Academic literature on the topic 'Water control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Water control"

1

Thomas, Carolyn, Jennifer Sedell, Charlotte Biltekoff, and Sara Schaefer. "Abundance, Control and Water! Water! Water!" Food, Culture & Society 19, no. 2 (April 2, 2016): 251–71. http://dx.doi.org/10.1080/15528014.2016.1178533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chovanec, A., W. R. Vogel, and G. Winkler. "Aspects of water pollution control of Austrian rivers." River Systems 10, no. 1-4 (September 18, 1996): 381–88. http://dx.doi.org/10.1127/lr/10/1996/381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sanders, D. W. "Water erosion control." Climatic Change 9, no. 1-2 (1986): 187–94. http://dx.doi.org/10.1007/bf00140535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamura, Katsumi. "Water Quality Control for Delicious Water." Japan journal of water pollution research 9, no. 4 (1986): 187. http://dx.doi.org/10.2965/jswe1978.9.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dong, Mianmian, and Baoyi Guo. "Research on Control Algorithm of Water-tank Water Level Control System." International Journal of Control and Automation 9, no. 12 (December 31, 2016): 1–10. http://dx.doi.org/10.14257/ijca.2016.9.12.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chambers, Jerre Kelly, and Marvin Lawrence Talansky. "AUTOMATED WATER CONTROL FOR WATER COOLED LASERS." Ophthalmic Surgery, Lasers and Imaging Retina 19, no. 2 (February 1988): 142–43. http://dx.doi.org/10.3928/1542-8877-19880201-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bhagat, Naseeb Kumar, Dr Manohar lal Dr. Manohar lal, and Radika Mhajan. "Cause Effects and Control of Water Pollution in River Tawi." Indian Journal of Applied Research 4, no. 7 (October 1, 2011): 157–58. http://dx.doi.org/10.15373/2249555x/july2014/48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

TD, Nikolay. "Research, Mapping and Subsequent Control of Waste in Water Bodies." Open Access Journal of Waste Management & Xenobiotics 4, no. 2 (2021): 1–5. http://dx.doi.org/10.23880/oajwx-16000162.

Full text
Abstract:
In recent decades, there has been a sharp increase in waste that pollutes the environment. The largest share in them is nondegradable plastic waste. Most of them are located in the water bodies of the continents or in the ocean. Mankind faces the challenge of saving the world or destroying it. Only this year in Bulgaria along the rivers Iskar, Mesta, Danube, Yantra and others was observed accumulation of huge amounts of household and plastic waste. It was even necessary to organize the raking and transportation of these floating masses to the legal landfills. These events prompted the representatives of the Curious Club to propose the creation of a prototype, which on its own floating on water bodies to capture the state of the environment, the presence of unregulated landfills and waste, as well as the discharge of wastewater from illegal sewers. This device will collect and transmit information that club members will map and systematize. We are also proposing the introduction of a method imposed last year in Australia for the use of wastewater netting. We will also use our knowledge after the equipment of the astronomical club both for monitoring space debris and for the growing areas of floating islands of plastic waste in the world's oceans. Technologies that are innovative and have a future to solve these global problems are used. These things can be solved with our enthusiasm and financial support of economic entities interested in the cleanliness of the environment.
APA, Harvard, Vancouver, ISO, and other styles
9

Shabatura, Yuriy, Maryna Mikhalieva, Sergij Korolko, Liubomyra Odosii, Oleksiy Kuznietsov, and Vasyl Smychok. "Autonomous Cyberphysical System of Controlled Treatment and Water Composition Control." Advances in Cyber-Physical Systems 5, no. 1 (November 28, 2017): 23–29. http://dx.doi.org/10.23939/acps2020.01.023.

Full text
Abstract:
An autonomous cyberphysical adaptive system of controlled purification and control of water composition has been considered. Theoretical analysis and experimental studies of the functioning of the components of the proposed system of controlled purification and control of water composition has been performed. The proposed installation is designed to implement the technology of self-regulating system. When using intelligent digital means, it becomes an autonomous cyberphysical adaptive system of controlled purification and control of water composition.
APA, Harvard, Vancouver, ISO, and other styles
10

SHIBATA, Satoshi, Yusuke TORII, Akio HAYASHI, Kenji SUZUKI, and Yohichi NAKAO. "0106 Trial study on attitude control of water driven stage." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015): _0106–1_—_0106–5_. http://dx.doi.org/10.1299/jsmelem.2015.8._0106-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Water control"

1

Wang, Zhong. "Adaptive water quality control in drinking water distribution." Cincinnati, Ohio : University of Cincinnati, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=1052325491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

WANG, ZHONG. "ADAPTIVE WATER QUALITY CONTROL IN DRINKING WATER DISTRIBUTION NETWORKS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1052325491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Root, Christopher Wayne. "Stylistic control of ocean water simulations." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bozkurt, Okan Cagri. "Operation Of The Water Control Structures." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615419/index.pdf.

Full text
Abstract:
Floods are one of the most important natural disasters regarding damages caused by them. Major reasons of huge damages of floods are unplanned urbanization, narrowing of river beds and incorrect operation of water control structures. Geographic Information Systems (GIS) can provide important tools to be used in flood modeling studies. In this study, Lake Mogan, Lake Eymir and Incesu Detention Pond subbasins are studied for flooding events within GIS framework. These subbasins are important catchment areas of city of Ankara with total drainage area of 1070 km2. Soil Conservation Service (SCS) method is used to obtain flood hydrographs for 12 hour duration and 50, 100 and 500 year return periods. Flood routing procedure is applied to obtain discharges at the outlet of the Mogan and Eymir Lakes and Incesu Detention Pond. Operation performance of water control structures are tried to be estimated by using hydrographs which are obtained for different scenarios. Results show that elements of Lake Mogan Water Control Structure do not have capability to discharge 500 year storm safely to the downstream of the lake. However, 100 year storm can be routed without creating problem if necessary small precautions are taken. On the other hand, water control elements of Lake Eymir and Incesu Detention Pond can transmit obtained flood volumes to the downstream parts by assuming that closed conduit at the exit of Incesu Detention Pond can safely convey resultant flood discharges.
APA, Harvard, Vancouver, ISO, and other styles
5

Safronova, D. "Biological method for water quality control." Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/26726.

Full text
Abstract:
Problem Saint-Petersburg is located at the Neva river and almost all drinking water for 5 million inhabitants is taken from it. Talking about water supply centralised source for Saint-Petersburg, one can mark a lot of negative factors influencing the water quality. Surely, agricultural pollution, transport and economical problems are among them. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/26726
APA, Harvard, Vancouver, ISO, and other styles
6

Riquelme, Victor. "Optimal control problems for bioremediation of water resources." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT290/document.

Full text
Abstract:
Cette thèse se compose de deux parties. Dans la première partie, nous étudions les stratégies de temps minimum pour le traitement de la pollution dans de grandes ressources en eau, par exemple des lacs ou réservoirs naturels, à l'aide d'un bioréacteur continu qui fonctionne à un état quasi stationnaire. On contrôle le débit d'entrée d'eau au bioréacteur, dont la sortie revient à la ressource avec le même débit. Nous disposons de l'hypothèse d'homogénéité de la concentration de polluant dans la ressource en proposant trois modèles spatialement structurés. Le premier modèle considère deux zones connectées l'une à l'autre par diffusion et seulement une d'entre elles connectée au bioréacteur. Avec l'aide du Principe du Maximum de Pontryagin, nous montrons que le contrôle optimal en boucle fermée dépend seulement des mesures de pollution dans la zone traitée, sans influence des paramètres de volume, diffusion, ou la concentration dans la zone non traitée. Nous montrons que l'effet d'une pompe de recirculation qui aide à homogénéiser les deux zones est avantageux si opérée à vitesse maximale. Nous prouvons que la famille de fonctions de temps minimal en fonction du paramètre de diffusion est décroissante. Le deuxième modèle consiste en deux zones connectées l'une à l'autre par diffusion et les deux connectées au bioréacteur. Ceci est un problème dont l'ensemble des vitesses est non convexe, pour lequel il n'est pas possible de prouver directement l'existence des solutions. Nous surmontons cette difficulté et résolvons entièrement le problème étudié en appliquant le principe de Pontryagin au problème de contrôle relaxé associé, obtenant un contrôle en boucle fermée qui traite la zone la plus polluée jusqu'au l'homogénéisation des deux concentrations. Nous obtenons des limites explicites sur la fonction valeur via des techniques de Hamilton-Jacobi-Bellman. Nous prouvons que la fonction de temps minimal est non monotone par rapport au paramètre de diffusion. Le troisième modèle consiste en deux zones connectées au bioréacteur en série et une pompe de recirculation entre elles. L'ensemble des contrôles dépend de l'état, et nous montrons que la contrainte est active à partir d'un temps jusqu'à la fin du processus. Nous montrons que le contrôle optimal consiste à l'atteinte d'un temps à partir duquel il est optimal de recirculer à vitesse maximale et ensuite ré-polluer la deuxième zone avec la concentration de la première. Ce résultat est non intuitif. Des simulations numériques illustrent les résultats théoriques, et les stratégies optimales obtenues sont testées sur des modèles hydrodynamiques, en montrant qu'elles sont de bonnes approximations de la solution du problème inhomogène. La deuxième partie consiste au développement et l'étude d'un modèle stochastique de réacteur biologique séquentiel. Le modèle est obtenu comme une limite des processus de naissance et de mort. Nous établissons l'existence et l'unicité des solutions de l'équation contrôlée qui ne satisfait pas les hypothèses habituelles. Nous prouvons que pour n'importe quelle loi de contrôle la probabilité d'extinction de la biomasse est positive. Nous étudions le problème de la maximisation de la probabilité d'atteindre un niveau de pollution cible, avec le réacteur à sa capacité maximale, avant l'extinction. Ce problème ne satisfait aucune des suppositions habituelles (la dynamique n'est pas lipschitzienne, diffusion dégénérée localement hölderienne, contraintes d'état, ensembles cible et absorbant s'intersectent), donc le problème doit être étudié dans deux étapes: en premier lieu, nous prouvons la continuité de la fonction de coût non contrôlée pour les conditions initiales avec le volume maximal et ensuite nous développons un principe de programmation dynamique pour une modification du problème original comme un problème de contrôle optimal avec coût final sans contrainte sur l'état
This thesis consists of two parts. In the first part we study minimal time strategies for the treatment of pollution in large water volumes, such as lakes or natural reservoirs, using a single continuous bioreactor that operates in a quasi-steady state. The control consists of feeding the bioreactor from the resource, with clean output returning to the resource with the same flow rate. We drop the hypothesis of homogeneity of the pollutant concentration in the water resource by proposing three spatially structured models. The first model considers two zones connected to each other by diffusion and only one of them treated by the bioreactor. With the help of the Pontryagin Maximum Principle, we show that the optimal state feedback depends only on the measurements of pollution in the treated zone, with no influence of volume, diffusion parameter, or pollutant concentration in the untreated zone. We show that the effect of a recirculation pump that helps to mix the two zones is beneficial if operated at full speed. We prove that the family of minimal time functions depending on the diffusion parameter is decreasing. The second model consists of two zones connected to each other by diffusion and each of them connected to the bioreactor. This is a problem with a non convex velocity set for which it is not possible to directly prove the existence of its solutions. We overcome this difficulty and fully solve the studied problem applying Pontryagin's principle to the associated problem with relaxed controls, obtaining a feedback control that treats the most polluted zone up to the homogenization of the two concentrations. We also obtain explicit bounds on its value function via Hamilton-Jacobi-Bellman techniques. We prove that the minimal time function is nonmonotone as a function of the diffusion parameter. The third model consists of a system of two zones connected to the bioreactor in series, and a recirculation pump between them. The control set depends on the state variable; we show that this constraint is active from some time up to the final time. We show that the optimal control consists of waiting up to a time from which it is optimal the mixing at maximum speed, and then to repollute the second zone with the concentration of the first zone. This is a non intuitive result. Numerical simulations illustrate the theoretical results, and the obtained optimal strategies are tested in hydrodynamic models, showing to be good approximations of the solution of the inhomogeneous problem. The second part consists of the development and study of a stochastic model of sequencing batch reactor. We obtain the model as a limit of birth and death processes. We establish the existence and uniqueness of solutions of the controlled equation that does not satisfy the usual assumptions. We prove that with any control law the probability of extinction is positive, which is a non classical result. We study the problem of the maximization of the probability of attaining a target pollution level, with the reactor at maximum capacity, prior to extinction. This problem does not satisfy any of the usual assumptions (non Lipschitz dynamics, degenerate locally H"older diffusion parameter, restricted state space, intersecting reach and avoid sets), so the problem must be studied in two stages: first, we prove the continuity of the uncontrolled cost function for initial conditions with maximum volume, and then we develop a dynamic programming principle for a modification of the problem as an optimal control problem with final cost and without state constraint
APA, Harvard, Vancouver, ISO, and other styles
7

Shang, Feng. "INPUT-OUTPUT WATER QUALITY MODEL IN WATER DISTRIBUTION SYSTEM." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1028649564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chang, Tao. "Robust model predictive control of water quality in drinking water distribution systems." Thesis, University of Birmingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398894.

Full text
Abstract:
This thesis develops online feedback control of chlorine residuals performing at the lower level of a hierarchical structure of integrated quantity and quality control in drinking water distribution systems (DWDS), which provides a practical solution for online water quality control in DWDS. Input-output and state-space models of the chlorine residuals are developed from mathematical models of chlorine residual dynamics. The existing path analysis algorithm is extended and utilized to obtain the parameter structure. Joint parameter and model structure error estimation is developed using bounding approach based on a point-parametric model. The uncertainty radius of the system is outlined through robust output prediction, through which requirements for model accuracy from robust model predictive control (MFC) are explicitly imposed on model estimation. Hence, an integrated design of controller and model estimation is achieved. MFC is applied for chlorine residual control based on the set-bounded model. To fulfil output constraints under system uncertainties, safety zones are employed, which are designed from an online evaluation of the uncertainty scenarios of the system, to restrict the output constraints. The safety zones can be obtained by solving a nonlinear constrained optimization problem using a significantly simplified relaxation-gain algorithm. The resulting robust MFC (RMPC) is decentralized assuming communication among the decentralized RMPCs is available. The proposed methodology is verified by applying it to a simulated benchmark DWDS. Simulation study of model estimation and RMPC operation is presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Overloop, Peter-Jules van. "Model predictive control on open water systems /." Amsterdam : IOS Press, 2006. http://opac.nebis.ch/cgi-bin/showAbstract.pl?u20=9781586036386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rodrigues, Maria. "PID Control of Water in a tank." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-9611.

Full text
Abstract:
The thesis assignment was to build a PID control that was able to control two tanks of water. The system had to be capable of read a certain value, the value that we speak is the high of the water. There for, the system should fill the corresponding tank with water, of course, until the high that was chosen. A PID control uses tree essentials values to be able to control with precision, they are usually called: P, I and D. These values can be found by applying some procedures; in this thesis two procedures were applied. So at the end, we get two values for each constant (PID). In this thesis these two values are compared in order to choose which method was the accurate.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Water control"

1

Hutchison, Ian P. G. Surface water control--Water balance. Littleton, CO: Society of Mining Engineers, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thornton, Julian. Water loss control. 2nd ed. New York: McGraw-Hill, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Helmer, Richard. Water Pollution Control. London: Taylor & Francis Group Plc, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nesaratnam, Suresh T., ed. Water pollution control. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118863831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Helmer, Richard, and Ivanildo Hespanhol, eds. Water Pollution Control. Abingdon, UK: Taylor & Francis, 1988. http://dx.doi.org/10.4324/9780203477540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schools, Randy Smith Drilling. Deep water well control. United States]: Randy Smith Drilling Schools, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Industrial water pollution control. 2nd ed. New York: McGraw-Hill, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

C, Knox Robert, ed. Ground water pollution control. Chelsea, Mich: Lewis Publishers, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Water quality control handbook. 2nd ed. New York: McGraw-Hill, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eckenfelder, William Wesley. Industrial water pollution control. 2nd ed. New York: McGraw-Hill, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Water control"

1

Askar, Ahmed, and Hans Treptow. "Water Control." In Quality Assurance in Tropical Fruit Processing, 125–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77687-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Iqbal, Mohammed Ismail. "Water Control." In Coil tubing unit for oil production and remedial measures, 31–67. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337614-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Förstner, Ulrich. "Water Pollution:Wastewater." In Integrated Pollution Control, 197–238. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80311-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Förstner, Ulrich. "Potable Water." In Integrated Pollution Control, 239–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80311-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Benedini, Marcello. "Water Pollution Control." In Water Resources of Italy, 205–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36460-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Warren, Dene R. "Ground Water Control." In Civil Engineering Construction Design and Management, 56–84. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-13727-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhivov, Alexander, and Rüdiger Lohse. "Water Vapor Control." In Deep Energy Retrofit, 89–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30679-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barbanti, Andrea. "Water Quality Control." In Sustainable Development and Environmental Management, 83–97. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6598-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bahadori, Alireza. "Water Pollution Control." In Pollution Control in Oil, Gas and Chemical Plants, 119–65. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01234-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berger, Bernard B., and Leonard B. Dworsky. "Water Pollution Control." In Special Publications, 18–30. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/sp006p0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Water control"

1

Rochon, J., M. R. Creusot, P. Rivet, C. Roque, and M. Renard. "Water Quality for Water Injection Wells." In SPE Formation Damage Control Symposium. Society of Petroleum Engineers, 1996. http://dx.doi.org/10.2118/31122-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

O'Connor, Thomas P., and Howard M. Goebel. "Retrofitting Control Facilities for Wet-Weather Flow Control." In Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000. Reston, VA: American Society of Civil Engineers, 2000. http://dx.doi.org/10.1061/40517(2000)40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Plemper, B., and M. Redman. "Autonomous pressure control in water distribution networks." In URBAN WATER 2014. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/uw140101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kodama, D., K. Shinoda, K. Sato, Y. Sato, K. Tohji, and B. Jeyadevan. "Morphology Control of FeCo Alloy Particles Synthesized by Polyol Process." In WATER DYANMICS: 4th International Workshop on Water Dynamics. AIP, 2007. http://dx.doi.org/10.1063/1.2721262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gowdish, Leslie, Stephen Bourne, Lakin Flowers, Ken Stewart, and Jack Hampson. "South Florida Water Control System Tracker: Real-Time Water Budgeting for Pragmatic Water Control Operations." In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lovett, D. "From control set-point to KPI." In IET Water Event 2007. IEE, 2007. http://dx.doi.org/10.1049/ic:20070566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wassell, M. "Sydney Water Corporation operational control strategy." In 2005 IEE Water Event. IEE, 2005. http://dx.doi.org/10.1049/ic:20050426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rathnayake, U. S., and T. T. Tanyimboh. "Optimal control of combined sewer systems using SWMM 5.0." In Urban Water 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/uw120081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Imam, E., and S. El Baradei. "Ecosystem and assimilative capacity of rivers with control structures." In WATER POLLUTION 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/wp060431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chan, K. S. "Water Control Diagnostic Plots." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1995. http://dx.doi.org/10.2118/30775-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Water control"

1

Roseta Palma, Catarina, and Anastasios Xepapadeas. Robust Control in Water Management. DINÂMIA'CET-IUL, 2002. http://dx.doi.org/10.7749/dinamiacet-iul.wp.2002.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Veenis, Steven John. 2017 Storm Water Control Installation Update. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1416268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brady, Robert F., Adkins Jr., and James D. Control of Lead in Drinking Water. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada327758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martin, Sandra K., and Stacy E. Howington. Wynoochee Dam Water Temperature Control Study. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada226764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

K. C. Seino. Main Injector LCW (Low Conductivity Water) control system. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/7858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

CORPS OF ENGINEERS WASHINGTON DC. Engineering and Design: Management of Water Control Systems. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada403293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ARMY ENGINEER DISTRICT LOS ANGELES CA. Water Control Manual: Fullerton Dam, Fullerton Creek, California. Fort Belvoir, VA: Defense Technical Information Center, May 1989. http://dx.doi.org/10.21236/ada211373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sartain, Bradley, Kurt Getsinger, Damian Walter, John Madsen, and Shayne Levoy. Flowering rush control in hydrodynamic systems : part 1 : water exchange processes. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45425.

Full text
Abstract:
In 2018, field trials evaluated water-exchange processes using rhodamine WT dye to provide guidance on the effective management of flowering rush (Butomus umbellatus L.) at McNary Dam and Reservoir (Wallula Lake, 15,700 ha). Additional evaluations determined the effectiveness of BubbleTubing (hereafter referred to as bubble curtain) at reducing water exchange within potential flowering rush treatment areas. Dye readings were collected from multiple sampling points at specific time intervals until a dye half-life could be determined. Whole-plot dye half-lives at sites without bubble curtain ranged 0.56–6.7 h. In slower water-exchange sites (≥2.6 h dye half-life), the herbicide diquat should have a sufficient contact time to significantly reduce flowering rush aboveground biomass. Other sites demonstrated very rapid water exchange (<1.5 h dye half-life), likely too rapid to effectively control flowering rush using chemical treatments without the use of a barrier or curtain to slow water exchange. At one site, the use of the bubble curtain increased the dye half-life from 3.8 h with no curtain to 7.6 and 7.1 h with a bubble curtain. The bubble curtain’s ability to slow water exchange will provide improved chemical control and in-crease the potential for other chemical products to be effectively used.
APA, Harvard, Vancouver, ISO, and other styles
9

CORPS OF ENGINEERS WASHINGTON DC. Engineering and Design: Management of Water Control Data Systems. Fort Belvoir, VA: Defense Technical Information Center, August 1994. http://dx.doi.org/10.21236/ada404110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vorwerk, Michael C., Jennifer A. Moore, and Joe H. Carroll. Water Quality Remote Monitor Control and Data Management Software. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ada286890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography