Dissertations / Theses on the topic 'Water balance'

To see the other types of publications on this topic, follow the link: Water balance.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Water balance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Aulin, Beatrice, and Henriksson Linnea. "The water balance in Graminha Basin." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226430.

Full text
Abstract:
Today, only 7 % of the Atlantic Rainforest, that once covered Brazil, remains scattered across the southern parts of the country. As the forest is rapidly disappearing, the government of Brazil has emerging interest of preservation. Thus more and more areas are turned into national parks and reserves. At the outskirts of one of these reserves, the Iracambi research station is situated. The center makes an effort to carry out applied research to find methods of preserving and learning about the forest. It is within that context the project described in this report has been performed. The project aimed to establish a water balance over Graminha Basin, the main river in the Iracambi research area. By doing this the understanding of the fluctuations of the amount of water in the ecosystem could increase. An important part of the objective was also to assess which methods can be used practically at Iracambi.The project was carried out during the rainy season from February 13th to April 12, 2012. During this time the water flow was measured at five stations along the river, using a current meter and instant slug-injection. Between six and fifteen flow measurements were made at each station. Slug- injection was generally the most suitable gauging method to use in the area. Precipitation was measured at two points. Evaporation was measured using an evaporation pan, and also calculated using the Penman-Monteith equation. Even though, the parameterization of the Penman-Monteith needs to be improved it was deemed to be the more suitable method for the area.The results give a rough estimate of the water balance during the period. It was concluded that the storage decreased during the project period. Based on the flow measurements and observations it was concluded that the areas covered by forest were less affected by the floods that occurred during heavy rainfalls than the areas covered by grass. Further on, the result of this report indicates that the Iracambi research station can continue to carry out assessments for changes in water flow, rainfall and evaporation with the simple equipment used in this project. However, more expensive and advanced equipment would be beneficial to establish a more accurate water balance.
Idag återstår endast 7% av den atlantiska regnskogen som en gång täckte Brasilien södra kust. Regnskogen försvinner snabbt vilket har lett till att Brasiliens regering de senaste åren visat ett ökat intresse att bevara regnskogen. Fler och fler områden har förvandlats till nationalparker och reservat. I utkanten till ett av dessa reservat ligger forskningsstationen Iracambi. Iracambi bedriver forskning i och runt området för att hitta metoder för att bevara regnskogen och öka kunskapen om området. Detta projekt är ett litet bidrag till detta arbete. Det övergripande syftet med projektet var att upprätta en vattenbalans över floden Graminhas avrinningsområde. Detta är huvudfloden i området och genom upprätta en vattenbalans kan förståelsen för förändringarna av vattentillgången i ekosystemet öka. Ett viktigt mål med projektet var också att finna verktyg som forskningsstationen Iracambi kan använda för kontinuerliga mätningar av de parametrar som ingår i vattenbalansen.Projektets genomfördes under regnperioden mellan den 13 februari och den 12 april, 2012. Flödesmätningarna utfördes vid fem mätstationer längs floden Graminha. Två typer av utrustning användes: flygel och konduktivitetsmätare. Rekommendationen för Iracambi var att fortsätta mätningarna med framförallt konduktivitetsmätaren. Uppskattningarna av avdunstningen genomfördes på två sätt: dels genom upprättandet av en evaporationspanna, dels genom beräkningar. Beräkningarna genomfördes med Penman-Monteith ekvationen och det kunde konstateras att även om de ingående parametrarna innehåller en del osäkerheter, så var detta den mest passande metoden för att beräkna avdunstningen. Nederbörd mättes på två platser med hjälp av enkla regnmätare konstruerade av pet-flaskor.Slutligen upprättades en vattenbalans för området. Utifrån denna kunde det konstateras att vattenmagasinet för hela orådet minskade under mätperioden. Utifrån flödesmätningar samt observationer kunde slutsatsen dras att skogsområdena drabbades mindre än de gräsbevuxna områdena av de kraftiga översvämningarna som uppstod under intensiva regn. Vidare visar resultaten att forskningsstationen Iracambi kan få en bra uppskattning av flödesförändringar, nederbörd och avdunstning med hjälp av den enkla utrustning som användes i detta projekt.
Minor Field Study
APA, Harvard, Vancouver, ISO, and other styles
2

Desta, Assefa, and Aregai Tecle. "Water Balance in Upper Lake Mary." Arizona-Nevada Academy of Science, 2004. http://hdl.handle.net/10150/296627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qureshi, Suhail Ahmad. "Soil water balance of intercropped corn under water table management." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23289.

Full text
Abstract:
A one year water table management field study was conducted on a Soulanges sandy loam soil in Soulanges county, Quebec. Two controlled water table levels, i.e. 0.5 m and 0.75 m from the soil surface, as well as free outlet conventional drainage treatments were established in monocropped corn (Zea mays L.) and corn intercropped with ryegrass (Lolium multiflorum Lam) plots.
Cropping system showed no significant effects on evapotranspiration, and on soil moisture distribution. It was observed that the 0.5 m and 0.75 m controlled water tables (CWT) provided the same soil moisture trends in both cropping systems. The soil moisture was always higher in controlled water table plots compared to freely drained plots. The water use efficiency of 0.75 m CWT in both cropping systems was high compared to 0.5 m CWT.
The soil moisture contents at three depths were only 2% to 10% less in intercropped plots compared to monocropped plots. The soil moisture was 12 to 13% higher in CWT plots compared to freely drained plots for both cropping systems. The soil moisture in 0.5 m CWT and 0.75 m CWT plots was not significantly different. The average water table levels in monocropped plots were not significantly different from intercropped plots.
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Ali, Mahmoud. "Soil water conservation and water balance model for micro-catchment water harvesting system." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10941.

Full text
Abstract:
A simple water balance model was applied to a micro-catchment water harvesting system for a semi-arid area in the North-Eastern part of Jordan. Two Negarim micro-catchment water harvesting systems were built at Al-Khanasri research station. A Randomized complete block design (RCBD) in factorial combination was used with six treatments and three replicates. Each plot was divided into two parts; a runoff area, and a run-on area. Two different treatments were used for the catchment area, these were: compacted (T1) and Natural treatments (T2). Three treatments were used for the run-on area, these were: disturbed (S1), stones (S2), and crop residue mulch (S3). Soil water content was measured over a depth of 0-1 m during the seasons 96-97 in these micro-catchments. In this model; daily rainfall, runoff, and evaporation were used. Runoff was calculated by the curve number method; evaporation was calculated by the Penman equation, the Priestley and Taylor method and the Class A pan approach. The least squares method was used for optimizing model parameters. The performance of the model was assessed by different criteria, such as root mean square error, relative root mean square error, coefficient of determination and the Nash-Sutcliffe efficiency method. The performance of the micro-catchments system was also evaluated. Results showed that with limited but reliable hydrological data good agreement between predicted and observed values could be obtained. The ratio of water storage in a one meter soil depth to the rainfall falling on each catchment indicated that T1S2 and T1S3 have the highest values in size1 plots while T2S1 and T2S2 have the highest values in size 2 plots. Modelling results showed that for all the size 1 plots, the required ratio of the cultivated to catchment area, (C/CA), required to ensure sufficient harvested water, was less than the actual ratio used in the experimental design. For the size 2 plots this was only true for the T1 treatments. Consequently for the majority of plot sizes and treatments, the results showed that a smaller catchment area is capable of providing sufficient harvested water to meet crop growth requirements. The experimental ratio was based on a typical yearly design rainfall for the region having either a 50% or 67% probability of occurrence. Results also indicated that using stones and crop residue as mulch on the soil surface in the cultivated area was effective in decreasing the evaporation rate. S3 was more efficient than S2 as it stored more water due to the higher infiltration rate (12.4 cm/hr) when compared to S2 (4.1 cm/hr).
APA, Harvard, Vancouver, ISO, and other styles
5

Albright, William Henry. "Field water balance of landfill final covers /." abstract and full text PDF (free order & download UNR users only), 2005. http://0-wwwlib.umi.com.innopac.library.unr.edu/dissertations/fullcit/3209130.

Full text
Abstract:
Thesis (Ph. D.)--University of Nevada, Reno, 2005.
"August, 2005." Includes bibliographical references. Online version available on the World Wide Web. Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2005]. 1 microfilm reel ; 35 mm.
APA, Harvard, Vancouver, ISO, and other styles
6

Joe, Sommer Nicole. "Quantifying errors in large scale water balance." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/2146.

Full text
Abstract:
Thesis (M.S.) -- University of Maryland, College Park, 2004.
Thesis research directed by: Dept. of Civil and Environmental Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
7

Sell, D. "Oxygen consumption and water balance in insects." Thesis, University of Aberdeen, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haigh, R. A. "Water balance and water quality studies in an underdrained clay soil catchment." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diaz-Nieto, Jacqueline. "A GIS water balance approach to support surface water flood risk management." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/15005/.

Full text
Abstract:
Concern has arisen as to whether the lack of appropriate consideration to surface water in urban spatial planning is reducing our capacity to manage surface water flood risk. Appropriate tools are required that allow spatial planners to explore opportunities and solutions for surface water flooding at large spatial scales. An urban surface water balance model has been developed that screens large urban areas to identify flooded areas and which allows solutions to be explored. The model hypothesis is that key hydrological characteristics; storage volume and location, flow paths and surface water generation capture the key processes responsible for surface water flooding. The model uses a LiDAR DEM (Light Detection and Ranging Digital Elevation Model) as the basis for determining surface water accumulation in a catchment and has been developed so that it requires minimal inputs and computational resources. The urban surface water balance approach is applied to Keighley in West Yorkshire where several instances of surface water flooding have been reported. Data for validating surface water flood risk models is sparse because such flooding events are of short duration, very localized and distributed across the catchment. This research used a postal questionnaire, followed up with site visits to collect data on surface water flooding locations in Keighley. The validation exercise confirmed that the major processes responsible for flooding are largely well represented in the model for situations where interaction with the urban sewer network is well represented by the assumptions made in the model. A qualitative analysis based on field visits revealed that the degree of interaction with the sewer network varies spatially, and as the importance of the interaction of the sewer system increases, the accuracy of the model results are lowered. It also highlighted that local detail not present in the DEM, the presence of urban drainage assets and the performance of the sewer system, which are not be represented in the model, can determine the accuracy of model results. Model results were used as a basis to develop solutions to surface water flooding. A least cost path methodology was developed to identify managed flood routes as a solution. These were translated into model inputs in the form a modified DEM. It was shown that the simple and fast representation of flood routes and surface storage is of considerable benefit for scenario analysis.
APA, Harvard, Vancouver, ISO, and other styles
10

Oliveira, Sandra Maria Sousa de [UNESP]. "Determinação da acurácia de instrumentos de medidas para obter a evapotranspiração de referência com erros fixados." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/100807.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:31:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-08-10Bitstream added on 2014-06-13T20:01:24Z : No. of bitstreams: 1 oliveira_sms_dr_jabo.pdf: 285062 bytes, checksum: 2ff19f9c457a6961d50db465af94d58e (MD5)
Instituto Federal Triangulo Mineiro
A evapotranspiração de referência (ETo) é mais frequentemente obtida em diferentes situações e locais por meio de métodos de estimativa. A não verificação do erro da ETo, devido ao uso de instrumentos de medidas, pode conduzir os trabalhos de pesquisa a resultados não confiáveis e inconsistentes. Utilizando os Métodos de Hargreaves; Radiação Solar e Penman-Monteith, com os erros da ETo fixados em 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% e 10%, determinou-se as acurácias dos instrumentos de medidas necessárias para obter a estimativa da ETo, com os erros citados. Os dados foram coletados em uma Estação Meteorológica Automatizada, modelo Vaisala, da Usina Hidroelétrica de Nova Ponte, de propriedade da CEMIG, localizada no Rio Araguari. Estes valores foram registrados por meio da média diária de cada informação. A obtenção da ETo com erros propostos neste trabalho requer instrumentos de medidas com acurácias para os Métodos: de Hargreaves com temperatura do ar de 0,2645% a 2,6335% e radiação líquida de 0,0331% a 0,3315%; de radiação solar com temperatura do ar de 0,15% a 1,47%, velocidade do vento de 0,01% a 0,04%, umidade relativa do ar de 0,14% a 0,1,43% e radiação líquida de 0,02% a 0,23% e o de Penman-Monteith com Temperatura do ar de 0,33% a 3,2%, Velocidade do vento de 0,10% a 1,00%, de Umidade Relativa do ar de 0,06% a 0,58% e de Radiação Líquida entre 0,02% a 0,17%. As acurácias obtidas permitirão selecionar instrumentos de medidas para determinação da ETo, pelos métodos de Penman-Monteith, Hargreaves e Radiação Solar com erros máximos pré-estabelecidos. O método da Radiação Solar apresentou uma maior acurácia dos equipamentos meteorológicos utilizados em relação aos métodos PM (FAO 56) e Hargreaves
The reference evapotranspiration (ETo) is most often obtained in different situations and locations through estimation methods. The failure to find the error of ETo, due to the use of measuring instruments, can conduct research work to unreliable and inconsistent results. Using Hargreaves, Solar Radiation and Penman-Monteith methods, with ETo errors fixed in 1%, 2%, 3%, 4% ,5%, 6%, 7%, 8%, 9% and 10%, determined the accuracy of the instruments necessary to acquire the estimated ETo with the errors cited. The data were obtained in an Automated Weather Station, Vaisala model, of Nova Ponte Hydroelectric Plant, owned by Cemig, located in Araguari River. These values were recorded by the daily-average of each information. The attainment of ETo with errors proposed in this work requires measurement instruments with accuracies for the methods: Hargreaves with air temperature  0.2645% to  2.6335% and Net Radiation  0.0331% to  0, 3315% of solar radiation in air temperature  0.15% to 1.47%, wind speed  0.01% to 0.04%, Relative Humidity  0.14% of the  0,1,43% and Net Radiation  0.02% to  0.23% and the Penman-Monteith with air temperature  0.33% to 3.2%, wind speed  0 ,  10% to 1.00% RH air  0.06% to 0.58% and net radiation between  0.02% to 0.17%. The accuracy obtained will allow the selection of measurement instruments to determine the ETo by the Penman-Monteith, Hargreaves and Solar Radiation methods with pre-established maximum errors. The solar radiation method showned a greater accuracy of meteorological equipment used in the methods PM (FAO 56) and Hargreaves
APA, Harvard, Vancouver, ISO, and other styles
11

Pinto, Victor Meriguetti. "Simulation of water and nitrogen dynamics in a Cerrado soil under coffee cultivation using SWAP and ANIMO models." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/64/64134/tde-02022016-105753/.

Full text
Abstract:
Agriculture when only focused on production leads to an unsustainable use of inputs with negative consequences to the environment and human health. One consequence of the excessive use of fertilizers is the pollution of surface and underground water resources in agricultural eco-systems and their boundaries. The Brazilian Cerrado has been suffering the transformations of the intensive agriculture during the last decades. Due to the poor fertility of soils, in general very sandy and of low pH, the use of agricultural inputs is intensified and the nutrient downward transport by leaching becomes a serious problem in different regions. Information about the current use practices of fertilizer use in the Cerrado environment must be gathered for a healthy transition of this biome. Models based on physical and chemical processes are useful tools to simulate water and nutrient dynamics in agricultural systems, including the related losses due to adopted managements. They have the potential to evaluate different scenarios to predict outcomings of such practices. Among the available models for such processes, SWAP (Soil, Water, Atmosphere and Plant model) has been used under several agronomic conditions to describe hydrologic processes, and ANIMO (Nitrogen in Agriculture model) to simulate N cycling in agricultural systems. Our study presents an application of SWAP to adult perennial coffee crops along one productive cycle, with focus on deep drainage losses and irrigation management in a representative Brazilian Cerrado management system. The SWAP/ANIMO combination was used in this study to simulate N absorption by coffee plants and N leaching in the form NO3-N, as a result of an intensive fertilizer management practice. The ANIMO program was calibrated in relation to one N treatment, of 400 kg ha-1 year-1, and was evaluated with independent data of NO3-N in soil solution of another treatment of 800 kg ha-1 year-1. The yearly water balance (WB) obtained from SWAP was similar to that obtained through a sequential climatologic WB of Thornthwaite and Matter. However, the monthly deep drainage values obtained by SWAP as compared to the WB values presented differences with a determination coefficient of 0.77 in a linearization of the results. Irrigation scenarios with intervals of 3(IF3), 5(IF5), 10 (IF10) e 15 (IF15) days between water applications were simulated by SWAP and compared with the irrigation management practiced in the farm where the experiment was carried out. These simulations showed for longer intervals (IF15) drainage losses were smaller, water productivity higher, as well as relative productivity. Measurements of N absorption by plants obtained experimentally were similar to ANIMO simulations. Sensitivity analyses of the model showed that leaching and soil solution concentration of NO3-N are sensitive to soil pH and temperature of the decomposition processes. We conclude that the combination of SWAP with ANIMO was efficient for the description of the N cycle in a Cerrado soil-plant-atmosphere system
A agricultura focada apenas na produção leva ao uso insustentável de recursos resultando em consequências negativas para o meio ambiente e a saúde humana. Uma consequência do uso excessivo de fertilizantes é a contaminação dos recursos hídricos subterrâneos e superficiais em ecossistemas agrícolas e nos seus arredores. Devido o solo da região do Cerrado ser pobre em nutrientes, predominantemente arenoso e com alta acidez, o uso de insumos agrícolas é intensificado e o transporte químico de nutrientes via lixiviação é um problema para a agricultura intensiva nas diferentes regiões. Informações sobre as atuais práticas de uso de fertilizantes e seus efeitos no ambiente de Cerrado precisam ser coletadas para reduzir os impactos da agricultura nesse ecossistema. Modelos baseados em processos físicos e químicos são ferramentas úteis para simular a dinâmica da água e nutrientes no meio agrícola e as perdas associadas aos manejos adotados, com potencial para avaliar diferentes cenários de previsão dos resultados dessas práticas. Entre os modelos baseados em processos, o SWAP (modelo Solo, Água, Atmosfera e Planta) tem sido utilizado com sucesso em várias condições agronômicas para descrever processos hídricos, e o ANIMO (modelo de nitrogênio na agricultura) para simular o ciclo do nitrogênio em sistemas agrícolas. Nosso estudo apresenta uma aplicação do SWAP para culturas de café perenes maduras ao longo de um ciclo produtivo, com foco nas perdas por drenagem e no manejo da irrigação em um sistema típico do Cerrado Brasileiro. A combinação dos modelos SWAP/ANIMO foi utilizada nesse estudo para simular a absorção de N pelas plantas de café e a lixiviação do nitrogênio na forma de nitrato (NO3-N) resultante de uma prática de manejo de fertilizantes intensiva. O ANIMO foi calibrado para o cenário correspondente à aplicação de 400 kg ha-1 ano-1 de fertilizante mineral, e foi avaliado com dados independentes de NO3-N na solução do solo medidos em parcelas de outro tratamento que receberam 800 kg ha-1 ano-1. O balanço hídrico anual obtido pelo SWAP foi semelhante ao obtido pelo balanço sequencial climatológico, de Thornthwaite e Matter. No entanto, os valores mensais de drenagem profunda obtidos pelo SWAP e comparados com os resultados do balanço climatológico apresentaram diferenças, com um coeficiente de determinação de 0,77 na linearização dos resultados. Cenários de irrigação com intervalos de 3 (IF3), 5 (IF5), 10 (IF10) e 15 (IF15) dias entre aplicações de água foram simulados utilizando o SWAP e comparados com a prática de manejo da fazenda onde o estudo experimental foi realizado. As simulações dos cenários com o SWAP mostraram que as irrigações com intervalos mais longos (IF15) apresentam menores quantidades de perdas por drenagem, maior produtividade da água e produtividade relativa da cultura. As medidas de absorção de N pelas plantas obtidas experimentalmente foram similares às estimativas do modelo ANIMO. As analises de sensibilidade do modelo mostraram que as previsões da lixiviação e concentração de NO3-N na solução do solo são sensíveis às variáveis pH do solo e temperatura de referência dos processos de decomposição. Conclui-se que a combinação dos modelos unidimensionais baseados em processos SWAP/ANIMO foi eficaz na descrição do ciclo do N avaliado no sistema solo-planta do Cerrado
APA, Harvard, Vancouver, ISO, and other styles
12

Last, Ewan W. "City water balance : a new scoping tool for integrated urban water management options." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1757/.

Full text
Abstract:
Urban water scoping modelling packages are used as tools to inform decision makers of the sustainability of different water management options for a city. Previous scoping models have not taken sufficient account of natural systems in the urban environment and are often limited in terms of the range of indicators used to measure sustainability and the choice of water management options offered. A new modelling package, named City Water Balance, has been developed to address these limitations. It has the capability to assess the sustainability of a variety of water management options, including the sustainable urban drainage systems, in terms of water flow, water quality, whole life cost and life cycle energy for alternative scenarios of future urban land use, population and climate. Application of the modelling package to the City of Birmingham has demonstrated that the modelled components can describe adequately the existing system, giving confidence that it can be used for scoping strategic options for future water supply and wastewater management. The further application of the package to model alternative scenarios through to 2055 for Birmingham has also been undertaken to illustrate its application. The results from the different analyses have shown that medium scale rainwater harvesting and borehole abstraction are predicted to be more sustainable than the conventional centralised supply and that medium scale wastewater recycling would be more cost effective but less energy efficient. The most sustainable strategy was installation of water efficient appliances as there is the potential for large energy savings from reduced indoor usage and consequent water heating requirements.
APA, Harvard, Vancouver, ISO, and other styles
13

Juston, John. "Water and Carbon Balance Modeling: Methods of Uncertainty Analysis." Licentiate thesis, KTH, Land and Water Resources Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12160.

Full text
Abstract:

How do additional data of the same and/or different type contribute to reducing model parameter and predictive uncertainties? This was the question addressed with two models – the HBV hydrological water balance model and the ICBM soil carbon balance model – that were used to investigate the usefulness of the Generalized Likelihood Uncertainty Estimation (GLUE) method for calibrations and uncertainty analyses.  The GLUE method is based on threshold screening of Monte Carlo simulations using so-called informal likelihood measures and subjective acceptance criterion. This method is highly appropriate for model calibrations when errors are dominated by epistemic rather than stochastic uncertainties.  The informative value of data for model calibrations was investigated with numerous calibrations aimed at conditioning posterior parameter distributions and boundaries on model predictions.  The key results demonstrated examples of: 1) redundant information in daily time series of hydrological data; 2) diminishing returns in the value of continued time series data collections of the same type; 3) the potential value of additional data of a different type; 4) a means to effectively incorporate fuzzy information in model calibrations; and 5) the robustness of estimated parameter uncertainty for portability of a soil carbon model between and tropical climate zones.  The key to obtaining these insights lied in the methods of uncertainty analysis used to produce them.  A paradigm for selecting between formal and informal likelihood measures in uncertainty analysis is presented and discussed for future use within a context of climate related environmental modeling.

APA, Harvard, Vancouver, ISO, and other styles
14

Telmer, Kevin H. "Biogeochemistry and water balance of the Ottawa River basin." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21018.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fullick, Simon Geoffrey. "Energy Balance Models With Three Phases Of Water Feedback." Thesis, University of Canterbury. Physics and Astronomy, 2014. http://hdl.handle.net/10092/9440.

Full text
Abstract:
Simple one-dimensional heat balance equations have been used to understand climate concepts since the 1960s, when a class of models was developed known as energy balance models (EBMs). EBMs use the growth or loss of polar surface ice as a climatic feedback, giving rise to surprisingly complex non-linear behaviours. One aspect of EBMs that has been relatively poorly examined is the effects of feedbacks caused by the other two phases of water in Earth’s climate other than ice: water clouds and water vapour. Cloud and water vapour play a critical role in the energy balance of Earth’s climate, and yet are some of the least well understood elements of the global climate system. This thesis explores the behaviour and interrelationships of climatic feedbacks caused by water in all three phases as it exists in the climate: surface ice caps, water vapour, and liquid water clouds. A two-layered EBM was modified with parameterizations of water vapour and liquid water clouds in order to conduct experiments. Three variants of the model were produced, each with progressively more water feedbacks than the last: a 1 phase model (with only surface ice feedback), a 2 phase model (with surface ice and water vapour) and a 3 phase model (with surface ice, water vapour, and cloud). The models were found to give generally realistic results, but with an underestimation of water vapour density, which in turn reduced the generated cloud fraction in the 3 phase model. Thus, the impacts of these extra feedbacks were likely to be underestimated in the analysis in general. The sensitivity of the model to several prognostic variables was studied by observing the changes in the model to a range of each variable. The 3 phase model was less sensitive to changes to the solar constant, S0, which measures incoming solar radiation, than the 1 phase model. This was probably caused by cloud reflecting and absorbing some radiation from the sun that would have otherwise reached the surface, changing the ratio of atmospheric heat transport to surface heat transport from 2.4953 for the 1 phase model to 2.0626 for the 3 phase model. Changing surface and ice albedo values resulted in changes in the model’s stability. The model was found to be insensitive to changes in surface humidity that drives the amount of water vapour the system has available, due to underestimation of water vapour in the model. The stability of the model was examined, and the 1 phase model was found to respond faster to changes in S0 than the 3 phase model. The model was tested for hysteresis, which was confirmed for all three model variants. The 1 phase model showed less stability then the 3 phase model as S0 was increased, but both models were similarly stable as S0 was decreased.
APA, Harvard, Vancouver, ISO, and other styles
16

Alimohammadi, Negin. "Modeling Annual Water Balance in The Seasonal Budyko Framework." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5099.

Full text
Abstract:
In this thesis, the role of soil water storage change on the annual water balance is evaluated based on observations at a large number of watersheds located in a spectrum of climate regions, and an annual water balance model is developed at the seasonal scale based on Budyko hypthesis. The annual water storage change is quantified based on water balance closure given the available data of precipitation, runoff, and evaporation estimated from remote sensing data and meteorology reanalysis. The responses of annual runoff, evaporation, and storage change to the interannual variability of precipitation and potential evaporation are then analyzed. Both runoff and evaporation sensitivities to potential evaporation are higher under energy-limited conditions, but storage change seems to be more sensitive to potential evaporation under the conditions in which water and energy are balanced. Runoff sensitivity to precipitation is higher under energy-limited conditions; but both evaporation and storage change sensitivities to precipitation are higher under water-limited conditions. Therefore, under energy-limited conditions, most of precipitation variability is transferred to runoff variability; but under water-limited conditions, most of precipitation variability is transferred to storage change and some of precipitation variability is transferred to evaporation variability. The main finding of this part is that evaporation variability will be overestimated by assuming negligible storage change in annual water balance, particularly under water-limited conditions. Budyko framework which expresses partitioning of water supply at the mean annual scale, is adapted to be applicable in modeling water cycle in short terms i.e., seasonal and interannual scales. Seasonal aridity index is defined as the ratio of seasonal potential evaporation and the difference between precipitation and storage change. The seasonal water balance is modeled by using a Budyko-type curve with horizontal shifts which leads prediction of seasonal and annual storage changes and evaporation if precipitation, potential evaporation, and runoff data are available.
M.S.
Masters
Civil, Environmental, and Construction Engineering
Engineering and Computer Science
Civil Engineering; Water Resources Engineering
APA, Harvard, Vancouver, ISO, and other styles
17

Oliveira, Paulo Tarso Sanches de. "Water balance and soil erosion in the Brazilian Cerrado." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-16012015-170452/.

Full text
Abstract:
Deforestation of the Brazilian savanna (Cerrado) region has caused major changes in hydrological processes. These changes in water balance and soil erosion are still poorly understood, but are important for making land management decisions in this region. Therefore, it is necessary to understand the magnitudes of hydrological processes and soil erosion changes on local, regional and continental scales, and the consequences that are generated. The main objective of the study presented in this doctoral thesis was to better understand the mechanism of hydrological processes and soil erosion in the Cerrado. To achieve that, I worked with different scales (hillslope, watershed and continental) and using data from experimental field, laboratory, and remote sensing. The literature review reveals that the annual rainfall erosivity in Brazil ranges from 1672 to 22,452 MJ mm ha-1 h-1 yr-1. The smallest values are found in the northeastern region, and the largest in the north and the southeastern region. I found that the canopy interception may range from 4 to 20% of gross precipitation and stemflow around 1% of gross precipitation in the cerrado. The average runoff coefficient was less than 1% in the plots under cerrado and that the deforestation has the potential to increase up to 20 fold the runoff coefficient value. The results indicate that the Curve Number method was not suitable to estimate runoff under undisturbed Cerrado, bare soil (hydrologic soil group A), pasture, and millet. Therefore, in these cases the curve number is inappropriate and the runoff is more aptly modeled by the equation Q = CP, where C is the runoff coefficient. The water balance from the remote sensing data across the Brazilian Cerrado indicates that the main source of uncertainty in the estimated runoff arises from errors in the TRMM precipitation data. The water storage change computed as a residual of the water budget equation using remote sensing data (TRMM and MOD16) and measured discharge data shows a significant correlation with terrestrial water storage change obtained from the GRACE data. The results show that the GRACE data may provide a satisfactory representation of water storage change for large areas in the Cerrado. The average annual soil loss in the plots under bare soil and cerrado were 15.25 t ha-1 yr-1 and 0.17 t ha-1 yr-1, respectively. The Universal Soil Loss Equation cover and management factor (C-factor) for the plots under native cerrado vegetation was 0.013. The results showed that the surface runoff, soil erosion and C-factor for the undisturbed Cerrado changes between seasons. The greatest C-factor values were found in the summer and fall. The results found in this doctoral thesis provide benchmark values of the water balance components and soil erosion in the Brazilian Cerrado that will be useful to evaluate past and future land cover and land use changes for this region. In addition, I conclude that the remote sensing data are useful to evaluate the water balance components over Cerrado regions, identify dry periods, and assess changes in water balance due to land cover and land use change.
O desmatamento nas regiões de Cerrado tem causado intensas mudanças nos processos hidrológicos. Essas mudanças no balanço hídrico e erosão do solo são ainda pouco entendidas, apesar de fundamentais na tomada de decisão de uso e manejo do solo nesta região. Portanto, torna-se necessário compreender a magnitude das mudanças nos processos hidrológicos e de erosão do solo, em escalas locais, regionais e continentais, e as consequências dessas mudanças. O principal objetivo do estudo apresentado nesta tese de doutorado foi de melhor entender os mecanismos dos processos hidrológicos e de erosão do solo no Cerrado Brasileiro. Para tanto, utilizou-se diferentes escalas de trabalho (vertentes, bacias hidrográficas e continental) e usando dados experimentais in situ, de laboratório e a partir de sensoriamento remoto. O estudo de revisão de literatura indica que a erosividade da chuva no Brasil varia de 1672 to 22,452 MJ mm ha-1 h-1 yr-1. Os menores valores encontram-se na região nordeste e os maiores nas regiões norte e sudeste do Brasil. Verificou-se que os valores de interceptação da chuva variam de 4 a 20% e o escoamento pelo tronco aproximadamente 1% da precipital total no cerrado. O coeficiente de escoamento superficial foi menor que 1% nas parcelas de cerrado e o desmatamento tem o potencial de aumentar em até 20 vezes esse valor. Os resultados indicam que o método Curve Number não foi adequado para estimar o escoamento superficial nas áreas de cerrado, solo exposto (grupo hidrológico do solo A), pastagem e milheto. Portanto, nesses casos o uso do CN é inadequado e o escoamento superficial é melhor estimado a partir da equação Q = CP, onde C é o coeficiente de escoamento superficial. O balanço hídrico a partir de dados de sensoriamento remoto para todo o Cerrado Brasileiro indica que a principal fonte de incerteza na estimativa do escoamento superficial ocorre nos dados de precipitação do TRMM. A variação de água na superfície terrestre calculada como o residual da equação do balanço hídrico usando dados de sensoriamento remoto (TRMM e MOD16) e valores observados de vazão mostram uma correlação significativa com os valores de variação de água na superfície terrestre provenientes dos dados do GRACE. Os dados do GRACE podem representar satisfatoriamente a variação de água na superfície terrestre para extensas regiões do Cerrado. A média anual de perda de solo nas parcelas de solo exposto e cerrado foram de 15.25 t ha-1 yr-1 and 0.17 t ha-1 yr-1, respectivamente. O fator uso e manejo do solo (fator C) da Universal Soil Loss Equation para o cerrado foi de 0.013. Os resultados mostraram que o escoamento superficial, erosão do solo e o fator C na área de cerrado variam de acordo com as estações. Os maiores valores do fator C foram encontrados no verão e outono. Os resultados encontrados nesta tese de doutorado fornecem valores de referência sobre os componentes do balanço hídrico e erosão do solo no Cerrado, que podem ser úteis para avaliar o uso e cobertura do solo atual e futuro. Além disso, conclui-se que os dados de sensoriamento remoto apresentam resultados satisfatórios para avaliar os componentes do balanço hídrico no Cerrado, identificar os períodos de seca e avaliar as alterações no balanço hídrico devido à mudanças de uso e cobertura do solo.
APA, Harvard, Vancouver, ISO, and other styles
18

Kosmerl, Paul F. "Water Balance of Retrofit, Right-of-way Rain Gardens." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337347745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yoder, Jay Alan. "The impact of insect diapause on water balance physiology /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487693923198332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Carnell, John. "Calculating the balance between water resources and water demands an approach using risk analysis." Thesis, Aston University, 1999. http://publications.aston.ac.uk/13269/.

Full text
Abstract:
An inability to calculate the balance between supply and demand may mean an inability to meet standards of service or, arguably worse, an excessive provision of water resources and excessive costs to customers. United Kingdom Water Industry Research Limited (UKWIR) Headroom project in 1998 provided a simple methodology for the calculation of planning margins. This methodology, although well received, was not, however, accepted by the Regulators as a tool sufficient to promote resource development. This thesis begins with considering the history of water resource planning in the UK, moving on to discuss events following privatisation of the water industry post-1985. The mid section of the research forms the bulk of original work and provides a scoping exercise which reveals a catalogue of uncertainties prevalent within the supply-demand balance. Each of these uncertainties is considered in terms of materiality, scope, and whether it can be quantified within a risk analysis package. Many of the areas of uncertainty identified would merit further research. A workable, yet robust, methodology for evaluating the balance between water resources and water demands by using a spreadsheet based risk analysis package is presented. The technique involves statistical sampling and simulation such that samples are taken from input distributions on both the supply and demand side of the equation and the imbalance between supply and demand is calculated in the form of an output distribution. The percentiles of the output distribution represent different standards of service to the customer. The model allows dependencies between distributions to be considered, for improved uncertainties to be assessed and for the impact of uncertain solutions to any imbalance to be calculated directly. The method is considered a significant leap forward in the field of water resource planning.
APA, Harvard, Vancouver, ISO, and other styles
21

Buchanan, Margaret MacNeill. "Soil Water Flow and Irrigated Soil Water Balance in Response to Powder River Basin Coalbed Methane Product Water." Thesis, Montana State University, 2005. http://etd.lib.montana.edu/etd/2005/buchanan/BuchananM0505.pdf.

Full text
Abstract:
A repacked soil columns experiment and a series of computer soil water balance simulations were conducted to examine potential impacts of coalbed methane (CBM) water from Montana's Powder River Basin (PRB) on soil water flow and water balance in PRB soils. CBM water is often high in sodium, which may separate soil clay particles, particularly after soil exposure to low-salinity rainfall or snowmelt, and when soils contain expansible smectite clay minerals. Aggregates in soils exposed to sodic water may swell and slake, and clays and other fine particles may disperse, clogging soil pores and slowing or preventing soil water flow. In the soil columns experiment, A and B horizon materials from sandy loam, silt loam, and clay loam soils were pre-treated with water having salinity and sodicity typical of PRB CBM water or of Powder River (PR) water currently used for irrigation in the basin. Tension infiltrometer measurements were used to determine infiltration flux, first using pre-treatment water, and subsequently deionized (DI) water, simulating rainwater. Measurements were compared by pre-treatment water, horizon, and soil type. Under pre-treatment water testing, the sandy loam and clay loam soils pre-treated with CBM water exhibited smaller infiltration flux values than when pre-treated with PR water. Only the sandy loam soil showed a greater decrease in infiltration flux with DI water on soils pre-treated with CBM relative to PR water pre-treated soils. There was no difference in infiltration flux decrease with DI water between A and B horizon soils, or between smectite and non-smectite soils. The soil water balance numerical simulations modeled potential effects of sodic irrigation waters on sandy loam, silt loam, clay loam and silty clay PRB soils under sprinkler or flood irrigation, during one growing season. Baseline soil water retention functions were constructed for the five soils, and adjusted via trends identified in the literature to create five additional functions for each soil, simulating exposure to five increasingly sodic irrigation waters. Simulation results showed greater impact of sodic irrigation under flood than sprinkler irrigation. The fine sandy loam and silty clay loam soils exhibited the fewest changes in water balance partitioning, while the silt loam and silty clay soils showed the greatest changes, especially in increased runoff and reduced transpiration.
APA, Harvard, Vancouver, ISO, and other styles
22

Gustafson, Joseph Rhodes. "Quantifying Spatial Variability of Snow Water Equivalent, Snow Chemistry, and Snow Water Isotopes: Application to Snowpack Water Balance." Thesis, The University of Arizona, 2008. http://hdl.handle.net/10150/193330.

Full text
Abstract:
This study quantifies spatial and temporal patterns in snow water equivalent (SWE), chemistry, and water isotopes associated with snowpack shading due to aspect and vegetation in the Valles Caldera National Preserve, New Mexico. Depth, density, stratigraphy, temperature, and snow chemistry, isotope, and biogeochemical nutrient samples were collected and analyzed from five snowpit locations on approximate monthly intervals between January-April 2007. SWE showed little variability between sites in January (~10mm) but differences expanded to 84mm (30%) by max accumulation in open sites and 153mm (45%) between all sites. Sulfate varied by 22% (10.6-13.5 microeq/L), Cl- by 35% (17.4-26.9 microeq/L), and d18O by 17% (-16.3 to -13.5), with SWE exhibiting inverse correlations with d18O (r2=0.96), SO42- (r2=0.75), and Cl- (r2=0.60) at max accumulation. Regression relationships suggest variability in SWE and solutes/water isotopes are primarily driven by sublimation. Mass balance techniques estimate sublimation ranges from 1-16% between topographically- and non-shaded open sites.
APA, Harvard, Vancouver, ISO, and other styles
23

Shipton, Jemma. "Balance, gravity waves and jets in turbulent shallow water flows /." St Andrews, 2008. http://hdl.handle.net/10023/708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sharma, Rohit M. "Water balance considerations in modeling of PEM fuel cell systems." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cherneski, Patrick L. "Modeling the water balance of the Upper Battle Creek Watershed." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ54695.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shipton, Jemma. "Balance, gravity waves and jets in turbulent shallow water flows." Thesis, University of St Andrews, 2009. http://hdl.handle.net/10023/708.

Full text
Abstract:
This thesis contains a thorough investigation of the properties of freely decaying turbulence in a rotating shallow water layer on a sphere. A large number of simulations, covering an extensive range of Froude and Rossby numbers, have been carried out using a novel numerical algorithm that exploits the underly- ing properties of the flow. In general these flows develop coherent structures; vortices interact, merge and migrate polewards or equatorwards depending or their sign, leaving behind regions of homogenized potential vorticity separated by sharp zonal jets. In the first half of the thesis we investigate new ways of looking at these structures. In the second half of the thesis we examine the properties of the potential vorticity (PV) induced, balanced component and the residual, unbalanced component of the flows. Cyclone-anticyclone asymmetry has long been observed in atmospheric and oceanic data, laboratory experiments and numerical simulations. This asymmetry is usually seen to favour anticyclonic vorticity with the asymmetry becoming more pronounced at higher Froude numbers (e.g. Polvani et al. [1994a]). We find a similar result but note that the cyclones, although fewer, are significantly more intense and coherent. We present several ways of quantifying this across the parameter space. Potential vorticity homogenization is an important geophysical mechanism responsible for sharpening jets through the expulsion of PV gradients to the edge of flow structures or domains. Sharp gradients of PV are obvious in contour plots of this field as areas where the contours are bunched together. This suggests that we can estimate the number of zonal jets by performing a cluster analysis on the mean latitude of PV contours (this diagnostic is also examined by Dritschel and McIntyre [2007]). This provides an estimate rather than an exact count of the number of jets because the jets meander signficantly. We investigate the accuracy of the estimates provided by different clustering techniques. We find that the properties of the jets defy such simple classification and instead demand a more local examination. We achieve this by examining the palinstrophy field. This field, calculated by taking the gradient of the PV, highlights the regions where PV contours come closer together, exactly what we would expect in regions of strong jets. Plots of the palinstrophy field reveal the complex structure of these features. The potential vorticity field is even more central to the flow evolution than the strong link with jets suggests. From a knowledge of the spatial distribution of PV, it is possible to diagnose the balanced components of all other fields. These components will not contain inertia-gravity waves but will contain the dominant, large scale features of the flow. This inversion, or decomposition into balanced (vortical) and unbalanced (wave) components, is not unique and can be defined to varying orders of accuracy. We examine the results of four dfferent definitions of this decomposition, two based on truncations of the full equations and two based on an iterative procedure applied to the full equations. We find the iterative procedure to be more accurate in that it attributes more of the flow to the PV controlled, balanced motion. However, the truncated equations perform surprisingly well and do not appear to suffer in accuracy at the equator, despite the fact that the scaling on which they are based has been thought to break down there. We round off this study by considering the impact of the unbalanced motion on the flow. This is accomplished by splitting the integration time of the model into intervals τ < t < τ+dτ and comparing, at the end of each interval, the balanced components of the flow obtained by a) integrating the model from t = 0 and b) integrating the full equations, initialised at t = τ with the balanced components from a) at t = τ. We find that any impact of the unbalanced component of the flow is less than the numerical noise of the model.
APA, Harvard, Vancouver, ISO, and other styles
27

Mhlauli, Ntuthuzelo Columbus. "Growth analysis and soil water balance of selected vegetable crops." Diss., University of Pretoria, 2000. http://hdl.handle.net/2263/26200.

Full text
Abstract:
Please read the abstract in the section 00front of this document
Dissertation (M Inst Agrar (Horticulture Science))--University of Pretoria, 2000.
Plant Production and Soil Science
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
28

Chen, Liping. "Soil Characteristics Estimation and Its Application in Water Balance Dynamics." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc9789/.

Full text
Abstract:
This thesis is a contribution to the work of the Texas Environmental Observatory (TEO), which provides environmental information from the Greenbelt Corridor (GBC) of the Elm Fork of the Trinity River. The motivation of this research is to analyze the short-term water dynamic of soil in response to the substantial rainfall events that occurred in North Texas in 2007. Data collected during that year by a TEO soil and weather station located at the GBC includes precipitation, and soil moisture levels at various depths. In addition to these field measurements there is soil texture data obtained from lab experiments. By comparing existing water dynamic models, water balance equations were selected for the study as they reflect the water movement of the soil without complicated interrelation between parameters. Estimations of water flow between soil layers, infiltration rate, runoff, evapotranspiration, water potential, hydraulic conductivity, and field capacity are all obtained by direct and indirect methods. The response of the soil at field scale to rainfall event is interpreted in form of flow and change of soil moisture at each layer. Additionally, the analysis demonstrates that the accuracy of soil characteristic measurement is the main factor that effect physical description. Suggestions for model improvement are proposed. With the implementation of similar measurements over a watershed area, this study would help the understanding of basin-scale rainfall-runoff modeling.
APA, Harvard, Vancouver, ISO, and other styles
29

Chen, Liping Acevedo Miguel Felipe. "Soil characteristics estimation and its application in water balance dynamics." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-9789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Abebe, Yibekal Alemayehu. "Managing the soil water balance of hot pepper (Capsicum annuum L.) to improve water productivity." Thesis, University of Pretoria, 2010. http://hdl.handle.net/2263/25257.

Full text
Abstract:
A series of field, rainshelter, growth cabinet and modelling studies were conducted to investigate hot pepper response to different irrigation regimes and row spacings; to generate crop-specific model parameters; and to calibrate and validate the Soil Water Balance (SWB) model. Soil, climate and management data of five hot pepper growing regions of Ethiopia were identified to develop irrigation calendars and estimate water requirements of hot pepper under different growing conditions. High irrigation regimes increased fresh and dry fruit yield, fruit number, harvest index and top dry matter production. Yield loss could be prevented by irrigating at 20-25% depletion of plant available water, confirming the sensitivity of the crop to mild soil water stress. High plant density markedly increased fresh and dry fruit yield, water-use efficiency and dry matter production. Average fruit mass, succulence and specific leaf area were neither affected by row spacing nor by irrigation regimes. There were marked differences among the cultivars in fruit yields despite comparable top dry mass production. Average dry fruit mass, fruit number per plant and succulence were significantly affected by cultivar differences. The absence of interaction effects among cultivar and irrigation regimes, cultivars and row spacing, and irrigation regimes and row spacing for most parameters suggest that appropriate irrigation regimes and row spacing that maximize productivity of hot pepper can be devised across cultivars. To facilitate irrigation scheduling, a simple canopy cover based procedure was used to determine FAO-type crop factors and growth periods for different growth stages of five hot pepper cultivars. Growth analysis was done to calculate crop-specific model parameters for the SWB model and the model was successfully calibrated and validated for five hot pepper cultivars under different irrigation regimes or row spacings. FAO basal crop coefficients (Kcb) and crop-specific model parameters for new hot pepper cultivars can now be estimated from the database, using canopy characteristics, day degrees to maturity and dry matter production. Growth cabinet studies were used to determine cardinal temperatures, namely the base, optimum and cut-off temperatures for various developmental stages. Hot pepper cultivars were observed to require different cardinal temperatures for various developmental stages. Data on thermal time requirement for flowering and maturity between plants in growth cabinet and open field experiments matched closely. Simulated water requirements for hot pepper cultivar Mareko Fana production ranged between 517 mm at Melkassa and 775 mm at Alemaya. The simulated irrigation interval ranged between 9 days at Alemaya and 6 days at Bako, and the average irrigation amount per irrigation ranged between 27.9 mm at Bako and 35.0 mm at Zeway.
Thesis (PhD)--University of Pretoria, 2010.
Plant Production and Soil Science
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
31

Chadha, Kush. "Improvement of water management in PEM fuel cells using water balance and electrochemical noise analysis." Thesis, Poitiers, 2021. http://www.theses.fr/2021POIT2251.

Full text
Abstract:
Cette thèse s’inscrit dans une démarche d’optimisation des performances des piles à combustibles PEMFC, à travers le développement de nouveaux designs de plaque d’alimentation. Des outils tel que le bilan hydrique et l’analyse des bruits électrochimiques ont été utilisés comme diagnostic de la gestion de l’eau au sein d’un mono-cellule PEMFC. Une gestion optimale du transport d’eau permet une augmentation des performances et de la durée de vie des piles à combustible. Le bilan hydrique a été utilisé pour mesurer et encadrer la valeur du coefficient de diffusion effectif de l’eau au sein des membranes de piles à combustibles. De nouvelles géométries de plaque d’alimentation ont été développées et caractériser par des mesures classiques de courbes de performance et des mesures de pression. La technique du bruit électrochimique a été utilisée pour détecter des phénomènes liés au comportement de l’eau lors du fonctionnement de la pile pour chaque géométrie développée. Le bruit électrochimique enregistré pendant ces expériences a été associé à des mécanismes sources grâce à une démarche expérimentale et à un traitement de signal approprié basé sur l’analyse fréquentielle et temporelle. Les résultats des descripteurs obtenus par l’analyse temporel et fréquentiel ont permis de d’obtenir la signature dans un fonctionnement normal de pile à combustible utilisant une géométrie classique de canaux en serpentin. Cette signature a été comparée aux nouveaux designs développés permettant de caractériser l’influence de ces nouvelles géométries sur le transport d’eau. Enfin, de manière à compléter l’approche expérimental effectuée sur le coefficient de diffusion de l’eau au sein des membranes de piles à combustibles PEMFC, une modélisation de la courbe de polarisation prenant en compte ce coefficient a été développé et comparé aux courbes de performances expérimentales. En termes d’ouverture, l’impact des nouvelles géométries développées a été étendu à leur utilisation en stack et un modèle de pronostic basé sur les réseaux de neurones artificiels a été proposé
This thesis deals to optimize the performance of PEMFC fuel cells, through the development of new flow-field plate designs. Tools such as water balance and electrochemical noise analysis have been used to diagnose water management within a PEMFC single cell. Optimal management of the water transport enables an increase of the performance and durability of fuel cells. Water balance method was used to measure and frame the value of the effective water diffusion coefficient within the membranes of fuel cells. New flow-flied plate geometries have been developed and characterized by conventional polarization curve and pressure measurements. The electrochemical noise technique was used to detect phenomena related to the behavior of water during fuel cell operation for each geometry developed. Electrochemical noise measurements have been associated with source mechanisms through an experimental approach and an appropriate signal processing based on frequency and time analysis. The descriptors obtained by time and frequency analysis shows that it possible to obtain the signature in normal operation of a fuel cell using a classical serpentine. This signature was compared to the new developed designs allowing to characterize the influence of these new geometries on the water transport. Finally, to complete the experimental approach carried out on the water diffusion coefficient within the membranes of PEMFC fuel cells, a model based on polarization curve, considering this coefficient, was developed and compared to the experimental curves of performances. In perspective, the impact of the new developed geometries has been extended in a stack utilization and a prognosis model based on artificial neural networks has been proposed
APA, Harvard, Vancouver, ISO, and other styles
32

Moreira, LuÃs ClÃnio JÃrio. "Estimating irrigated watermelon evapotranspiration using sebal, soil-water balance and eddy correlations." Universidade Federal do CearÃ, 2009. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5217.

Full text
Abstract:
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
In applications of the SEBAL (Surface Energy Balance Algorithm for Land) algorithm parameters for physical processes adjusted for other regions of the planet are commonly used. Therefore, there is a need for validation of the estimates made with the algorithm compared with other conventional methods of estimating evapotranspiration. Thus, this study main goal was to evaluate the satellite-based algorithm to estimate evapotranspiration of irrigated watermelon using as comparative methods: soil water balance and eddy correlation. The studied area was a plot of 1 ha located in the irrigated district of the low Acaraà River. Foliar coverage was obtained from digital images taken from a camera. Sensors were installed from the soil surface to a height of 1.5 m for monitoring the temperature in the air. The unsaturated hydraulic conductivity function of the soil was obtained using the instantaneous profile method. The water balance in the soil was done on days 17, 18 and 19 December, 2008, in the 0 to 30 cm depth using soil moisture capacitive sensors. To evaluate the components of net radiation and evapotranspiration using the method of eddy correlation, a micrometeorological tower was installed in the center of the studied area, where latent heat flux (LE), sensible heat flux (H) and evapotranspiration were determined. With climate data from a meteorological station nearby and using the FAOÂs methodology, net radiation (Rn) and soil heat flow (G) were determined. The SEBAL algorithm was applied in two Landsat5 satellite images acquired in 17/12/2008 and 02/01/2009 for estimating the net radiation and daily evapotranspiration. The measured temperature at the soil surface and in the air at 10 cm high was over 40  C near noon time. The unsaturated hydraulic conductivity function found was of the form K (θ) = 0.089 e28, 53θ and K (θ) = 0.0469 e48, 773θ, respectively for 0 - 15 and 15 - 30 cm. The evapotranspiration obtained from soil water balance with capacitive sensors in the study period was 9.37; 12.18 and 11.27 mm day-1, respectively in 17; 18 and December 19, 2008. For the radiation balance it was found that the latent heat flux was underestimated by using the method of eddy correlation with maximum values of the order of 150 W m-2. The sensible heat flux was always larger than the LE during the day, with maximum values near 300 W m-2. The energy balance done but accounting H + LE and Rn â G produced a residual error of around 60%. The daily average values of ETc (eddy correlations) for part of the experimental period were in the range of 0.91 to 1.18 mm day-1, with an average of 0.96 mm day-1. The satellite image that was applied to SEBAL algorithm presented many clouds, affecting the estimation of the components of radiation balance and evapotranspiration. In the area of watermelon, SEBAL estimates of evapotranspiration for dates 17/12/2008 and 02/01/2009 were 6.5 and 4.0 mm day-1, respectively. For validation, the ETo obtained by Penman-Montheith method at the time of satellite overpass was 0.53 mm h-1, while Etc obtained with SEBAL, eddy correlation and soil-water balance was 0.78; 0.11 and 0.55 mm h-1, respectively.
Nas aplicaÃÃes feitas com o SEBAL (Surface Energy Balance Algorithm for Land), estÃo sendo utilizadas parametrizaÃÃes de processos fÃsicos ajustados para outras regiÃes do planeta. Portanto, existe uma necessidade de validaÃÃo das estimativas feitas com o algoritmo comparando com outros mÃtodos usuais de estimativa de evapotranspiraÃÃo. Assim, esse trabalho teve como objetivo avaliar o algoritmo SEBAL na estimativa da evapotranspiraÃÃo da melancia irrigada usando como mÃtodos comparativos o balanÃo hÃdrico no solo e mÃtodo das correlaÃÃes turbulentas (eddy correlation). A Ãrea estudada foi um lote de 1 ha localizado no PerÃmetro Irrigado Baixo AcaraÃ. A cobertura Foliar foi obtida a partir de fotografias digitais. Foram instalados sensores a partir da superfÃcie do solo atà a altura de 1,5 m para monitoramento da temperatura no ar. Para fazer o balanÃo hÃdrico no solo foi encontrada a funÃÃo da condutividade hidrÃulica nÃo saturada atravÃs da metodologia do perfil instantÃneo. O balanÃo hÃdrico no solo foi feito nos dias 17, 18 e 19/12/2008 na camada de 0 a 30 cm usando sensores capacitivos de umidade. Para avaliar os componentes do balanÃo de radiaÃÃo e a evapotranspiraÃÃo atravÃs do mÃtodo das correlaÃÃes turbulentas foi instalada uma torre micrometeorolÃgica no centro da Ãrea, onde o fluxo de calor latente (LE), o fluxo de calor sensÃvel (H) e a evapotranspiraÃÃo foram determinados. Com dados climÃticos de uma estaÃÃo meteorologia prÃximo a Ãrea e usando a metodologia da FAO foi estimado a radiaÃÃo lÃquida (Rn) e o fluxo de calor no solo (G). O algoritmo SEBAL foi usado nas imagens do TM-Landsat 5 dos dias 17/12/2008 e 02/01/2009 para estimar o balanÃo de radiaÃÃo e a evapotranspiraÃÃo diÃria. A temperatura na superfÃcie e a 10 cm de altura prÃximos ao meio dia foi superior a 40ÂC. A funÃÃo da condutividade hidrÃulica no solo nÃo saturado para camada de 0 â 15 e 15 â 30 cm foi: K(θ) = 0,089e28,53θ e K(θ) = 0,0469e48,773θ, respectivamente. A evapotranspiraÃÃo obtida atravÃs do balanÃo hÃdrico com sensores capacitivos nos dias analisados foi 9,37; 12,18 e 11,27 mm dia-1, respectivamente em 17; 18 e 19 de dezembro de 2008. No balanÃo de energia observou-se que o fluxo de calor latente foi subestimado usando o mÃtodo das correlaÃÃes turbulentas apresentando valores mÃximos no dia nunca superiores a 150 W m-2. O fluxo de calor sensÃvel esteve sempre maior que o LE durante o dia, apresentando valores mÃximos prÃximos a 300 W m-2. O erro de fechamento da equaÃÃo do balanÃo de energia obtido atravÃs do equacionamento entre H + LE e Rn â G foi de cerca de 60%. Os valores mÃdios diÃrios da ETc (correlaÃÃes turbulentas) para parte do perÃodo experimental estiveram na faixa de 0,91 a 1,18 mm dia-1, com mÃdia de 0,96 mm dia-1. As imagens de satÃlites em que foi usado o algoritmo SEBAL apresentaram nuvens comprometendo a estimativa dos componentes do balanÃo de radiaÃÃo e a evapotranspiraÃÃo. Na Ãrea da melancia, a evapotranspiraÃÃo diÃria usando o SEBAL nos dias 17/12/2008 e 02/01/2009 foi 6,5 e 4,0 mm dia-1, respectivamente. Na anÃlise comparativa, a ETo na hora da passagem do satÃlite foi de 0,53 mm h-1, enquanto a ETc foi de 0,78; 0,11 e 0,55 mm h-1 estimada com o SEBAL, mÃtodos das correlaÃÃes turbulentas e balanÃo hÃdrico, espectivamente.
APA, Harvard, Vancouver, ISO, and other styles
33

Jó, Aline Chieka. "Balanço hídrico e energético de um sistema predial de aproveitamento de água de chuva." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257793.

Full text
Abstract:
Orientadores: José Euclides Stipp Paterniani, Wolney Castilho Alves
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo
Made available in DSpace on 2018-08-18T12:20:53Z (GMT). No. of bitstreams: 1 Jo_AlineChieka_M.pdf: 7050496 bytes, checksum: 391d2c2135292d79283850171019c417 (MD5) Previous issue date: 2011
Resumo: O uso da água de chuva como fonte alternativa de abastecimento de água é uma prática em grande ascensão, principalmente pela importância no que concerne à conservação dos recursos hídricos. No entanto, comumente o usuário desconsidera o consumo energético que este sistema possa demandar, e dependendo da concepção do mesmo, pode ser considerado um fator relevante na sua aplicação. As concepções e os componentes de um sistema de aproveitamento de água de chuva variam em função da necessidade de cada usuário e da destinação final do uso da água. Existem sistemas simples, que compõem equipamentos básicos de tratamento e reservação, e sistemas complexos que envolvem equipamentos automatizados, estes geralmente demandam energia, como bombas de elevação e sistemas de desinfecção. Diante disso, o presente trabalho apresenta o modelo equacional teórico aplicável para qualquer concepção de sistema predial de aproveitamento de água de chuva, do qual se obtém um índice de valor energético para cada volume de água de chuva efetivamente aproveitada pelo sistema. A partir desse modelo, pode-se também verificar a eficiência e a viabilidade do sistema, tanto na questão conservacionista quanto na econômica. Como exemplo de aplicação do modelo, utilizou-se o sistema predial de aproveitamento de água de chuva instalado no campus do Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT), que destina a água de chuva para a lavagem de piso da cozinha e do refeitório do referido local. O índice médio obtido foi de 3,17 kWh/m³, considerado alto, se comparado com sistemas públicos de abastecimento que em média o índice é de 0,60 kWh/m³ e outros sistemas de aproveitamento de água de chuva que é de 0,05kWh/m³. Este alto índice está relacionado com o consumo de energia do sistema de desinfecção por ozônio, e não com o da bomba hidráulica, como se havia suposto inicialmente. O período de retorno do investimento foi de cinco a seis anos. Concluindo, o modelo teórico servirá como ferramenta de avaliação do sistema de aproveitamento de água de chuva em estudo, de forma que o projetista ou usuário consiga otimizá-lo, considerando as particularidades de cada situação
Abstract: The use of rainwater as an alternative source of water supply is a practice on the rise, mainly for its importance in conservation of water resources. However, the user often ignores the energy that this system may require, and depending on its design, can be considered a relevant factor in its application. The conceptions and components of a rainwater harvesting system vary depending on the needs of each user and its final destination. There are simple systems made with basic equipaments and reservation processing, and complex systems involving automated equipments, which generally require energy, such as lifting pumps and disinfection systems. Therefore, this paper presents a theoretical and equational model, applicable at any building to realize a rainwater harvesting system, from which you get an energy value index for each volume of rainwater effectively utilized by the system. From this model, it is also possible to check the system's efficiency and viability, both in conservation and economic question. As an example of an applied model, the rainwater harvesting building system installed on the campus of the Institute for Technological Research of São Paulo (IPT) was used, which directs rain water to wash the kitchen floor and the cafeteria of this site. An average rate of 3,17 kWh/m³ was obtained, considered elevated when compared to public supply systems, that on average attains rates of 0,60 kWh/m³, and other systems with 0,05kWh/m³. This high rate is related to the energy consumption of the ozone disinfection system, not with the hydraulic pump, as had been assumed initially. The payback period is five to six years. In conclusion, the theoretical model will serve as an evaluating tool of the rainwater harvesting system in study, so that the designer or user can optimize it, considering the particularities of each situation
Mestrado
Saneamento e Ambiente
Mestre em Engenharia Civil
APA, Harvard, Vancouver, ISO, and other styles
34

Knight, Erik Lloyd. "A Water budget and land management recommendations for Upper Cienega Creek Basin." Thesis, The University of Arizona, 1996. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_etd_hy0026_m_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhou, Jia Lei. "EU water law : the right balance between environmental and economic considerations?" Thesis, University of Macau, 2005. http://umaclib3.umac.mo/record=b1637070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rollet, Fabien Alexandre. "A conceptual water balance model of paved surfaces in urban catchments." Thesis, University of the West of Scotland, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mbarushimana, Kagabo Desire. "Modelling the soil water balance of potatoes for improved irrigation management." Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-07192007-134318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brubaker, Kaye L. (Kaye Lorraine). "Nonlinear dynamics of water and energy balance in land-atmosphere interaction." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Karam, Hanan Nadim. "Estimating evapotranspiration from the Amazon Basin using the atmospheric water balance." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35086.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2006.
Includes bibliographical references (p. 98-101).
The spatio-temporal patterns of evapotranspiration (ET) in the Amazon basin are still poorly understood. Field studies in the Amazonian forest have shown that at some sites, deep roots allow trees to sustain elevated transpiration during several months of minimal rainfall, whereas at others, trees experience evident dry season water limitation. However, the few sites investigated are inadequate to characterize the conditions of transpiration throughout the basin. As a result of this uncertainty in modeling trees' access to deep soil moisture, land surface models cannot provide reliable estimates of transpiration in the region. From a basin-averaged perspective, it remains uncertain whether transpiration is water-limited, peaking during the basin's wet season, or energy-limited, peaking during the dry season when clearer skies allow for higher surface radiation. In this work, we investigate an approach to deriving a spatially-averaged ET estimate for the Amazon basin, which avoids modeling the forest's terrestrial hydrology. ET is computed as a residual of the atmospheric water balance, using basin-averaged convergence of atmospheric water vapor flux [C], precipitation [P], and tendency of total atmospheric water vapor [dw/dt] as inputs.
(cont.) As our resulting estimate of ET is only as good as the input estimates of the other hydrologic components, we analyze multiple cutting-edge datasets that may be used to compute these components. [P] data are obtained from GPCP and TRMM products. The three global reanalyses, NCEP/NCAR, NCEP/DOE and ECMWF ERA-40 provide data on atmospheric fields to compute [C] and [dw/dt]. The large discrepancies between [C] estimates produced by the different reanalyses, interpreted as uncertainty in these estimates, led to a thorough investigation of data on this field over a time period dating back to 1980. Concurrent time series of precipitation and Amazon river discharge are used to evaluate the accuracy of the various reanalyses in simulating [C] at the monthly and annual timescales. A measure of the random error associated with [C] estimates from each data source is derived, and used as a weighting factor to combine information from the three reanalyses. The resulting estimates of monthly basin-averaged ET are significantly lower in their long-term mean than estimates published in the literature. The resulting climatological annual cycle of basin-averaged ET suggests a switch between water and energy limited conditions for transpiration over a year's duration.
by Hanan Nadim Karam.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
40

Rim, Chang-Soo. "Daily estimation of local evapotranspiration using energy and water balance approaches." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/191190.

Full text
Abstract:
Meteorological and environmental (i.e. soil water content) data measured from semiarid watersheds (Lucky Hills and Kendall) during the summer rainy and winter periods were used to study the interrelationships between variables, and to evaluate the effects of variables on the daily estimation of actual evapotranspiration (AET). The relationship between AET and potential evapotranspiration (PET) as a function of an environmental factor was the major consideration of this research. The relationship between AET and PET as a function of soil water content as suggested by Thornthwaite-Mather, Morton and Priestley-Taylor was studied to determine its applicability to the study area. Furthermore, multiple linear regression (MLR) analysis was employed to evaluate the order of importance of the meteorological and soil water factors involved. Finally, the information gained was used for MLR model development. The results of MLR analysis showed that the combined effects of available energy, soil water content and wind speed were responsible for 77 % of the observed variations in AET at Lucky Hills watershed and 70 % at Kendall watershed during the summer rainy period. The analyses also indicated that the combined effects of available energy, vapor pressure deficit and wind speed were responsible for 70 % of the observed variations in AET at Lucky Hills watershed and 72 % at Kendall watershed during the winter period. However, the test results of three different approaches, using the relationships between AET and PET as a function of soil water content indicated some inadequacy. The low correlation between PET, AET, and soil moisture conditions raised some doubt concerning the validity of methods developed elsewhere, and indicated the effects of energy availability on the relationship between PET, AET, and soil water content regardless of the soil water condition. In contrast, agreement between observed AET and estimated AET from MLR models during the summer rainy and winter periods at both watersheds indicated that MLR models can give reasonable estimates of AET, at least under the climatic conditions in which the formulae were developed.
APA, Harvard, Vancouver, ISO, and other styles
41

Thompson, Thomas L., and Kerri L. Maki. "Subsurface Drip Irrigation of Leaf Lettuce and Broccoli II: Water Balance." College of Agriculture, University of Arizona (Tucson, AZ), 1995. http://hdl.handle.net/10150/221450.

Full text
Abstract:
The objective of this research was to estimate a season -long water balance under one subsurface trickle- irrigated plot each of lettuce (Lactuca sativa L. var. Waldmann's Green) and broccoli (Brassica olearacea L. var. Claudia). One lettuce plot during 1992-93 and one broccoli plot during 1993-94 were intensively instrumented with automated tensiometers. Tensiometer readings and estimates of evapotranspiration were used to estimate seasonal water contents in the crop root zone, and water losses due to leaching. For the monitored portion of the 1992-3 growing season, 19.1 an of irrigation water was applied, 12.5 cm of rainfall fell, and ET, was 11.5 cm. Estimated deep percolation was 60% of total water applied (irrigation plus rainfall). Leaching was periodic, and was mostly associated with rainfall events. During the monitored portion of the 19934 season, 21.2 cm of irrigation water were applied, 8.0 an of rainfall fell, and ET, was 21.9 cm. Estimated deep percolation was 28% of total water applied. Almost all of this leaching was associated with one major rainfall event. Water stored in the root zone (top 50 cm) was relatively constant at 12-14 cm water/50 cm soil except after rainfall.
APA, Harvard, Vancouver, ISO, and other styles
42

Hommel, Robert. "The interrelation of carbon and water balance in beech-dominated forests." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17536.

Full text
Abstract:
Aktuelle Klimamodelle prognostizieren, dass viele bedeutendeWaldregionen in Mitteleuropa zukünftig einer steigenden Frequenz und höheren Intensität von Dürreperioden ausgesetzt sein werden. Buchendominierte Wälder bilden einen wichtigen Bestandteil dieser Waldregionen. Der Mangel hinsichtlich der Wasserversorgung ist eine der wichtigsten limitierenden Faktoren für das Wachstum der Pflanzen sowie der damit verbundene reduzierte Zugewinn an Kohlenstoff. Ein weiterer bedeutender Stressfaktor ist die Konkurrenz zwischen sowie innerhalb Pflanzengemeinschaften. Aufgrund dieser Tatsache ist es wichtig, die pflanzenphysiologischen Mechanismen während der Trockenheit sowie interspezifische und intra-spezifische Konkurrenz in buchendominierten Waldökosystemen zu verstehen. Die vorliegende Arbeit untersucht den Zusammenhang von Kohlenstoff- und Wasserhaushalt und deren Wechselwirkungen sowie die Transportwege während der Trockenheit auf unterschiedlichen räumlichen (Blattebene bis Bestandesebene) und zeitlichen (kurzfristig bis langfristig) Skalen. Insgesamt wurden sechs Arten ausgewählt (Fagus sylvatica, Acer platanoides, Fraxinus excelsior, Impatiens noli tangere, Mercurialis annua und Allium ursinum). Alle Arten haben verschiedene Strategien entwickelt, um Konkurrenz und Trockenstress zu bewältigen, zu verhindern oder zu tolerieren. In Abhängigkeit von der Trockenstressintensität wurden geringe Effekte, in der Mesophyllleitfähigkeit (gm), intrinsische Wassernutzungseffizienz (iWUE) sowie in der Transportmenge an neuen Assimilaten beobachtet.
Current climate models predict that many important forest regions in Central Europe will experience increasing frequencies and severities of drought periods. Beech-dominated forests are an important part of these forest regions. Shortage in water supply is one of the most important limiting factors for growth of plants and thereby linked to a reduced carbon gain. Another key stressor is the competition between as well as within a plant communities. Due to this fact it is important to understand the plants physiological mechanisms during drought as well as inter-specific and intra-specific competition in beech dominated forest ecosystems. This present study documents the interrelation of carbon and water balance and the interactions of its pathways during drought on different spatial (leaf area to the stand level) and temporal scales (intra-annual to decadal). Six relevant species were selected in total (tree species: Fagus sylvatica, Acer platanoides, Fraxinus excelsior and species from the understorey of beech dominated forests: Impatiens noli tangere, Mercurialis annua and Allium ursinum). All of them have developed various strategies to cope with competition and avoid or tolerate drought stress. Depending on the drought intensity (e.g. moderate realistic drought) small effects in mesophyll conductance (gm), intrinsic water use efficiency (iWUE) and amount of new assimilates within trees occurred.
APA, Harvard, Vancouver, ISO, and other styles
43

Vicentini, Liliana Pedroso. "Componentes do balanço hídrico para avaliação de perdas em sistemas de abastecimento de água." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3147/tde-03072013-151444/.

Full text
Abstract:
O presente trabalho aborda os conceitos que envolvem as perdas no sistema de distribuição de água e os diferentes indicadores de perdas existentes, utilizados como um dos principais instrumentos de apoio à gestão nos sistemas de abastecimentos de água. A revisão bibliográfica apresenta histórico dos trabalhos referentes ao controle e redução de perdas que tem sido desenvolvidos no Brasil e em outros países. Mostra a diversidade de indicadores de perdas existentes e os estudos e discussões incessantes na busca de sua padronização, coordenados pela International Water Association (IWA). Também trata de importantes questões relativas ao tema da dissertação, tais como: a elaboração do Balanço Hídrico e os limites de incertezas de suas variáveis; e as iniciativas existentes ao redor do mundo relacionadas ao uso eficiente de energia e sua interface entre a redução de perdas em sistemas de abastecimento de água. Na segunda etapa do trabalho, foram elaborados passo a passo os Balanços Hídricos de três setores de abastecimento da Região Metropolitana de São Paulo (RMSP) com características distintas entre si. Em razão da dificuldade de medições de alguns volumes de entrada dos Balanços Hídricos, recorreu-se à alternativa de calculá-los através de estimativas, cujos valores padrões foram pesquisados na bibliografia existente. Devido a isso, os fluxos dos Balanços Hídricos estudados apresentaram faixas de valores, retratando os limites de incertezas a que eles estão submetidos. Compararam-se os Balanços Hídricos dos três setores de abastecimento, avaliando-se suas incertezas, analisando-se seus resultados e recomendando-se onde podem ser direcionadas as ações para o controle e redução, sejam para as perdas reais, sejam para as perdas aparentes. Por fim, ressalta-se que por se tratar de tema correlacionado às dissertações desenvolvidas por Galvão (2007), Melato (2010), Oliveira (2011) e Palo (2010), este estudo serve, portanto, como uma continuidade desses trabalhos.
This project has the purpose of treat the conceptions involving losses in water distribution systems and different performance indicators, used as a major instrument of management support systems in water supplies. Bibliographic review presents a historic of the works on the control and reduction of water losses that have been developed in Brazil and other countries. It shows the diversity of existing indicators of water losses and incessant studies and discussions in the search for its standardization, coordinated by the International Water Association (IWA). It also deals with important issues related to the subject of the dissertation, such as the elaboration of the water balance and the limits of uncertainty of its variables, and the existing initiatives around the world related to the energy efficiency and its interface with the reduction of losses in water supply systems. In the second stage of the work, the Water Balances of three different supply sectors of the Metropolitan Region of São Paulo were developed step by step. Because of the difficulty of measurements of some volumes of incoming Water Balance, one resorted to the alternative of calculating them through estimates, whose default values were researched in existing literature. Due to this, the flow of Water Balance study showed ranges of values, depicting the limits of uncertainty to which they are submitted. The Water Balance of three supply sectors were compared, evaluating their uncertainties, analyzing their results and recommending where actions should be directed to the control and reduction whether they are real or apparent losses. It is important to say that since it is correlated themes to dissertations developed by Galvão (2007), Melato (2010), Oliveira (2011) and Palo (2010), will represent, therefore, as continuity to their works.
APA, Harvard, Vancouver, ISO, and other styles
44

Schoorlemmer, Gerhardus H. M. "Body fluid regulation during water deprivation, role of solute balance in osmoregulation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq24038.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gärdenäs, Annemieke. "Soil organic matter in forest soils : effects of climate and water balance /." Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 1998. http://epsilon.slu.se/avh/1998/91-576-5530-8.gif.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cotter, Colin John. "Model reducation for shallow water dynamics : balance adiabatic invariance and subgrid modelling." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Renner, Maik. "Land use effects and climate impacts on evapotranspiration and catchment water balance." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-131554.

Full text
Abstract:
Evapotranspiration ET is a dominant Earth System process that couples the water and energy cycles at the earth surface. The pressure of global environmental changes foster the broad scientific aim to understand impacts of climate and land-use on evapotranspiration under transient conditions. In this work, the spatial scale of river catchments is addressed through data analysis of hydrological and meteorological archives with ET classically derived through water balance closure. Through a synthesis of various catchments with different climatic forcings and hydrological conditions, the core objectives of this thesis are: - Did environmental changes in the past, such as climatic- or land-use and land cover (LULC) changes, result in detectable non-stationary changes in the hydro-climate time series? - How can the impacts of climatic- from LULC changes on the hydroclimatology of catchments be separated? - What are the factors that control the sensitivity of ET and streamflow to external changes? These research questions are addressed for the climatic scales of long-term annual averages and seasonal conditions which characterise the hydroclimatology of river catchments. Illustrated by a rich hydro-climatic archive condensed for 27 small to medium sized river catchments in Saxony, a method is proposed to analyse the seasonal features of river flow allowing to detect shifting seasons in snow affected river basins in the last 90 years. Observations of snow depth at these same times lead to the conclusion, that changes in the annual cycle of air temperature have a large influence on the timing of the freeze-thaw in late winter and early spring. This causes large changes in storage of water in the snow pack, which leads to profound changes of the river regime, particularly affecting the river flow in the following months. A model-based data analysis, based on the fundamental principles of water and energy conservation for long-term average conditions, is proposed for the prediction of ET and streamflow, as well as the separation of climate related impacts from impacts resulting from changes in basin conditions. The framework was tested on a large data set of river catchments in the continental US and is shown to be consistent with other methods proposed in the literature. The observed past changes highlight that (i) changes in climate, such as precipitation or evaporative demand, result in changes of the partitioning within the water and energy balance, (ii) the aridity of the climate and to a lesser degree basin conditions determine the sensitivity to external changes, (iii) these controlling factors influence the direction of LULC change impacts, which in some cases can be larger than climate impacts. This work provides evidence, that changes in climatic and land cover conditions can lead to transient hydrological behaviours and make stationary assumptions invalid. Hence, past changes present the opportunity for model testing and thereby deriving fundamental laws and concepts at the scale of interest, which are not affected by changes in the boundary conditions
Die Verdunstung ist ein maßgeblicher Prozess innerhalb des Klimasystems der Erde, welche den Wasserkreislauf mit dem Energiehaushalt der Erde verbindet. Eine zentrale wissenschaftliche Herausforderung ist, zu verstehen, wie die regionale Wasserverfügbarkeit durch Änderungen des Klimas oder der physiographischen Eigenschaften der Landoberfläche beeinflusst wird. Mittels einer integrierten Datenanalyse von vorhandenen langjährigen Archiven hydroklimatischer Zeitreihen werden die folgenden wissenschaftlichen Fragestellungen dieser Dissertation diskutiert: - Haben beobachtete Änderungen der Landoberfläche und des Klimas zu nachweisbaren, instationären hydroklimatischen Änderungen geführt? - Lassen sich die hydroklimatischen Auswirkungen von Klimaänderungen und Änderungen der Landoberfläche voneinander unterscheiden? - Welche Faktoren beeinflussen die Sensitivität von Abfluss und Verdunstung auf Veränderungen der klimatischen und physiographischen Randbedingungen? Hierbei fokussiert sich die Arbeit auf Änderungen im langjährige Mittel und im Jahresgang von hydroklimatischen Variablen auf der räumlichen Skala von Flusseinzugsgebieten. Zur Untersuchung des hydrologischen Regimes wurde ein harmonischer Filter angewandt, der es erlaubt, die Eintrittszeit des Jahresgangs (Phase) zu quantifizieren. Diese klimatologische Kenngröße wurde für eine Vielzahl von Einzugsgebieten in Sachsen untersucht, wobei sich vor allem für die Gebiete in den Kammlagen des Erzgebirges signifikante Veränderungen ergaben. Es konnte gezeigt werden, dass die signifikante Phasenverschiebung der Temperatur seit Ende der 1980er Jahre zu einer verfrühten Schneeschmelze und dadurch zu einem Rückgang des Abflusses bis in die Sommermonate hinein geführt hat. Desweiteren wurde eine modellbasierte Datenanalyse entwickelt, welche auf Massen- und Energieerhalt von Einzugsgebieten im langjährigen Mittel beruht. Das entwickelte Konzept erlaubt es, Auswirkungen von Klimaänderungen von anderen Effekten, welche z.B. durch Landnutzungsänderungen bedingt sind, abzugrenzen und zu quantifizieren. Die Ergebnisse einer Sensitivitätsanalyse dieses Konzeptes sowie die Anwendung auf einen umfangreichen hydroklimatischen Datensatz der USA zeigen: (i) Veränderungen im Wasser- oder Energiedargebot beeinflussen auch die Aufteilung der Wasser- und Energieflüsse. (ii) Die Aridität des Klimas und nachgeordnet die physiographischen Faktoren bestimmen die Sensitivität von Verdunstung und Abfluss. (iii) Beide Faktoren beeinflussen die Stärke und Richtung der Auswirkungen von physiographischen Änderungen. (iv) Anthropogene Veränderungen der Landoberfläche führten zum Teil zu stärkeren Auswirkungen als klimatisch bedingte Änderungen. Zusammenfassend zeigt sich, dass Änderungen von Landnutzung und Klima zu Verschiebungen im Wasserhaushalt führen können und damit auch die Annahme von Stationarität verletzen. Hydroklimatische Veränderungen bieten aber auch eine Gelegenheit zum Testen von Theorien und Modellen, um somit die grundlegenden Zusammenhänge zu erkennen, welche nicht durch Änderungen der Randbedingungen hinfällig werden
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Xi. "Climate and landscape controls on seasonal water balance at the watershed scale." Doctoral diss., University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6263.

Full text
Abstract:
The main goal of this dissertation is to develop a seasonal water balance model for evaporation, runoff and water storage change based on observations from a large number of watersheds, and further to obtain a comprehensive understanding on the dominant physical controls on intra-annual water balance. Meanwhile, the method for estimating evaporation and water storage based on recession analysis is improved by quantifying the seasonal pattern of the partial contributing area and contributing storage to base flow during low flow seasons. A new method for quantifying seasonality is developed in this research. The difference between precipitation and soil water storage change, defined as effective precipitation, is considered as the available water. As an analog to climate aridity index, the ratio between monthly potential evaporation and effective precipitation is defined as a monthly aridity index. Water-limited or energy-limited months are defined based on the threshold of 1. Water-limited or energy-limited seasons are defined by aggregating water-limited or energy-limited months, respectively. Seasonal evaporation is modeled by extending the Budyko hypothesis, which is originally for mean annual water balance; while seasonal surface runoff and base flow are modeled by generalizing the proportionality hypothesis originating from the SCS curve number model for surface runoff at the event scale. The developed seasonal evaporation and runoff models are evaluated based on watersheds across the United States. For the extended Budyko model, 250 out of 277 study watersheds have a Nash-Sutcliff efficiency (NSE) higher than 0.5, and for the seasonal runoff model, 179 out of 203 study watersheds have a NSE higher than 0.5. Furthermore, the connection between the seasonal parameters of the developed model and a variety of physical factors in the study watersheds is investigated. For the extended Budyko model, vegetation is identified as an important physical factor that related to the seasonal model parameters. However, the relationship is only strong in water-limited seasons, due to the seasonality of the vegetation coverage. In the seasonal runoff model, the key controlling factors for wetting capacity and initial wetting are soil hydraulic conductivity and maximum rainfall intensity respectively. As for initial evaporation, vegetation is identified as the strongest controlling factor. Besides long-term climate, this research identifies the key controlling factors on seasonal water balance: the effects of soil water storage, vegetation, soil hydraulic conductivity, and storminess. The developed model is applied to the Chipola River watershed and the Apalachicola River basin in Florida for assessing potential climate change impact on the seasonal water balance. The developed model performance is compared with a physically-based distributed hydrologic model of the Soil Water Assessment Tool, showing a good performance for seasonal runoff, evaporation and storage change.
Ph.D.
Doctorate
Civil, Environmental and Construction Engineering
Engineering and Computer Science
Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
49

Hussein, Ahmed El Shazli Ahmed [Verfasser]. "Water balance of the Aswan High Dam Reservoir / Ahmed El.Shazli Ahmed Hussein." Kiel : Universitätsbibliothek Kiel, 2018. http://d-nb.info/1162496487/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Thadei, Simon Yuda. "Evaluation of effective rainfall by a physically-based soil-water balance model." Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography