Academic literature on the topic 'Wastewater treatment- Chemical and biological'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wastewater treatment- Chemical and biological.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wastewater treatment- Chemical and biological"
Guomin, Cao, Yang Guoping, Sheng Mei, and Wang Yongjian. "Chemical industrial wastewater treated by combined biological and chemical oxidation process." Water Science and Technology 59, no. 5 (March 1, 2009): 1019–24. http://dx.doi.org/10.2166/wst.2009.051.
Full textXayitovna, Juraeva Oyisha, and Kamolova Shahnoza Meliboevna. "METHODS OF MECHANICAL, CHEMICAL AND BIOLOGICAL TREATMENT OF WASTEWATER IN INDUSTRIAL ECOLOGY." American Journal of Applied Science and Technology 03, no. 05 (May 1, 2023): 70–72. http://dx.doi.org/10.37547/ajast/volume03issue05-13.
Full textEl-Gohary, F. A., S. I. Abo-Elela, S. A. Shehata, and H. M. El-Kamah. "Physico-Chemical-Biological Treatment of Municipal Wastewater." Water Science and Technology 24, no. 7 (October 1, 1991): 285–92. http://dx.doi.org/10.2166/wst.1991.0212.
Full textEckenfelder, W. Wesley, and A. J. Englande. "Innovative biological treatment for sustainable development in the chemical industries." Water Science and Technology 38, no. 4-5 (August 1, 1998): 111–20. http://dx.doi.org/10.2166/wst.1998.0596.
Full textBertanza, G., C. Collivignarelli, and R. Pedrazzani. "The role of chemical oxidation in combined chemical-physical and biological processes: experiences of industrial wastewater treatment." Water Science and Technology 44, no. 5 (September 1, 2001): 109–16. http://dx.doi.org/10.2166/wst.2001.0263.
Full textAkinnawo, Solomon Oluwaseun, Peter Odunayo Ayadi, and Mathew Temitope Oluwalope. "Chemical coagulation and biological techniques for wastewater treatment." Ovidius University Annals of Chemistry 34, no. 1 (January 1, 2023): 14–21. http://dx.doi.org/10.2478/auoc-2023-0003.
Full textBroch-Due, A., R. Andersen, and B. Opheim. "Treatment of integrated newsprint mill wastewater in moving bed biofilm reactors." Water Science and Technology 35, no. 2-3 (February 1, 1997): 173–80. http://dx.doi.org/10.2166/wst.1997.0511.
Full textDracea, Dragos, Augustina Tronac, and Sebastian Mustata. "Current Trends in Biological Wastewater Treatment." “Agriculture for Life, Life for Agriculture” Conference Proceedings 1, no. 1 (July 1, 2018): 373–76. http://dx.doi.org/10.2478/alife-2018-0055.
Full textGulyas, H., R. von Bismarck, and L. Hemmerling. "Treatment of industrial wastewaters with ozone/hydrogen peroxide." Water Science and Technology 32, no. 7 (October 1, 1995): 127–34. http://dx.doi.org/10.2166/wst.1995.0217.
Full textBelkin, Shimshon, Asher Brenner, and Aharon Abeliovich. "Biological Treatment of a High Salinity Chemical Industrial Wastewater." Water Science and Technology 27, no. 7-8 (April 1, 1993): 105–12. http://dx.doi.org/10.2166/wst.1993.0540.
Full textDissertations / Theses on the topic "Wastewater treatment- Chemical and biological"
Buck, Andrew. "Characterisation of chemical processes operating within a biological wastewater treatment plant." Thesis, Open University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409874.
Full textTjernström, Linnéa. "Function of soil-based on-site wastewater treatment systems - Biological and chemical treatment capacity." Thesis, KTH, Mark- och vattenteknik (flyttat 20130630), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210716.
Full textDecentraliserade system för rening av avloppsvatten är bland de huvudsakliga svenska antropogena källorna till näringsämnen som bidrar till övergödning av Östersjön. Bland decentraliserade system i Sverige är nästan hälften system med slamavskiljare följt av ett markbaserat system i vilket avloppsvattnet renas genom infiltration i jord. I denna studie studeras en markbaserad teknik i vilken avloppsvattnet filtreras genom sand, en så kallad markbädd. En fältundersökning gjordes där samlingsprov av ingående och utgående avloppsvatten togs på två markbäddar i Stockholmsområdet för att bestämma deras biologiska och kemiska reningsfunktion samt att jämföra avskiljningen av fosfor i systemen med rekommendationer från HaV. Parametrar som inkluderats i studien är totalfosfor, ammonium-kväve, löst organiskt kol, pH, turbiditet och löst syre. Biologisk funktion ansågs bra i båda markbäddarna eftersom nitrifikationen var hög och utgående vatten hade tillräckliga halter av löst syre vilket implicerar att markbäddarna var väl syresatta. Rådande syrerika förhållanden i markbäddarna antyder också att organiskt material bryts ned avsevärt, vilket är fallet för löst kol som reducerades med mer än 85 % i en av markbäddarna och med nästan 70 % i den andra. Den höga reduktionen av organiska mikroföroreningar som påvisats i markbäddarna i en annan studie tyder också på att biologisk funktion med avseende på avsklijning av organiska substanser är bra. Kemisk funktion, med avseende på avskiljning av totalfosfor, var inte tillräcklig då ingen av markbäddarna levde upp till reduktionskraven från HaV för normal eller hög skyddsnivå. Totalfosfor avskiljdes med 42 respektive 54 % i markbäddarna. En nackdel med metoden som användes i studien är att de resultat som fåtts för avkiljning av de olika parametrarna endast kan representera den verkliga situationen om variationer i in- och utgående flöde samt variationer i ingående vattenkoncentrationer är små och om utspädningseffekten av utgående vatten är försumbar.
Gamez, Grijalva Victor Manuel. "BIOLOGICAL AND PHYSICAL-CHEMICAL METHODS FOR TREATMENT OF SEMICONDUCTOR MANUFACTURING EFFLUENTS." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195838.
Full textSudarjanto, Gatut. "Integrated chemical and biological treatment process to remove colour compounds from wastewater /." [St. Lucia, Qld.], 2006. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19717.pdf.
Full textKramadhati, Narahari Narasiah. "The impact of aircraft deicing wastes on the biological wastewater treatment process /." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100640.
Full textThe specific objectives of the research were to: (1) determine the effects of process parameters such as biomass concentration, deicing fluid concentration and temperature on the biodegradation kinetics. (2) determine the mechanism of deicing fluid removal and model the reaction rates. (3) determine the effects of microbial changes on the treatment process. (4) evaluate the advantages of a sequencing batch reactor for the treatment of deicing wastes. (5) corroborate our laboratory results with field data from an operating wastewater facility treating deicing wastes.
The results from the field show that despite the increases in influent organic matter during the deicing season, there were very little changes in effluent values of organic matter. Furthermore, influent concentrations of deicing fluid between 10 and 30 mg/L were reduced to trace amounts (i.e. below 5 mg/L) throughout the deicing season. However, as witnessed by the high sludge volume index during the deicing season, the presence of deicing fluid creates settling problems in the clarifier.
The laboratory batch experiments indicate optimal substrate removal rates at biomass concentrations of 1000 mg/L and 2000 mg/L. Very low biomass levels lead to inhibition whereas a high biomass level of 3000 mg/L is unnecessary since the food to microorganism ratio is such that only a fraction of the biomass participates in the degradation reaction. With regards to deicing fluid concentration, organic matter removal rates tend to increase as the deicing fluid is increased. However, at the highest level of deicing fluid, certain inhibitory effects are present. As expected, higher temperatures produce much higher removal rates with the ethylene glycol substrate showing less variation with temperature than the other organic compounds present in the wastewater.
With regards to the mechanism of removal, the results showed very little adsorption of organic matter onto the biomass within the first hour of contact. In addition, the total organic matter removal (TOC and COD) followed first order kinetics with respect to substrate concentration.
Lastly, sequencing batch reactor operation allowed for much higher removal rates as the microbial population is acclimatized to the substrate with increasing cycles. With regards to the microbial population, the Biolog results showed that there was a decrease in the variety of compounds that could be degraded as the biomass was exposed to the deicing fluid. Furthermore, most population changes occurred at the very beginning of the deicing season and in the first half of the SBR experiments.
Carini, Diane. "Treatment of industrial wastewater using chemical-biological sequencing batch biofilm reactor (SBBR) processes /." [S.l.] : [s.n.], 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13431.
Full textKordi, Javad. "Processes and drivers of biological and chemical Phosphorus removal in wastewater treatment plants." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-38814.
Full textYan, Qingmei, and 嚴慶梅. "Biological nitrogen removal of saline wastewater by ammoniumoxidizers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42182116.
Full textZhao, Kang, and 趙鈧. "An iron-facilitated chemical and biological process for phosphorus removal and recovery during wastewater treatment." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196027.
Full textpublished_or_final_version
Civil Engineering
Master
Master of Philosophy
Bailey, Andrew Douglas. "An exploratory investigation of crossflow microfiltration for solid/liquid separation in biological wastewater treatment." Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/21915.
Full textBooks on the topic "Wastewater treatment- Chemical and biological"
M, Henze, ed. Wastewater treatment: Biological and chemical processes. 2nd ed. Berlin: Springer, 1997.
Find full textKsenofontov, Boris. Biological wastewater treatment. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1013710.
Full textT, Daigger Glen, and Lim Henry C. 1935-, eds. Biological wastewater treatment. 2nd ed. New York: Marcel Dekker, 1999.
Find full textShah, Maulin P., ed. Biological Treatment of Industrial Wastewater. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839165399.
Full textHahn, Hermann H., and Rudolf Klute, eds. Chemical Water and Wastewater Treatment. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76093-8.
Full textSakurai, Akihiko. Wastewater treatment using enzymes. Edited by Research Signpost (Trivandrum India). Trivandrum: Research Signpost, 2003.
Find full textDezotti, Márcia, Geraldo Lippel, and João Paulo Bassin. Advanced Biological Processes for Wastewater Treatment. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58835-3.
Full textBiotechnology and wastewater treatment. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Find full textHahn, Hermann H., Erhard Hoffmann, and Hallvard Ødegaard, eds. Chemical Water and Wastewater Treatment IV. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61196-4.
Full textKlute, Rudolf, and Hermann H. Hahn, eds. Chemical Water and Wastewater Treatment III. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79110-9.
Full textBook chapters on the topic "Wastewater treatment- Chemical and biological"
Cooper, Paul. "Biological Treatment Versus Chemical Treatment." In Chemical Water and Wastewater Treatment IV, 327–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61196-4_30.
Full textIlmavirta, A. "Chemical-biological Treatment Versus Chemical Treatment — A Case Study." In Pretreatment in Chemical Water and Wastewater Treatment, 281–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73819-7_23.
Full textHenze, Mogens, and Poul Harremoës. "Chemical-Biological Nutrient Removal — The HYPRO Concept." In Chemical Water and Wastewater Treatment, 499–510. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76093-8_33.
Full textJørgensen, P. E. "Biological Hydrolysis of Sludge from Primary Precipitation." In Chemical Water and Wastewater Treatment, 511–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76093-8_34.
Full textBundgaard, Erik, and Jan Pedersen. "Full Scale Experience with Biological and Chemical Phosphorus Removal." In Chemical Water and Wastewater Treatment, 443–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76093-8_29.
Full textParsons, S. A., C. Bedel, and B. Jefferson. "Chemical vs. Biological Treatment of Grey Water." In Chemical Water and Wastewater Treatment VI, 383–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59791-6_35.
Full textKristensen, G. Holm, and P. Elberg Jørgensen. "Pre-precipitation Followed by Biological Denitrification Supported by Addition of Biological or Thermal/Chemical Hydrolysis Products." In Chemical Water and Wastewater Treatment II, 313–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77827-8_20.
Full textHoffmann, Erhard, and Rudolf Klute. "Improving the Denitrification Potential in Biological Wastewater Treatment by Dosing Carbon from Sludge Hydrolysis." In Chemical Water and Wastewater Treatment, 543–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76093-8_37.
Full textHarremoës, Poul, and Mogens Henze. "The Relative Merits of Biological Versus Chemical Wastewater Treatment." In Chemical Water and Wastewater Treatment IV, 317–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61196-4_27.
Full textKarlsson, Ingemar, Jonas Göransson, and Kim Rindel. "Use of Internal Carbon from Sludge Hydrolysis in Biological Wastewater Treatment." In Chemical Water and Wastewater Treatment II, 329–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77827-8_21.
Full textConference papers on the topic "Wastewater treatment- Chemical and biological"
Kerkez, Đurđa, Milena Bečelić-Tomin, Gordana Pucar Milidrag, Vesna Gvoić, Aleksandra Kulić Mandić, Anita Leovac Maćerak, and Dragana Tomašević Pilipović. "Treatment of wastewater containing printing dyes: summary and perspectives." In 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p31.
Full textSabliy, Larisa, Veronika Zhukova, and Lyubov Kika. "Effective Biological Treatment of Tannery Wastewater from Nitrogen Compounds." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.ii.22.
Full textCong, Cong, and Xiaojun Wang. "The Port Chemical Cabin Washing Wastewater Treatment by Ozonation-Biological Aerated Filter." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5163641.
Full text"Decolorisation Treatment of Wastewater Containing Reactive Yellow 15 Using Herbal absorbent of Wheat Husk." In 3rd International Conference on Biological, Chemical and Environmental Sciences. International Institute of Chemical, Biological & Environmental Engineering, 2015. http://dx.doi.org/10.15242/iicbe.c0915062.
Full textRadu, Florina, Sofia Popescu, Antoanela Cozma, Alexandru Rinovetz, and Bogdan Radoi. "EARLY REMEDIATION OF WASTEWATERS FROM ROMANIAN FOOD INDUSTRY: A CASE STUDY OF IMPROVING THE QUALITY OF DAIRY INDUSTRY WASTEWATER." In 22nd International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/3.2/s12.07.
Full textDAPKIENĖ, Midona, Nomeda SABIENĖ, and Algirdas RADZEVIČIUS. "CONTAMINATION OF THE ROOT VEGETABLES WASH WATER AND ITS TREATMENT EFFICIENCY." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.010.
Full textHrudka, Jaroslav, Reka Wittmanova, Stefan Stanko, Andrea Raczkova, and Ivona Skultetyova. "POSSIBILITIES OF SEWAGE TREATMENT TEMPORARILY ACCUMULATED IN SUMPS." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/3.1/s12.19.
Full textNguyen, Don. "Emerging Technologies for Treating Contaminants in Marine Wastewater." In ASME/USCG 2010 2nd Workshop on Marine Technology and Standards. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/mts2010-0207.
Full textAl-Kaabi, Maryam Ali, Mohammad Ahmad Al-Ghouti, Nabil A. Zouari, and Talaat Abdelfattah Ahmed. "An Integrated Approach to Produced Water Treatment using Sand Filtration, Activated Carbon and Microemulsions modified Activated Carbon." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0066.
Full textStonkutė, Monika. "EXPERIMENTAL RESEARCH ON APPLICATION OF YEAST IN HEAVY METAL REMOVAL FROM POLLUTED WATER." In 24-oji jaunųjų mokslininkų konferencijos „Mokslas – Lietuvos ateitis“ teminė konferencija APLINKOS APSAUGOS INŽINERIJA. Vilniaus Gedimino Technikos Universitetas, 2020. http://dx.doi.org/10.3846/aainz.2021.23.
Full textReports on the topic "Wastewater treatment- Chemical and biological"
Moore, Joe, Preom Sarkar, and Djuna Gulliver. Biological Treatment of Flue Gas Desulfurization Wastewater. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1766571.
Full textPrice, Barbara B. Chemical Biological Medical Treatment Symposia-III. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada394695.
Full textLee, T. Y., Bingham Y. Pan, and Henry P. Sheng. Final Feasibility Report on Chemical Treatment of Sodium Nitrite Wastewater. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada250513.
Full textBurton, Dennis T., and William C. Graves. Evaluation of Several Biological Monitoring Techniques for Hazard Assessment of Potentially Contaminated Wastewater and Groundwater. Volume 1. Aberdeen Proving Ground-Edgewood Area Wastewater Treatment Plant. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada260734.
Full textKlasson, KT. NITRO-HYDROLYSIS: AN ENERGY EFFICIENT SOURCE REDUCTION AND CHEMICAL PRODUCTION PROCESS FOR WASTEWATER TREATMENT PLANT BIOSOLIDS. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/885721.
Full textBurrows, W. D., Elizabeth T. Paulson, and Robert P. Carnahan. Biological Treatment of Composition B Wastewaters. 3. Analysis of Performance of Holston Army Ammunition Plant Wastewater Treatment Facility, January 1985 through August 1986: Errata. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada261814.
Full textSchideman, Lance, Joshua McCann, Fred Harrington, Ravi Prasad, Chih-Ting Kuo, Michelle Zosky, and Benjamin Lam. Improving the Economic Viability of Biological Utilization of Coal Power Plant CO2 by Improved Algae Productivity and Integration with Wastewater Treatment. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1887581.
Full textAble, Chad, Mark Woods, Marc Turner, and Eric Grol. Techno-Economic Analysis of Chemical Precipitation Followed by Low Hydraulic Residence Time Biological Treatment, Including Ultrafiltration. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1886384.
Full textHusson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Full textDzombak, David, Radisav Vidic, and Amy Landis. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1063876.
Full text