Academic literature on the topic 'Waste heat recovery boiler'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Waste heat recovery boiler.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Waste heat recovery boiler"
Yanai, Eiji, and Tetsuzo Kuribayashi. "Waste heat recovery boiler." Atmospheric Environment (1967) 22, no. 2 (January 1988): ii. http://dx.doi.org/10.1016/0004-6981(88)90065-0.
Full textHoizumi, Shinichi, and Tsugutom Teranishi. "5109665 Waste heat recovery boiler system." Environment International 19, no. 1 (January 1993): II. http://dx.doi.org/10.1016/0160-4120(93)90032-d.
Full textWhite, Martin. "4448136 Boiler with waste heat recovery." Journal of Heat Recovery Systems 5, no. 2 (January 1985): iv. http://dx.doi.org/10.1016/0198-7593(85)90057-8.
Full textManickam, M., M. P. Schwarz, and J. Perry. "CFD modelling of waste heat recovery boiler." Applied Mathematical Modelling 22, no. 10 (October 1998): 823–40. http://dx.doi.org/10.1016/s0307-904x(98)10020-3.
Full textBaradey, Y., M. N. A. Hawlader, Ahmad Faris Ismail, and Meftah Hrairi. "WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING." IIUM Engineering Journal 16, no. 2 (November 30, 2015): 31–42. http://dx.doi.org/10.31436/iiumej.v16i2.602.
Full textSeyedan, B., P. L. Dhar, R. R. Gaur, and G. S. Bindra. "Optimization of Waste Heat Recovery Boiler of a Combined Cycle Power Plant." Journal of Engineering for Gas Turbines and Power 118, no. 3 (July 1, 1996): 561–64. http://dx.doi.org/10.1115/1.2816684.
Full textBichevin, Vladislav, and Nina Sosnovskaya. "PROTECTION AGAINST CORROSION OF THE TECHNOLOGICAL EQUIPMENT OF THE OIL REFINING ENTERPRISE." Modern Technologies and Scientific and Technological Progress 2020, no. 1 (June 16, 2020): 23–24. http://dx.doi.org/10.36629/2686-9896-2020-1-23-24.
Full textXiao, Zhong Zheng, Shu Zhong Wang, and Jian Ping Yang. "Research on Recovering Waste Heat from Liquid Produced in Heavy Oil Exploitation by SAGD Technology." Advanced Materials Research 960-961 (June 2014): 410–13. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.410.
Full textZhou, Y., Z. Liu, and A. Golyanin. "Simulation of Waste Heat Recovery From Ship Boiler Exhaust Gas." Bulletin of Science and Practice 6, no. 4 (April 15, 2020): 232–42. http://dx.doi.org/10.33619/2414-2948/53/27.
Full textJoshi, Pratik M., Shekhar T. Shinde, and Kedarnath Chaudhary. "A Case Study on Assessment Performance and Energy Efficient Recommendations for Industrial Boiler." International Journal of Research and Review 8, no. 4 (April 6, 2021): 61–69. http://dx.doi.org/10.52403/ijrr.20210410.
Full textDissertations / Theses on the topic "Waste heat recovery boiler"
Rezaie, Navaie Ali [Verfasser], George [Akademischer Betreuer] Tsatsaronis, George [Gutachter] Tsatsaronis, and Udo [Gutachter] Hellwig. "Thermal design and optimization of heat recovery steam generators and waste heat boilers / Ali Rezaie Navaie ; Gutachter: George Tsatsaronis, Udo Hellwig ; Betreuer: George Tsatsaronis." Berlin : Technische Universität Berlin, 2017. http://d-nb.info/1156187052/34.
Full textPrimes, Alois. "Modularní horizontální kotel – HRSG." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443235.
Full textDlouhá, Kristýna. "Návrh HRSG kotle." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401508.
Full textRojas, Tena Fernando, and Reber Kadir. "Waste Heat Recovery Modellering." Thesis, KTH, Förbränningsmotorteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39923.
Full textAbstractIn a previous project, made in the spring of 2010, a steam generator was modelled and simulated in GT-SUITE, in order to analyze and compare with engine measurements. This was made at the Royal Institute of Technology in Stockholm, on behalf of the company that introduced this idea, Ranotor. The concept was to replace the EGR-cooler in a heavy duty engine and with help of the Rankine cycle, try to improve its efficiency. The steam generator consists of 48 micro tubes, all containing high pressured water, which in turn is heated by the warm exhausts that are led into the steam generator. This causes the water in the tubes to evaporate which propels an expander that will unload the engine.The main focus of this thesis is to model, study and analyze the performance of the steam generator built in the simulation program GT-SUITE. The steam generator, called Heat Recovery Steam Generator (HRSG), is modelled from scratch with the specifications of the manufacturer. An elementary model was initially made to highlight the behaviour of the flow inside the micro tubes and what parameters affect the outcome of the simulations. Finally a complete identical model was made of the actual steam generator. The model was used in an ESC-cycle and also for a transient cycle, where all the input data is gathered on engine measurements of the actual HRSG, mounted on a DS1301, 6-cylinder 12 litre Scania diesel engine. In order to improve the simulation of the complete model a downsized model, only containing two tubes, was made. This model has the same dimensions and properties as the complete model but the advantage of this double-tube model is the shortened simulation time.The inlet parameters to the model such as water mass flow, steam pressure, exhaust mass flow and exhaust temperature were taken from actual engine measurements. All the parameters vary due to time; this makes a comparison possible between the real steam generator and the modelled one. Steam temperature, exhaust temperature and pressure drop along the HRSG are the main parameters from the simulations that are compared to the actual measurements. The engine measurements are made based on the ESC-cycle, European Stationary Cycle, which contains twelve load points and one idle point. During comparison between the complete model and the engine measurements following is observed, in the best case the steam temperature differs ~ 5 %, equalling 10°C. In the worst case the temperature difference is ~20 %, which is approximately 40°C, the rest of the load points shows a margin of error between 5-10 % equalling 10-35 °C. Pressure drop along the HRSG is less accurate;this is due to an error during the measurement where some filters where clogged. Disparity in pressure drop is ~1% in best case, which is almost identical and ~70% in worst case, corresponding to approximately 10 bar, where rest of the load points shows a margin of error between 10-15% equalling 1-4 bar.The double-tube model behaves like the complete model; the difference between the models is 1-5 % in most cases ~5-15°C, where the difference is mostly closer to the measurements. Heat transfer, Reynolds number and steam power are taken and studied from the double tube model. Analyses of the models reviles that ~40-55 % of the heat transfer is in the transition phase, which is surprisingly much and Reynolds number increases by ~450% in the same region, from 1500 to ~6500 which indicates a flow transition phase. Steam power varies between 5-23 kW depending on load point.The final model shows satisfying result and therefore assumed to be good enough for further analyse.
Razavinia, Nasimalsadat. "Waste heat recovery with heat pipe technology." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94983.
Full textL'énergie d'haut grade de nos jours est produite principalement à base de combustion d'hydrocarbure et les réserves de cette énergie deviennent de plus en plus rare, mais certaines énergies alternatives connues gagnent des forces parmi les marchés incluant les sources d'énergie renouvelables et recyclées. Les usines pyrométallurgiques sont des consommateurs significatifs d'énergie d'haut grade. Ces procédés industriels relâches un montant important de chaleurs (perte) à l'environnement sans aucune récupération. Le but du projet est de concentrer, capturer et convertir cette chaleur résiduelle de basse qualité en énergie valable. Par contre, l'objectif principal du projet comme tel est de développer et de perfectionner un caloduc capable d'extraire cette chaleur parvenant des gaz effluents. Le point d'ébullition d'une substance (vapeur) est utilisé comme moyen de concentrer l'énergie contenu dans les effluents avec la technologie des caloducs. Pour maximiser les gains énergétiques, la conception de ce caloduc en particulier utilise des canaux de retour indépendant ainsi qu'un modificateur de débit dans l'évaporateur, lui permettant d'extraire un niveau supérieur de chaleur. Pendant les essais lors du projet, les éléments limitants des systèmes de caloducs ont été identifiés. Les configurations du système ont été ajustées et modifiés dans la phase expérimentale d'essai pour surmonter ces limitations et maximiser l'extraction de chaleur.
Hua, Lihong. "Heat exchanger development for waste water heat recovery." Thesis, University of Canterbury. Mechanical Engineering, 2005. http://hdl.handle.net/10092/6459.
Full textAguilar, Alex. "Harnessing thermoacoustics for waste heat recovery." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/130213.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 25-26).
Environmental concerns and economic incentives have created a push for a reduction in emissions and an increase in efficiency. The U.S. Department of Energy estimates that 20 to 50% of the energy consumed in manufacturing processes is lost in some form to waste heat. The purpose of this study is to review the waste heat recovery technologies currently available in both commercial and research applications to determine how thermoacoustics may serve a role in furthering the use of waste heat recovery units. A literary review of the most common waste heat recovery units was compiled to determine the advantages and disadvantages of the different technologies by comparing components and their governing processes. An existing model of a thermoacoustic converter (TAC) was reviewed and a conceptual analysis written to suggest improvements for future experimental designs.
by Alex Aguilar.
S.B.
S.B. Massachusetts Institute of Technology, Department of Mechanical Engineering
Lemaire, Lacey-Lynne. "Miniaturized stirling engines for waste heat recovery." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107690.
Full textLes appareils électroniques portatifs ont définitivement laissé un impact sur notre société et économie par leur utilisation fréquente pour le calcul, les communications et le divertissement. La performance et l'autonomie de ces appareils peuvent s'améliorer grandement si leur exploitation fonctionne en utilisant l'énergie récoltée de l'environnement. Pour s'orienter vers ce but, cette thèse a exploré si le développement d'un moteur Stirling fonctionnant sur l'énergie résiduelle était faisable. Un moteur Stirling de configuration 'gamma', de la grandeur d'une paume de main, avec un volume d'environ 165 centimètres cubes, a été fabriqué en utilisant des techniques conventionnelles d'usinage. Ce moteur a été capable de soutenir l'opération constante et stable à des différences en température relativement basses (entre 20 degrés Celsius et 100 degrés Celsius). De plus, il a produit quelques milli-Joules d'énergie mécanique à des fréquences entre 200 et 500 révolutions par minute. Par la suite, le moteur Stirling de configuration 'gamma' a été transformé en un moteur Ringbom. Par après, l'opération de ce moteur a été comparée à des prédictions basées sur un modèle analytique disponible dans la littérature. Les informations recueillies durant cette étude ont fourni certaines directives pour la miniaturisation éventuelle d'un moteur Stirling en utilisant des techniques de microfabrication.
Gibbons, Jonathan S. (Jonathan Scott) 1979, and Stephen V. 1982 Samouhos. "Mobile power plants : waste body heat recovery." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32814.
Full textIncludes bibliographical references.
Novel methods to convert waste metabolic heat into useful and useable amounts of electricity were studied. Thermoelectric, magneto hydrodynamic, and piezo-electric energy conversions at the desired scope were evaluated to understand their role and utility in the efficient conversion of waste body heat. The piezo-electric generator holds the most promise for the efficient conversion of waste body heat into electricity. In the future, this same device could be easily extended into a combustion based power plant. An experimental apparatus investigating the use of magneto hydrodynamics was designed, built, and tested. A room temperature liquid inetal was propelled through a magneto hydrodynamic channel of 4 inches by 0.1875 inches at a rate of 10 mL/s. A 2 T induction field was applied within the channel. However, the results of the analysis did not find the magneto hydrodynamic device to be an effective electric generator at the scale tested.
by Jonathan S. Gibbons and Stephen V. Samouhos.
S.B.
Sapa, Ihor. "Waste heat recovery in the ceramic industry." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11827.
Full textEste trabalho tem como objetivo principal constituir um contributo para a sistematização e análise das diferentes opções disponíveis para a recuperação de calor residual na indústria cerâmica, através do desenvolvimento e aplicação de uma metodologia para a incorporação eficiente de tecnologias de recuperação de calor residual. Com base na revisão da literatura, a metodologia proposta fornece bases para a identificação e caracterização das fontes de calor residual presentes na indústria cerâmica, bem como apresenta a revisão e análise de aplicabilidade das tecnologias de recuperação de calor mais comuns e inerentes a este sector. A demonstração e aplicação da metodologia proposta foi desenvolvida no âmbito de um estágio extracurricular numa unidade fabril portuguesa do setor cerâmico - TopCer - integrado no programa Galp 202020@UA. O estudo de caso desenvolvido revelou a importância da recuperação de calor como uma das ferramentas para a melhoria da eficiência energética no sector cerâmico no sentido de obter uma vantagem competitiva. A revisão bibliográfica sobre recuperação de calor demonstrou que esta área do conhecimento tem apresentado um crescimento significativo em termos de número de publicações quase duplicando em número de 2011 para 2012, o que ilustra o crescente interesse da comunidades científica e tecnológica por este tema. A metodologia proposta tendo o setor da indústria cerâmica como ponto de partida, é suficientemente robusta para poder ser facilmente adaptada a outras indústrias que procuram soluções de poupança de energia através da valorização de calor residual.
This work aims to be a contribution to the systematization and analysis of the different options available for waste heat recovery in the ceramic industry, through the development and application of a methodology for incorporating efficient technologies in waste heat recovery in the industrial process. Based on a review of the literature, the proposed methodology provides the bases for the identification and characterization of waste heat sources in the ceramics industry, and presents a review and analysis of the applicability of the available technologies for heat recovery, most common and inherent in this sector. The demonstration and application of the proposed methodology was developed at a Portuguese ceramic manufacturing unit – TopCer – as part of an extracurricular internship under Galp 202020@UA program. The undertaken case study revealed the importance of heat recovery as a tool for improving energy efficiency in the ceramic sector in order to gain competitive advantage. The literature review on the waste heat recovery has demonstrated that this area has suffered a significant increase in terms of number of publications in 2012, illustrating the growing interest of scientific communities and practitioners in the heat recovery problems. The elaborated methodology for waste heat recovery incorporation is a rather robust instrument and, therefore, it can be easily tailored to other industries looking for energy saving solutions though consideration of waste heat recovery options.
Books on the topic "Waste heat recovery boiler"
Dixon, J. Design of waste heat boilers for the recovery of energy from arc furnace waste gases. Luxembourg: Commission of the European Communities, 1985.
Find full textV, Ganapathy. Waste heat boiler deskbook. Lilburn, GA: Fairmont Press, 1991.
Find full textGoldstick, Robert. Principles of waste heat recovery. Atlanta, Ga: Fairmont Press, 1986.
Find full textAlbert, Thumann, ed. Principles of waste heat recovery. Hemel Hempstead: Prentice-Hall, 1986.
Find full textMeeting, American Society of Mechanical Engineers Winter. Heat transfer in waste heat recovery and heat rejection systems. New York (345 E. 47th St., New York 10017): ASME, 1986.
Find full textAdams, Terry N. Kraft recovery boiler physical and chemical processes. New York, NY: American Paper Institute, 1988.
Find full textCole, William E. Fluidized-bed waste-heat recovery system development. Waltham, Mass: Thermo Electron Corp., 1987.
Find full textWoodward, John B. Engine waste heat thermodynamics. Ann Arbor, MI: Sarah Jennings Press, 1985.
Find full textInternational Recovery Boiler Conference (2004 Porvoo, Finland). 40 years recovery boiler co-operation in Finland: Proceedings, International Recovery Boiler Conference, Haikko Manor, Porvoo, May 12-14, 2004. Helsinki, Finland: The Committee, 2004.
Find full textGettings, Mike. Heat recovery from high temperature waste gas streams. [London]: Energy Efficiency Office, 1987.
Find full textBook chapters on the topic "Waste heat recovery boiler"
Sengupta, Prasunjit. "Refractories for Boiler and Waste Heat Recovery." In Refractories for the Chemical Industries, 303–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61240-5_12.
Full textZhao, Hua, Pengfei Dai, Shanshan Cao, and Qing Hao. "Waste Heat Recovery System Using Coal-Fired Boiler Flue Gas to Heat Heating Network Return Water." In Lecture Notes in Electrical Engineering, 567–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39581-9_56.
Full textMehta, D. Paul. "Waste Heat Recovery." In Energy Management Handbook, 209–32. Ninth edition. | Louisville, Kentucky : Fairmont Press, Inc., [2018]: River Publishers, 2020. http://dx.doi.org/10.1201/9781003151364-8.
Full textKaya, Durmuş, Fatma Çanka Kılıç, and Hasan Hüseyin Öztürk. "Waste Heat Recovery." In Energy Management and Energy Efficiency in Industry, 463–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-25995-2_17.
Full textSengupta, Piyali, S. K. Dutta, and B. K. Choudhury. "Waste Heat Recovery Policy." In Energy, Environment, and Sustainability, 185–205. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7509-4_11.
Full textYang, Wen-Jei. "Recovery and Storage of Waste Heat." In Energy Storage Systems, 525–37. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2350-8_23.
Full textOttie, Timothy W. "Other Opportunities for Waste Heat Recovery." In 47th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 8, Issue 3/4, 181–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470320389.ch6.
Full textYu, Miao, Maria S. Gudjonsdottir, Pall Valdimarsson, and Gudrun Saevarsdottir. "Waste Heat Recovery from Aluminum Production." In Energy Technology 2018, 165–78. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72362-4_14.
Full textKennel, Daniel, and Melanie Raimer. "Waste Heat Recovery - Marktsicht zur Technologieführerschaft." In Heavy-Duty-, On- und Off-Highway-Motoren 2015, 189–200. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21583-5_13.
Full textNakano, Jinichiro, James Bennett, and Anna Nakano. "Energy Generation From Waste Slags: Beyond Heat Recovery." In Rewas 2016: Towards Materials Resource Sustainability, 129–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119275039.ch19.
Full textConference papers on the topic "Waste heat recovery boiler"
Zhou, Xian, Hua Liu, Lin Fu, and Shigang Zhang. "Experimental Study of Natural Gas Combustion Flue Gas Waste Heat Recovery System Based on Direct Contact Heat Transfer and Absorption Heat Pump." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18316.
Full textZakariya, Kaneesamkandi M. "Heat Recovery From Bottom Ash in Waste Fired Boilers: Status of Technologies and Thermal Performance Modeling." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62798.
Full textWang, Dexin, William Liss, and Ainan Bao. "Water Reclamation From High Moisture Content Waste Heat Streams." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63513.
Full textYang, Kaixuan, Ming Liu, and Junjie Yan. "Thermo-Economic Analysis on Waste Heat and Water Recovery Systems of Boiler Exhaust in Coal-Fired Power Plants." In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16269.
Full textWang, Yufeng, Chunyun Hu, Shi'en Hui, Qinxin Zhao, and Qulan Zhou. "Deposition of Cement Kiln Ash on the Tubes of Waste Heat Recovery Boiler." In 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5747731.
Full textBrandstetter, Gottfried, Wolfgang Oberleitner, and Michael Pichler. "How to Change Over Heat Recovery Steam Generators After Gas Turbine Trip." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90648.
Full textStrehler, Jennifer, Scott Vandenburgh, Dave Parry, and Tim Rynders. "Colorado Community Benefits From Installing Waste Heat Recovery System." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90479.
Full textSitorus, Febrin, and Totok Soehartanto. "Utilization of waste heat (off gas) from electric furnace no.4 to generate saturated steam using waste heat recovery boiler." In ADVANCED INDUSTRIAL TECHNOLOGY IN ENGINEERING PHYSICS. Author(s), 2019. http://dx.doi.org/10.1063/1.5095314.
Full textBae, Sukjung, Hyungseok Heo, Heonkyun Lee, Donghyuk Lee, Taejin Kim, Jeongsang Park, and Charnjung Kim. "Performance Characteristics of a Rankine Steam Cycle and Boiler for Engine Waste Heat Recovery." In 16th Asia Pacific Automotive Engineering Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-28-0055.
Full textJanik, Carl, and Art Cole. "Boiler Rebuild and Upgraded Design for Pinellas County MSW." In 10th Annual North American Waste-to-Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/nawtec10-1001.
Full textReports on the topic "Waste heat recovery boiler"
Grieco, A. (Waste water heat recovery system). Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6839699.
Full textLevy, Edward, Harun Bilirgen, and John DuPont. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1084027.
Full textEdward Levy, Harun Bilirgen, and John DuPoint. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1037725.
Full textJovovic, Vladimir. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1337561.
Full textJohnson, Ilona, William T. Choate, and Amber Davidson. Waste Heat Recovery. Technology and Opportunities in U.S. Industry. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/1218716.
Full textPatch, K. D., and W. E. Cole. Fluidized-bed waste-heat recovery system development: Final report. Office of Scientific and Technical Information (OSTI), June 1988. http://dx.doi.org/10.2172/6411874.
Full textHopman, Ulrich,, and Richard W. Kruiswyk. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology. Office of Scientific and Technical Information (OSTI), July 2005. http://dx.doi.org/10.2172/862432.
Full textWebb, Stephen W., Charles W. Morrow, Susan Jeanne Altman, and Brian P. Dwyer. Water recovery using waste heat from coal fired power plants. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1008108.
Full textSubramanian, Swami Nathan. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1375960.
Full textSmith, K., and M. Thornton. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/951806.
Full text