörd per hektar land.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Ruisi. "Assessment of Water Footprint in Industrial Park : A Case Study of Yixing Economic Development Zone." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-177393.

Full text
Abstract:
This thesis has established models of water footprint in the Eco-industrial Park. The model was presented in three different levels, namely the level of Eco-industrial Park, the level of enterprises and the level of products. There are two parts of each model. The first part is the schema tization of different components of the water footprint. The second part is the mathematical model of water footprint counting.   After the models, we made several case studies using these m odels established in this thesis. The first case is the water footprint assessment of the Yixing Economic Development Zone (YEDZ). There are water footprints of the YEDZ in the year of 2009, 2012 and 2015 separately, which are 6787613.6 10 × m3,  61110018 10 × m3 and 62413749 10 ×  m3. Considering the different scales of the YE DZ, for example, the increasing industrial production and economic development, we also make the water footprints per capital of the YEDZ in the year of 2009, 2012 and 2015. The results are 19690.34 ×103m3/capita, 24667.07 ×103m3/capita and 48274.98 ×103m3/capita.  In the level of Eco-industrial Park,  we take several enterprises as case studies. The enterprises are within different types of industries including Chemical industry, Textile and dye ing industry, Optoelectronic industry, and Mechanical, Photovoltaic industry and machinery manufacture industry, etc. These enterprises are investigated by surveys and statistical documents. From  the results, we can see that the enterprises with big footprint are mostly in Chemical industry, Textile and  dyeing industry and Photovoltaic industry.  In order to make the data more reasonable, we also calculated the water footprint per unit out-put value. What’s interesting, the enterprises in Chemical industry, Textile and dyeing industry and Photovoltaic industry also have big water footprint per unit out-put value.  In the level of product, we take the surfactants produced by Jiangsu Guanyang Fine Chemical Co., Ltd. This enterprise has moved to a new place and made some improvement in the production. On one hand, they have increased the scale of production for three times than before; on the other hand they have adopted a lot of water saving facilities and measures, such as the use of rain wa ter, the increase of water recycling and the involvement of water cascade utilization. So in this thesis, we comp ared the water footprint of surfactants before and after moving. The Water Footprint of surfactants per year before moving is 22914.8(m3), after moving is 56804.4 (m3). However, the Water Footprint of surfactants before moving  is  2.52 (m3/t), while after moving is 2.08 (m3/t).  Finally, we gave some response options after the analysis and discussion of the results. The suggestions are given in three levels as well. The first one is to the gov ernment or so-called policy makers; the second one is to the enterprises; the third one is to the staff members in the Yixing Economic Development Zone.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Water Footprint Assessment (WFA)"

1

Tickner, David, and Ashok Kumar Chapagain. Water Footprint Assessment. Routledge, 2017. http://dx.doi.org/10.4324/9781351274081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Progress in Water Footprint Assessment. MDPI, 2019. http://dx.doi.org/10.3390/books978-3-03921-039-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aldaya, Maite M. The Water Footprint Assessment Manual. Routledge, 2012. http://dx.doi.org/10.4324/9781849775526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

The Water Footprint Assessment Manual. Routledge, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muthu, Subramanian Senthilkannan. Water Footprint: Assessment and Case Studies. Springer Singapore Pte. Limited, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Water Footprint: Assessment and Case Studies. Springer Singapore Pte. Limited, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Water Footprint Assessment: A Guide for Business. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tickner, David, and Ashok Kumar Chapagain. Water Footprint Assessment: A Guide for Business. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tickner, David, and Ashok Kumar Chapagain. Water Footprint Assessment: A Guide for Business. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tickner, David, and Ashok Kumar Chapagain. Water Footprint Assessment: A Guide for Business. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Water Footprint Assessment (WFA)"

1

Alba-Rodríguez, Mª Desirée, Rocío Ruíz-Pérez, M. Dolores Gómez-López, and Madelyn Marrero. "A Model for the Assessment of the Water Footprint of Gardens that Include Sustainable Urban Drainage Systems (SUDS)." In Water Footprint, 61–102. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4377-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hoekstra, Arjen Y. "Water Footprint Assessment in Supply Chains." In Sustainable Supply Chains, 65–85. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29791-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kolahi, Mahdi, Saeideh Heydari, Mina Ansari, and Farzaneh Nouraei. "Assessment of Citizens’ Virtual Water Footprint." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 755–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Allen H., Li-Hsiang Wang, Ching-Wen Fan, Yu-Zih Lin, Jia-Hung Lin, Kai-Fu Yao, Pi-Fong Nien, Yu-Ting Feng, and Wan-Mu Kuo. "Carbon Footprint Assessment of Water Supply Systems in Taiwan." In Design for Innovative Value Towards a Sustainable Society, 318–22. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3010-6_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Farell, Carole, Sylvie Turpin, and Nydia Suppen. "Assessment of the Water Footprint of Wheat in Mexico." In Towards Life Cycle Sustainability Management, 161–70. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1899-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suhail, Mohammad, and Rakhshanda F. Fazli. "Assessment of water footprint under wheat cultivation in Uttar Pradesh." In Contemporary Issues in Sustainable Development, 30–49. Abingdon, Oxon ; New York, NY : Routledge, 2020.: Routledge India, 2020. http://dx.doi.org/10.4324/9781003141020-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Islam, Razzaqul, Chowdhury S. Jahan, Quamrul H. Mazumder, Suman Miah, and Ferozur Rahaman. "Water Footprint and Governance Assessment for Sustainable Water Resource Management in Drought-Prone Barind Area, NW Bangladesh." In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, 371–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01572-5_87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mansouri H-E.M, Hafed-Eddine, Fatima Belaitouche, Nadir Ben Hamiche, Saliha Arbaoui, Abdelghani A, Amir Aieb, Tahar Aouchiche, Moura Atmaniou, Sofiane Khenteche, and Khodir Madani. "Water Footprint Assessment of the Tichi-Haf Dam Waters (Soummam Valley, Bejaia, Algeria) According to ISO 14044 and ISO 14046 Under the 6 and 12 UN-SDGs." In Sustainable Energy-Water-Environment Nexus in Deserts, 287–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76081-6_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Motoshita, Masaharu, Norihiro Itsubo, Kiyotaka Tahara, and Atsushi Inaba. "Damage Assessment Model for Freshwater Consumption and a Case Study on PET Bottle Production Applied New Technology for Water Footprint Reduction." In Towards Life Cycle Sustainability Management, 399–410. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1899-9_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tickner, David, and Ashok Kumar Chapagain. "Water Footprint Applications." In Water Footprint Assessment, 35–52. Routledge, 2017. http://dx.doi.org/10.4324/9781351274081-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Water Footprint Assessment (WFA)"

1

"Internal water footprint assessment of Saudi Arabia using the Water footprint Assessment Framework (WAF)." In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.b1.multsch.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nursanti, Ida, Much Djunaidi, Hafidh Munawir, and Ekalia Yanasari Putri. "Water footprint assessment of Indonesian Batik production." In HUMAN-DEDICATED SUSTAINABLE PRODUCT AND PROCESS DESIGN: MATERIALS, RESOURCES, AND ENERGY: Proceedings of the 4th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5043012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Jing, Shuying He, and Kai Yang. "Assessment System for Water Conservation Society Based on Water Footprint." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cooper, Tom, and Joyann Pafumi. "Performing a water footprint assessment for a semiconductor industry." In 2010 IEEE International Symposium on Sustainable Systems and Technology (ISSST). IEEE, 2010. http://dx.doi.org/10.1109/issst.2010.5507719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fernández-Iglesias, Ana, Sara Andrés, Rocío Luiña Fernandez, David Pecharromán, and Jose Valeriano Alvarez Cabal. "Differential water footprint assessment – conventional versus paste tailings disposal." In 18th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Perth, 2015. http://dx.doi.org/10.36487/acg_rep/1504_43_fernandez-iglesias.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moni, Syazwan N., Edriyana A. Aziz, and M. A. Malek. "Introduction of water footprint assessment approach to enhance water supply management in Malaysia." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5005719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muhammad-Muaz, A., and M. H. Marlia. "Water footprint assessment of oil palm in Malaysia: A preliminary study." In THE 2014 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4895305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"The Carbon and Water Footprint Assessment of Cassava-based Bioethanol Production in Thailand." In International Conference on Biological, Environment and Food Engineering. International Institute of Chemical, Biological & Environmental Engineering, 2015. http://dx.doi.org/10.15242/iicbe.c0515039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Xin, Xiaojing Shen, Wangcheng Li, Xu Wu, Chaochao Li, Jie Wang, and Min Mu. "The Assessment of Water Resources Security in Ningxia Based on Ecological Footprint Model." In 2021 7th International Conference on Hydraulic and Civil Engineering & Smart Water Conservancy and Intelligent Disaster Reduction Forum (ICHCE & SWIDR). IEEE, 2021. http://dx.doi.org/10.1109/ichceswidr54323.2021.9656327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Toulios, Leonidas, Mireia Romaguera, Eman Calleja, Gheorghe Stancalie, Argentina Nertan, Piotr Struzik, Anna Dalla Marta, et al. "Potential of remote sensing techniques to improve the agriculture water footprint assessment and the virtual water trade accounting." In First International Conference on Remote Sensing and Geoinformation of Environment, edited by Diofantos G. Hadjimitsis, Kyriacos Themistocleous, Silas Michaelides, and George Papadavid. SPIE, 2013. http://dx.doi.org/10.1117/12.2027568.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Water Footprint Assessment (WFA)"

1

de Paiva Seroa da Motta, Raquel. Water footprint of dairy production in Ethiopia : An assessment on commercial dairy farming and milk processing within a 200 km radius from Addis Ababa. Wageningen: Wageningen Livestock Research, 2019. http://dx.doi.org/10.18174/494591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography