Academic literature on the topic 'Waste chemical production'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Waste chemical production.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Waste chemical production"
Pilip, Larisa V., and Maria E. Kazakova. "Chemical method of eliminating odors in commercial pig production." Butlerov Communications 62, no. 4 (April 30, 2020): 88–93. http://dx.doi.org/10.37952/roi-jbc-01/20-62-4-88.
Full textKušnierová, Maria, Vladimír Šepelák, and Ol'ga Šestinová. "Bio-chemical methods in wasteprocessing." Polish Journal of Chemical Technology 11, no. 1 (January 1, 2009): 24–27. http://dx.doi.org/10.2478/v10026-009-0007-0.
Full textMalinowski, Przemysław, Mirosław Olech, Józef Sas, Wiesław Wantuch, Andrzej Biskupski, Leszek Urbańczyk, Mieczysław Borowik, and Jerzy Kotowicz. "Production of compound mineral fertilizers as a method of utilization of waste products in chemical company Alwernia S.A." Polish Journal of Chemical Technology 12, no. 3 (January 1, 2010): 6–9. http://dx.doi.org/10.2478/v10026-010-0024-z.
Full textLane, Alan M. "Designing chemical reactors to minimize waste production." Waste Management 13, no. 5-7 (January 1993): 525–26. http://dx.doi.org/10.1016/0956-053x(93)90110-i.
Full textKascheev, Ivan D., Vladimir I. Zhuchkov, and Oleg V. Zayakin. "Forming and Utilizing Ferrochromium Production Waste." Materials Science Forum 989 (May 2020): 492–97. http://dx.doi.org/10.4028/www.scientific.net/msf.989.492.
Full textPrajapati, Ravindra, Kirtika Kohli, Samir K. Maity, and Brajendra K. Sharma. "Potential Chemicals from Plastic Wastes." Molecules 26, no. 11 (May 26, 2021): 3175. http://dx.doi.org/10.3390/molecules26113175.
Full textAbdrakhimov, V. Z., and A. V. Kolpakov. "Aspects of Use Of Waste Fuel and Energy Complex and Chemical Industry in the Production of Ceramic Bricks." Ecology and Industry of Russia 23, no. 1 (January 15, 2019): 11–14. http://dx.doi.org/10.18412/1816-0395-2019-1-11-14.
Full textM M, Kosukhin, Starostina I V, and Kosukhin A M. "Reclamation of chemical wastes for the production of efficient concrete modifiers." International Journal of Engineering & Technology 7, no. 2.23 (April 20, 2018): 34. http://dx.doi.org/10.14419/ijet.v7i2.23.11879.
Full textDíaz, R., and G. Díaz-Godínez. "Substrates for mushroom, enzyme and metabolites production: A review." Journal of Environmental Biology 43, no. 03 (May 2, 2022): 350–59. http://dx.doi.org/10.22438/jeb/43/3/mrn-3017.
Full textZhang, Ye Shui, Hua Lun Zhu, Dingding Yao, Paul T. Williams, Chunfei Wu, Dan Xu, Qiang Hu, et al. "Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: a review." Sustainable Energy & Fuels 5, no. 17 (2021): 4173–208. http://dx.doi.org/10.1039/d1se00619c.
Full textDissertations / Theses on the topic "Waste chemical production"
Lin, Zhongye. "Microalgal Growth and Lipid Production from Organic Waste." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1385429109.
Full textLucas, Carlos Krus Galvão. "Biogas production from potato peel waste." Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/12337.
Full textStamouli, Konstantina. "Fuel production and optimisation from mixed plastic waste." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8268/.
Full textBolaji, Efeoluwa Omotola. "Anaerobic fermentation of organic wastes for chemical production by undefined mixed microbial cultures." Thesis, University of Aberdeen, 2018. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=236961.
Full textZheng, Sheng. "Biodiesel production from waste frying oil: Conversion monitoring and modeling." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26416.
Full textJitrwung, Rujira. "Optimized continuous hydrogen production by «Enterobacter aerogens» from glycerol-containing waste." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95168.
Full textABRÉGÉ Le glycérol est le principal sous-produit de la production de biodiesel. Enterobacter aerogenes a une capacité connue à convertir le (glycérol) en hydrogène et en éthanol au cours d'une fermentation. Afin de démontrer le potentiel d'un procédé en continu de valorisation du glycérol, les conditions optimales de culture ont été déterminées dans des bouteilles afin d'optimiser le rendement en hydrogène et puis appliquées à un bioréacteur de 3.6 L. Les conditions de culture optimales, déterminées à l'aide de la méthodologie de réponse de surface de Box-Behnken, sont un volume d'inoculation de 18%, une concentration d'oxygène de 7.5% lors du transfert, et les concentrations suivantes de Na2HPO4 (12 g/L), NH4NO3 (1.5 g/L) et FeSO4.7H2O (6.25 mg/L). Un plan factoriel complet à deux niveaux avec point central a aussi été utilisé afin de déterminer les concentrations optimales de Na2EDTA (3.5 mg/L), CaCl2.2H2O (0 mg/L) et MgSO4.7H2O (200 mg/L) alors qu'une étude paramétrique a permis de déterminer la quantité optimale de deux sels de phosphate (Na2HPO4, KH2PO4). Suite à la mise à l'échelle 30x dans le bioréacteur opéré en mode batch, les conditions optimales du CSTR ont été identifiées comme étant un débit d'alimentation de 0.44 mL/min, un ratio de recyclage de liquide de 33%, un pH de 6.4, une concentration de glycérol de 15 g/L, une vitesse de mélange de 500 rpm ainsi qu'une réutilisation nulle du résidu liquide. En utilisant ces conditions optimales de culture et d'opération du bioréacteur opéré en continu, la stabilité du procédé sur une période prolongée d'opération a été confirmée. Dans ces conditions, les plus hauts rendements en hydrogène et en éthanol jamais rapportés dans un tel système, ont été obtenus, 0.86 mole hydrogène/mole GL and 0.74 mole éthanol/mole GL, et ce, à un coût en média de 75% inférieur aux études antérieures.
Zhang, Yi. "Design and economic assessment of biodiesel production from waste cooking oil." Thesis, University of Ottawa (Canada), 2002. http://hdl.handle.net/10393/6138.
Full textVan, Dyk Lizelle Doreen. "The production of granular activated carbon from agricultural waste products." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/52003.
Full textENGLISH ABSTRACT: Peach and apricot shells are agricultural waste products. These waste products accumulate around canneries and food-processing plants in South Africa. No effort is being made to utilise these waste products. This study is the first part of the product development from these products i.e. peach shell activated carbon and apricot shell activated carbon. By producing activated carbon from peach and apricot shells the solid waste problem is addressed, but most of all a profit can be made. But why activated carbon? Activated carbons are unique and versatile adsorbent with a vast amount of adsorption applications. It can be produced via a simple oxidation reaction with steam and the nature of peach and apricot shells are such that it is expected that activated carbons with good adsorption properties can be produced from it. The single largest consumer of activated carbon in South Africa is the gold mining industry that uses imported coconut shell activated carbon for gold adsorption in the gold recovery process. Activated carbon is also used as water purification adsorbents. During this study activated carbons were produced in a fluidized bed reactor at various activation conditions: 700 - 900°C, 0.0425 - 0.0629 g steamlg char.min and 30 - 60 min. This was done in order to find the optimum activation conditions within the activation parameter range. The optimal activated carbons were defined as peach and apricot shell activated carbons that showed good microporous as well as mesoporous character. The optimal activated carbons produced are: peach shell activated at 875°C, 0.0533 g stearnlg char. min, 60 min and apricot shell activated carbon at 850°C, 0.0533 g steamlg char.min, 60min. The possible use of these optimal activated carbons and two other activated carbons produced (Peach shell activated carbon 900°C, 0.0425 g steamlg char. min, 60 min and apricot shell activated carbon 900°C, 0.0425 g steamlg char.min, 60min) were tested in gold recovery and water purification. The gold adsorption properties of peach and apricot shell activated carbons were found to be better than two commercial coconut shell activated carbons (Chemquest 650 and GRC 22). No definite conclusions could, however, be drawn about the replacement of coconut shell activated carbon with peach or apricot shell activated carbon, because abrasion test work and thermal regeneration of the experimental carbons still have to be performed. The experimental activated carbons displayed good phenol adsorption characteristic, although further test work is required.
AFRIKAANSE OPSOMMING: Perske- en appelkoospitte is landbouafvalprodukte. Hierdie afvalprodukte versamel rondom inmaakfabrieke en voedselververkingsaanlegte. Tans word daar geen poging in Suid-Afrika aangewend om hierdie afvalprodukte te benut nie. Hierdie studie is die eerste deel van die ontwikkeling van die produkte: Perskepitdop-geaktiveerde koolstof en appelkoospitdop-geaktiveerde koolstof. Deur geaktiveerde koolstof van die perske- en appelkoospitdoppe te maak, word nie net 'n antwoord op die vastestofafvalsprobleem gevind nie, maar daar kan ook geld gemaak word. Hoekom geaktiveerde koolstof? Aktiveerde koolstowwe is veelsydige en unieke adsorbente met 'n groot verskeidenheid adsorpsie toepassings. Dit kan vervaardig word via 'n eenvoudige oksidasie reaksie met stoom en die aard van die perske- en appelkoospitdoppe is sodanig, dat verwag kan word om geaktiveerde koolstowwe met goeie adsorpsie eienskappe daarvan te kry. Die grootste enkelverbruiker van geaktiveerde koolstof in Suid-Afrika is die goudmynbedryf, wat kokosneutdop geaktiveerde koolstof invoer om goud te herwin. Geaktiveerde koolstof word ook gebruik vir watersuiwering. Tydens hierdie studie IS geaktiveerde koolstowwe by verskillende aktiveeringskondisies in 'n gevloeïdiseerde bed vervaardig: 700 - 900oe, 0.0425 - 0.0629g stoornlg gepiroliseerde pitdoppe.min en 30 - 60 mm. Die aktiveringskondisies is gevarieer om sodoende die optimale aktiveringskondisies binne die aktiveringsparameterreeks te kry. 'n Geaktiveerde koolstof is as optimaal geklassifiseer as dit 'n goeie mikro- sowel as mesostruktuur getoon het. Die optimaal geaktiveerde koolstowwe is: geaktiveerde koolstof vervaardig van perskepitdoppe by 875°e, 0.0533 g stoornlg gepiroliseerde pitdoppe.min, 60 mm en geaktiveerde koolstof vervaardig van appelkoospitdoppe by 850oe, 0.0533 g stoornlg gepiroliseerde pitdoppe.min, 60min. Die gebruik van die twee optimale geaktiveerde koolstowwe sowel as twee ander geaktiveerde koolstowwe (perskepitdop-geaktiveerde koolstof, 900oe, 0.0425 g stoornlg gepiroliseerde pitdoppe.min, 60 min en appelkoospitdop-geaktiveerde koolstof, 850°C, 0.0533 g stoom/g gepiroliseerde pitdoppe.min, 60min) is VIr goudadsorpsie en watersuiwering ondersoek. Die goudadsorpsie eienskappe van die perske-en appelkoospitdop-geaktiveerde koolstowwe was beter as die van twee kommersiële kokosneutdop-geaktiveerde koolstowwe (Chemquest 650 and GRC 22). Daar kan egter geen definitiewe gevolgtrekkings gemaak word oor die vervanging van kokosneutdop geaktiveerde koolstowwe met dié van perske of appelkoospitdoppe nie, aangesien daar nog toetsresultate oor die slytweerstand en reaktiverings eienskappe van die eksperimentele geaktiveerde koolstowwe uitstaande is. Die eksperimentele geaktiveerde koolstowwe toon goeie adsorpie ten opsigte van fenol, maar verdere toetswerk is egter nodig.
Jourabchi, Seyed Amirmostafa. "Production and physicochemical characterisation of bio-oil from the pyrolysis of Jatropha curcus waste." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/28825/.
Full textRojas-Cuellar, Tania Raquel. "Utilisation of cellulose waste for the production of a chemical intermediate of economic interest." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/utilisation-of-cellulose-waste-for-the-production-a-chemical-intermediate-of-economic-interest(81b2984b-adf0-48a9-8e06-f3e9da548c19).html.
Full textBooks on the topic "Waste chemical production"
Mulholland, Kenneth L. Identification of Cleaner Production Improvement Opportunities. New York: John Wiley & Sons, Ltd., 2006.
Find full textMulholland, Kenneth L. Identification of cleaner production improvement opportunities. Hoboken, N.J: Wiley-Interscience, 2006.
Find full textBahadori, Alireza. Essentials of Water Systems Design in the Oil, Gas, and Chemical Processing Industries. New York, NY: Springer New York, 2013.
Find full textIntegrated pollution control licensing: BATNEEC guidance note for the production of cement. Ardcavan: Environmental Protection Agency, 1996.
Find full textKrichphiphat, A. Waste minimization in speciality chemicals production plant THESIS. Manchester: UMIST, 1992.
Find full textOffice, General Accounting. Chemical weapons disposal: Plans for nonstockpile chemical warfare materiel can be improved : report to the Chairman, Subcommittee on Environment, Energy, and Natural Resources, Committee on Government Operations, House of Representatives. Washington, D.C: The Office, 1994.
Find full textOffice, General Accounting. Chemical weapons disposal: Plans for nonstockpile chemical warfare materiel can be improved : report to the Chairman, Subcommittee on Environment, Energy, and Natural Resources, Committee on Government Operations, House of Representatives. Washington, D.C: The Office, 1994.
Find full textOffice, General Accounting. Chemical weapons disposal: Improvements needed in program accountability and financial management : report to congressional committees. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013): The Office, 2000.
Find full textOffice, General Accounting. Chemical weapons disposal: Improvements needed in program accountability and financial management : report to congressional committees. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013): The Office, 2000.
Find full textOffice, General Accounting. Chemical weapons disposal: Improvements needed in program accountability and financial management : report to Congressional committees. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013): The Office, 2000.
Find full textBook chapters on the topic "Waste chemical production"
Trzcinski, Antoine P. "Platform Chemical Production from Food Wastes." In Biofuels from Food Waste, 25–48. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315104690-3.
Full textTrzcinski, Antoine P. "Platform Chemical Production from Food Wastes." In Biofuels from Food Waste, 25–48. Boca Raton : CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b22318-2.
Full textArun, Jayaseelan, and Kannappan Panchamoorthy Gopinath. "Chemical Recycling of Electronic-Waste for Clean Fuel Production." In E-waste Recycling and Management, 111–26. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14184-4_6.
Full textSaid, Farhan M., Nor Farhana Hamid, Mohamad Al-Aamin Razali, Nur Fathin Shamirah Daud, and Siti Mahira Ahmad. "Transformation Process of Agricultural Waste to Chemical Production via Solid-State Fermentation." In Bio-valorization of Waste, 187–201. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9696-4_8.
Full textShams Yazdani, Syed, Anu Jose Mattam, and Ramon Gonzalez. "Fuel and Chemical Production from Glycerol, a Biodiesel Waste Product." In Biofuels from Agricultural Wastes and Byproducts, 97–116. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9780813822716.ch6.
Full textNorhazimah, A. H., and C. K. M. Faizal. "Optimization Study on Bioethanol Production from the Fermentation of Oil Palm Trunk Sap as Agricultural Waste." In Developments in Sustainable Chemical and Bioprocess Technology, 19–25. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6208-8_3.
Full textAida, Taku Michael. "Fundamentals of Hydrothermal Processing of Biomass-Related Molecules for Converting Organic Solid Wastes into Chemical Products." In Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste, 339–72. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6162-4_11.
Full textJana, Kuntal, and Sudipta De. "Thermo-Chemical Ethanol Production from Agricultural Waste Through Polygeneration: Performance Assessment Through a Case Study." In Biofuels, 137–55. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3791-7_8.
Full textGiagnoni, Laura, Tania Martellini, Roberto Scodellini, Alessandra Cincinelli, and Giancarlo Renella. "Co-composting: An Opportunity to Produce Compost with Designated Tailor-Made Properties." In Organic Waste Composting through Nexus Thinking, 185–211. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36283-6_9.
Full textKim, Kwang Il, Woo Kyung Kim, Deok Ki Seo, In Sang Yoo, Eun Ki Kim, and Hyon Hee Yoon. "Production of Lactic Acid from Food Wastes." In Biotechnology for Fuels and Chemicals, 637–47. Totowa, NJ: Humana Press, 2003. http://dx.doi.org/10.1007/978-1-4612-0057-4_53.
Full textConference papers on the topic "Waste chemical production"
Sulaiman, Sarina, Abdul Aziz Abdul Raman, and Mohammed Kheireddine Aroua. "Coconut waste as a source for biodiesel production." In 2010 2nd International Conference on Chemical, Biological and Environmental Engineering (ICBEE). IEEE, 2010. http://dx.doi.org/10.1109/icbee.2010.5653534.
Full textChawakitchareon, Petchporn, and Natthapol Sresthaolarn. "Replacement of Silica Fume using Silica Waste for Mortar Production." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_828.
Full textRychkov, V. N., K. A. Nalivayko, S. M. Titova, and S. Yu Scripchenko. "Physical and chemical characteristics of solid radioactive waste of uranium production." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032888.
Full textAz-zahra, Wilza Fithri, N. Nurlina Harahap, S. Haidar Putra, and M. Zulham Efendi Sinaga. "Production of Bioethanol Gel from Sugar Cane Waste with Carbopol as Alternative Fuel." In International Conference on Chemical Science and Technology Innovation. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0008857501240129.
Full textWicaksono, Wiyogo P., Ardhika L. Marcharis, Yerika P. Sari, Putwi W. Citradewi, and Grandprix T. M. Kadja. "High-yield co-solvent free electrochemical production of biodiesel from waste cooking oil using waste concrete as heterogeneous catalyst." In 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). Author(s), 2018. http://dx.doi.org/10.1063/1.5065028.
Full text"Eco-friendly biodiesel production from waste olive oil by transesterification using Nano-tube TiO2." In International Institute of Chemical, Biological & Environmental Engineering. International Institute of Chemical, Biological & Environmental Engineering, 2015. http://dx.doi.org/10.15242/iicbe.c0615102.
Full textNisa, Khoirun, Diah Ayu Almaas Salwa, Alfi Hasanah, and Widayat. "Biodiesel production from waste cooking oil by using zirconia catalyst." In THE 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL, MECHANICAL, ELECTRICAL, AND CHEMICAL ENGINEERING 2019 (ICIMECE 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000912.
Full textVilarinho, Cândida, André Ribeiro, Joana Carvalho, Jorge Araújo, Manuel Eduardo Ferreira, and José Teixeira. "Development of a Methodology for Paint Dust Waste Energetic Valorization Through RDF Production." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71979.
Full textYasin, J., and R. Pravinkumar. "Production of activated carbon from bio-waste materials by chemical activation method." In NATIONAL CONFERENCE ON ENERGY AND CHEMICALS FROM BIOMASS (NCECB). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0005666.
Full text"Utilization of Waste Cooking Oil for Biodiesel Production Using Alumina Supported base Catalyst." In 3rd International Conference on Biological, Chemical and Environmental Sciences. International Institute of Chemical, Biological & Environmental Engineering, 2015. http://dx.doi.org/10.15242/iicbe.c0915050.
Full textReports on the topic "Waste chemical production"
J. Thomas Dickinson and Michael L. Alexander. Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/791567.
Full textDickinson, J. Thomas, and Michael L. Alexander. Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/828517.
Full textDickinson, J. Thomas. Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/828516.
Full textSt.Martin, E. J. A biological/chemical process for reduced waste and energy consumption, Caprolactam production: Phase 1, Select microorganisms and demonstrate feasibility. Final report. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/96920.
Full textDickinson, J. T., and M. L. Alexander. Particle generation by laser ablation in support of chemical analysis of high level mixed waste from plutonium production operations. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/13456.
Full textWolf, Eva. Chemikalienmanagement in der textilen Lieferkette. Sonderforschungsgruppe Institutionenanalyse, 2022. http://dx.doi.org/10.46850/sofia.9783941627987.
Full textPremuzic, E. T., M. S. Lin, T. H. Yen, and I. Yang. Biochemical Production of Adsorbents and Specialty Chemicals from Fossil Fuel Wastes. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/770451.
Full textDale, M., S. Havlik, W. Lee, D. Lineback, C. Park, and M. Okos. The production of chemicals from food processing wastes using a novel fermenter separator. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6926579.
Full textDale, M. C., M. Okos, and N. Burgos. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/607513.
Full textDale, M. C., K. V. Venkatesh, Hojoon Choi, M. Moelhman, L. Saliceti, M. R. Okos, and P. C. Wankat. The production of fuels and chemicals from food processing wastes using a novel fermenter separator. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5105671.
Full text