Academic literature on the topic 'Waste combustion heat'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Waste combustion heat.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Waste combustion heat"
Aladayleh, Wail, and Ali Alahmer. "Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine." Journal of Energy 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/495418.
Full textCastaldi, Marco J., Jeff LeBlanc, and Anthony Licata. "The Case for Waste to Energy." Mechanical Engineering 144, no. 4 (July 25, 2022): 34–39. http://dx.doi.org/10.1115/1.2022-jul2.
Full textSpisak, Jan, Dusan Nascak, and Daniela Cuchtova. "Conception Of Innovated System For Waste Disposal." European Scientific Journal, ESJ 12, no. 5 (February 28, 2016): 35. http://dx.doi.org/10.19044/esj.2016.v12n5p35.
Full textShin, Jong-Seon, Dowon Shun, Churl-Hee Cho, Yujin Choi, and Dal-Hee Bae. "The Characteristics of the After-Combustion in a Commercial CFBC Boiler Using the Solid Waste Fuel." Energies 15, no. 15 (July 29, 2022): 5507. http://dx.doi.org/10.3390/en15155507.
Full textIsmagilov, Z. R. "Catalytic Combustion for Heat Production and Environmental Protection." Eurasian Chemico-Technological Journal 3, no. 4 (July 10, 2017): 241. http://dx.doi.org/10.18321/ectj574.
Full textAm, Chaerul Qalbi. "AN OVERVIEW ON UTILIZATION OF NATURAL GAS COMBUSTION FLUE." OISAA Journal of Indonesia Emas 3, no. 1 (January 15, 2020): 5–19. http://dx.doi.org/10.52162/jie.2020.003.01.2.
Full textChen, Kuo Wei. "The Modulation Study of Emulsified Heavy Oil from Liquid Waste after Pyrolysis of Waste Rubber." Applied Mechanics and Materials 529 (June 2014): 45–48. http://dx.doi.org/10.4028/www.scientific.net/amm.529.45.
Full textKaiser, Sascha, Markus Nickl, Christina Salpingidou, Zinon Vlahostergios, Stefan Donnerhack, and Hermann Klingels. "Investigations of the synergy of Composite Cycle and intercooled recuperation." Aeronautical Journal 122, no. 1252 (May 15, 2018): 869–88. http://dx.doi.org/10.1017/aer.2018.46.
Full textHolubčík, Michal, Nikola Kantová, Jozef Jandačka, and Zuzana Kolková. "Alternative solid fuels combustion in small heat source." MATEC Web of Conferences 168 (2018): 08002. http://dx.doi.org/10.1051/matecconf/201816808002.
Full textLi, Gang, Zilin Li, Taikun Yin, Jingpin Ren, Yalei Wang, Youzhou Jiao, and Chao He. "Drying biomass using waste heat from biomass ash by means of heat carrier." BioResources 17, no. 3 (July 26, 2022): 5243–54. http://dx.doi.org/10.15376/biores.17.3.5243-5254.
Full textDissertations / Theses on the topic "Waste combustion heat"
Sørum, Lars. "Environmental aspects of municipal solid waste combustion." Doctoral thesis, Norwegian University of Science and Technology, Norwegian University of Science and Technology, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1488.
Full textMears, Kevin S. "Water distillation using waste engine heat from an internal combustion engine." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36725.
Full textIncludes bibliographical references (leaf 36).
To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion engine to vaporize water for the purpose of removing impurities. The vapor is condensed back down to water in a finned condenser that experiences forced convection. The system pumps heat transfer oil through a 0.61 meter long, cross flow, annulus-type heat exchanger installed over a section of exhaust pipe where the oil experiences a AT of 7°C. The hot heat transfer oil is then piped to a boiler where it releases its heat to the water and returns to the exhaust heat exchanger to be reheated. Testing demonstrated that the system has a heat up time of 30 minutes, and a steady state distillation rate of 2 gallons per hour. In steady state, the system removes and transfers heat from the exhaust at a rate of 4600 Watts.
by Kevin S. Mears.
S.B.
Gewald, Daniela [Verfasser]. "Waste heat recovery of stationary internal combustion engines for power generation / Daniela Gewald." München : Verlag Dr. Hut, 2013. http://d-nb.info/1045987735/34.
Full textOwen, Ross P. "Modeling, Analysis, and Open-Loop Control of an Exhaust Heat Recovery System for Automotive Internal Combustion Engines." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316012649.
Full textMilkov, Nikolay. "Waste heat recovery from the exhaust gases of a diesel engine by means of Rankine cycle." Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1149/document.
Full textThis study is motivated by the environment protection and the reduction of emissions CO2 from internal combustion engines. The aim of the thesis is to study the possibilities of fuel consumption reduction of a diesel engine intended for a passenger car by means of waste heat recovery from exhaust gases based on thermodynamic cycle (Rankine cycle). In order to determine the waste heat, the engine was tested on a test bench as the exhaust parameters were measured. A simulation model of the engine has also been developed and validated by means of experimental results. The recovery potential of the exhaust gases and the cooling system has been estimated. This analysis revealed that the waste heat recovery potential of the exhaust gases is higher that the cooling sys-tem. By means of Rankine cycle numerical model and experimental test, the output power and efficiency of the Rankine cycle were studied. Finally, the impact of the heat recovery system on engine performance was studied. The results revealed that the engine power increases by 4.3% at the operating point which corresponds to the maximum engine power
Това изследване е мотивирано от опазването на околната среда и намаляването на емисиите на CO2 от двигателите с вътрешно горене. Целта на дисертацията е да проучи възможнос-тите за намаляване на разхода на гориво на дизелов двигател, предназначен за лек автомо-бил, чрез рекупериране на енергия с цикъл на Ранкин. За да се определи неоползотворената енергия в отработилите газове бе използван изпитателен стенд. Симулационен модел на двигателя е разработен и валидиран чрез експерименталните резултати. Направена е оценка на потенциала за рекупериране на енергия от отработилите газове и охладителната система. Този анализ показва, че потенциала за рекупериране е по-голям в изпускателната система. С помощта на експериментален стенд и числен модел на цикъла на Ранкин са установени мощността и ефективността на системата. Въздействието на системата за рекупериране на енергия е изследвано. Данните показват, че мощността на двигателя се увеличава с до 4,3%
Soleimanikutanaei, Soheil. "Modelling, Design, and Optimization of Membrane based Heat Exchangers for Low-grade Heat and Water Recovery." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3921.
Full textSham, Devin Krishna. "Analysis of exhaust waste heat recovery techniques from stationary power generation engines using organic rankine cycles." Master's thesis, Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-11072008-123311.
Full textAlshammari, Fuhaid. "Radial turbine expander design, modelling and testing for automotive organic Rankine cycle waste heat recovery." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16007.
Full textReddick, J. Christopher. "Energy improvements in the post-combustion CO2 capture process by means of ejectors." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10136.
Full textAbstract : The main goal of the doctoral project is to determine to what extent the optimal integration of single-phase ejectors might reduce the large amount of energy required to capture carbon dioxide from electric power generation facilities. More specifically, the objective is to determine if ejectors can be advantageously integrated into a post-combustion absorption/desorption carbon dioxide (CO2) capture process using monoethanolamine (MEA). The integrated ejectors will use waste heat of 100 °C from the electric power plant. The upgraded waste heat can partially replace valuable turbine steam that would otherwise be taken from the power plant. The second objective of the thesis is to experimentally evaluate the performance of a steam ejector where the ejector secondary fluid is a mixture of steam and a non-condensable gas, in this case CO2. Two steam ejector nozzles, of 4.60 mm and 4.23 mm diameter, were evaluated over a range of secondary fluid CO2 levels, up to 42% by mass. The primary pressure was maintained at 450 kPa with 10 °C superheat and the secondary pressure was 70 kPa. It was found that the critical exit pressure did not change as the mass fraction of CO2 in the secondary fluid increased. The entrainment ratio, however, increased approximately linearly over the experimental range. An improvement of 23% in the entrainment ratio, as compared with pure steam, was found when the secondary fluid contains 42% CO2 by mass. This behaviour is in sharp contrast to the experimentally observed behaviour of a pure steam ejector, where an increase in entrainment ratio comes at the expense of a decrease in the ejector exit critical pressure. Three published papers investigated various scenarios for the integration of a steam injector into an absorption/desorption post-combustion capture process. The reference solvent was 20% weight monoethanolamine (MEA). Three principal configurations were studied, according to the choice for the liquid flow used to produce the ejector secondary steam: ejector on condensate, ejector on lean or ejector on rich. The first journal publication focused on the desorption process and presented a shortcut method based on CO2-MEA-H2O equilibrium vapour liquid data. The simulations revealed reductions in the required amount of valuable energy from 10 to 25%. A commercial process simulator, Aspen Plus, was used for two other publications. In the second journal publication, the kinetic rate-based module was employed to model the absorber and desorber, providing energy evaluations closer to values in the open literature. A study was included comparing preheating the primary steam with waste heat or by heat integration. The rate-based simulation found valuable energy savings of 10 to 14%, with the "ejector on condensate" and "ejector on lean" again being the advantageous scenarios.
Kleut, Petar. "Recuperation of the exhaust gases energy using a Brayton cycle machine." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/76807.
Full textÚltimamente los fabricantes de automóviles se han puesto el gran reto de reducir la emisión de CO2 en la totalidad de sus flotas. Las nuevas normativas para la reducción de las emisiones contaminantes limitan los medios para lograr los objetivos deseados en la emisión de CO2 porque algunas de las soluciones que llevan a la reducción en la emisión de CO2 también dan lugar a un incremento en la emisión de otros contaminantes. La recuperación de calor residual (WHR) podría ser una buena solución para reducir las emisiones de CO2 del motor de combustión interna (ICE) sin poner en peligro la emisión de contaminantes. En la presente Tesis se analizaron diferentes estrategias de WHR y se concluyó que sería interesante estudiar más a fondo la máquina de ciclo Brayton. El Ciclo Brayton de Aire (ABC) permite recuperar una parte del calor de los gases de escape del ICE y transformar este calor en energía mecánica. La energía mecánica recuperada se devuelve al cigüeñal del ICE, reduciendo de ese modo la cantidad de energía que tiene que ser liberada por la combustión del combustible, lo cual permite reducir el consumo de combustible y las emisiones de CO2. En esta Tesis se estudia el ABC mediante un análisis del ciclo ideal con el fin de obtener el máximo teórico del sistema. El modelo se mejora con un análisis del ciclo semi-ideal donde se tienen en cuenta todas las pérdidas mediante el uso de dos coeficientes generales. Este análisis muestra que para el motor diesel la eficiencia del ciclo ABC es muy baja debido a la baja temperatura del gas de escape. Para el motor de gasolina el ciclo podría ser viable cuando el ICE está trabajando bajo condiciones estacionarias y una carga mayor. Estas condiciones se podrían cumplir cuando el vehículo está circulando en autopista. El análisis detallado de este ciclo tiene como objetivo determinar las pérdidas principales de ciclo. Las pérdidas principales se identificaron como: las pérdidas de bombeo, las pérdidas causadas por la transferencia de calor y las pérdidas mecánicas. Teniendo en cuenta estas pérdidas principales junto con otras pérdidas directas e indirectas, se concluyó que el ciclo no es viable para los tipos de máquinas WHR que fueron considerados en este estudio. Para que el ciclo sea viable se tiene que buscar alguna otra máquina existente o un nuevo tipo de máquina que reduzca las principales pérdidas y ofrezca un buen rendimiento isentrópico y mecánico para las condiciones deseadas.
Últimament els fabricants d'automòbils s'han posat el gran repte de reduir l'emissió de CO2 de la totalitat de les seues flotes. Les noves normatives de reducció de les emissions contaminants limiten els mitjans per assolir els objectius desitjats d'emissió de CO2 perquè algunes de les solucions que porten a la reducció en l'emissió de CO2 també donen lloc a un increment a l'emissió de altres contaminants. La recuperació de calor residual (WHR) podria ser una bona solució per reduir les emissions de CO2 del motor de combustió interna (ICE) sense posar en perill l'emissió de contaminants. En la present Tesi s'han analitzat diferents estratègies WHR i es va concloure que seria interessant estudiar més a fons el cicle Brayton. El Cicle Brayton d'Aire (ABC) representa una manera de recuperar una part de la calor dels gasos d'escapament de l'ICE i transformar calor a l'energia mecànica. L'energia mecànica recuperada es retorna al cigonyal de l'ICE reduint d'aquesta manera la quantitat d'energia que ha de ser alliberada per la combustió del combustible permitint la reducció del consum de combustible i les emissions de CO2. En aquesta Tesi s'ha començat estudiant un ABC amb una anàlisi del cicle ideal per tal d'obtenir el màxim teòric del sistema. Este model es millora amb una anàlisi del cicle semiideal on es tenen en compte totes les pèrdues amb tan sols dos coeficients d'eficiència. Aquesta anàlisi va mostrar que per al motor dièsel l'eficiència del cicle ABC és molt baixa a causa de la baixa temperatura del gas d'escapament. Per al motor de gasolina el cicle podria ser viable quan l'ICE està treballant sota condicions estacionàries i una càrrega més gran. Aquestes condicions es podrien complir quan el vehicle està circulant en autopista. L'anàlisi detallada del cicle va tenir com a objectiu determinar les pèrdues principals de cicle. Les pèrdues principals es van identificar com: les pèrdues de bombament, les pèrdues causades per la transferència de calor i les pèrdues mecàniques. Tenint en compte aquestes pèrdues principals juntament amb altres pèrdues directes i indirectes, es va concloure que el cicle no és viable per als tipus de màquines WHR que van ser considerats en aquest estudi. Perquè el cicle puga ser viable s'ha de buscar alguna altra màquina existent o un nou tipus de màquina que puga reduir les principals pèrdues i puga oferir un bon rendiment isentròpic i mecànic per a les condicions desitjades.
Kleut, P. (2016). Recuperation of the exhaust gases energy using a Brayton cycle machine [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/76807
TESIS
Books on the topic "Waste combustion heat"
Rising, Bruce. Emissions assessment for refuse-derived fuel combustion. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1985.
Find full textSumanta, Acharya, American Society of Mechanical Engineers. Heat Transfer Division., and International Mechanical Engineering Congress and Exposition (1994 : Chicago, Ill.), eds. Fire, combustion, and hazardous waste processing: Presented at 1994 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, November 6-11, 1994. New York: American Society of Mechanical Engineers, 1994.
Find full textInstitution of Mechanical Engineers (Great Britain). Steam Plant Committee., ed. Cost effective steam and power generation by the combustion of waste: Papers presented at a seminar organized by the Steam Plant Committee of the Institution of Mechanical Engineers, and held at the Institution of Mechanical Engineers on 23 September 1993. London: Mechanical Engineering for the Institution of Mechanical Engineers, 1993.
Find full textLyczkowski, Robert W. Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage. Boston, MA: Springer US, 2012.
Find full textCost Effective Steam and Power Generation by the Combustion of Waste. Wiley, 1993.
Find full textAcharya, Sumanta. Fire, Combustion, and Hazardous Waste Processing: Presented at 1994 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, N (Ad). American Society of Mechanical Engineers, 1994.
Find full textGuigard, Selma E. Heat radiation from flares. Alberta Environment, 2000.
Find full textLyczkowski, Robert W., Walter F. Podolski, and Jacques X. Bouillard. Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage. Springer, 2012.
Find full textBook chapters on the topic "Waste combustion heat"
Chandra, Krishn, Avinash Kumar Agarwal, Oronzio Manca, and Andrea Unich. "Waste Heat Recovery Potential from Internal Combustion Engines Using Organic Rankine Cycle." In Energy, Environment, and Sustainability, 331–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8418-0_11.
Full textNejmiddin, Boughattas, Hadj Salah Wafa, Derbel Aymen, and Timoumi Yousef. "Sizing Models and Performance Analysis of Waste Heat Recovery Organic Rankine Cycle System for Internal Combustion Engine." In Lecture Notes in Mechanical Engineering, 853–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27146-6_93.
Full textShinde, A. B., and S. N. Sapali. "Waste Heat Recovery from Walls of the Combustion Chamber of a New Portable Jaggery Plant to Dry Bagasse." In Advances in Air Conditioning and Refrigeration, 427–36. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6360-7_39.
Full textGotter, A., and E. Küpfer. "Efficiency improvement of internal combustion engines by waste heat recovery with rankine cycle and an advanced turbocharging principle." In Sustainable Automotive Technologies 2010, 141–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10798-6_18.
Full textMokone, E. R., T. Zvarivadza, and F. Sengani. "Effect of the Heat Input by Dolerite Intrusions and the Propensity for Spontaneous Combustion in the Highveld Coalfields, South Africa." In Proceedings of the 18th Symposium on Environmental Issues and Waste Management in Energy and Mineral Production, 39–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99903-6_4.
Full textMatheri, Anthony Njuguna, Belaid Mohamed, and Jane Catherine Ngila. "Smart Climate Resilient and Efficient Integrated Waste to Clean Energy System in a Developing Country: Industry 4.0." In African Handbook of Climate Change Adaptation, 1053–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_69.
Full textMochida, S., T. Abe, T. Yasuda, and A. K. Gupta. "Combined Heat and Power System with Advanced Gasification Technology for Biomass Wastes." In Cleaner Combustion and Sustainable World, 829–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_111.
Full text"Waste Heat Recovery." In Combustion Engineering and Gas Utilisation, 439–512. Routledge, 2014. http://dx.doi.org/10.4324/9781315024714-14.
Full text"Combustion Calculations." In Steam Generators and Waste Heat Boilers, 1–40. CRC Press, 2014. http://dx.doi.org/10.1201/b17519-2.
Full text"Combustion Calculations." In Steam Generators and Waste Heat Boilers, 34–73. CRC Press, 2014. http://dx.doi.org/10.1201/b17519-4.
Full textConference papers on the topic "Waste combustion heat"
Virr, Michael J. "Combined Heat and Power Burning Coal Waste in ICFB." In 18th International Conference on Fluidized Bed Combustion. ASMEDC, 2005. http://dx.doi.org/10.1115/fbc2005-78095.
Full textUnnthorsson, Runar, Halldor Palsson, and Rikey Huld Magnusdottir. "Waste-Heat for Pre-Heating Internal Combustion Engines." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89591.
Full textJeihouni, Yousef, Michael Franke, Klaus Lierz, Dean Tomazic, and Peter Heuser. "Waste Heat Recovery for Locomotive Engines Using the Organic Rankine Cycle." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1015.
Full textArmstead, John R., and Scott A. Miers. "Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines." In ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/icef2010-35142.
Full textLaboe, Kevin, and Marcello Canova. "Powertrain Waste Heat Recovery: A Systems Approach to Maximize Drivetrain Efficiency." In ASME 2012 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ices2012-81160.
Full textBlom, Elisabet, and Dan Loyd. "TEMPERATURE MEASUREMENTS WITH THERMOCOUPLES WITH REFERENCE TO EU DIRECTIVE REGARDING WASTE COMBUSTION." In Advances in Heat Transfer Engineering. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/bht4.880.
Full textVantúch, Martin, Katarína Kaduchová, and Richard Lenhard. "The impact of municipal waste combustion in small heat sources." In THE APPLICATION OF EXPERIMENTAL AND NUMERICAL METHODS IN FLUID MECHANICS AND ENERGY 2016: XX. Anniversary of International Scientific Conference. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4953757.
Full textHajek, Jiri, P. Petr, M. Sarlej, M. Piskovsky, T. Parizek, L. Bebar, and Petr Stehlik. "COMPUTATIONAL ANALYSIS OF SECONDARY COMBUSTION CHAMBER IN HAZARDOUS WASTE INCINERATOR." In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p26.160.
Full textCozzolini, A., M. C. Besch, D. Littera, H. Kappanna, P. Bonsack, M. Gautam, S. Cordiner, and V. Mulone. "Waste Heat Recovery in Heavy-Duty Diesel Engines: A Thermodynamic Analysis of Waste Heat Availability for Implementation of Energy Recovery Systems Based Upon the Organic Rankine Cycle." In ASME 2012 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ices2012-81112.
Full textPhillips, J. B. "ENERGY FROM WASTE: THERMAL ENERGY RECOVERY FROM COMBUSTION PRODUCTS OF HALOGENATED ORGANIC VENT STREAMS." In International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.290.
Full text