Academic literature on the topic 'WASTE ADSORBENTS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'WASTE ADSORBENTS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "WASTE ADSORBENTS"

1

Pollard, Simon J. T. "Low-cost adsorbents from industrial wastes." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/8387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Madiraju, Saisantosh Vamshi Harsha. "COLOR REMOVAL AND TREATMENT OF DYE AND SUGAR WASTE WATER USING LOW COST ADSORBENTS." Cleveland State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=csu1530272885958543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Melo, Diego de Quadros. "LIGNOCELLULOSIC ACTIVATED WASTE USE ADSORBENTS IN TOXIC METALS IONS REMOVAL: BATCH AND COLUMN STUDIES USING DESING EXPERIMENTAL." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17236.

Full text
Abstract:
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico<br>The tururi and buriti fibers, and the castor bean stalks are extremely efficient to sorption of metal ions from aqueous solutions. In this study, the adsorbents were activated with different concentrations of alkali solutions (5, 7, 10 and 15% w/v). The materials were characterized by analytical techniques as infrared, X-ray Diffraction (XRD) and Thermogravimetry analysis. The infrared spectra revealed that associated groups to macromolecules of hemicellulose and lignin after alkaline activation have less intensity compared to the initial samples. The XRD revealed, that after castor bean stalks alkaline activation, the presence of the cellulose type II peaks, which did not occur with tururi and buriti fibers. The fluorescence X-ray data showed that the cations present in the initial adsorbents, K+ and Ca2 + are exchanged by Cu (II), Ni (II), Cd (II) and Pb (II) in the sorption process. Studies of the influences of variables: mass of adsorbent; agitation rate; the initial pH and concentration using a fractional factorial design 24-1 demonstrated that all variables affect the response (adsorption capacity mg g-1). As a result for a larger value of qtotal, conditions were observed while maintaining the pH at 5.5; mass of the adsorbent 50 mg; agitation at 200 rpm and the initial concentration: 500 mg L-1. The adsorption kinetics revealed fast adsorption process, about 30 minutes, and good fitting to pseudo-second-order theoretical model to all adsorption process studied. Intraparticle diffusion models as Weber-Morris and Boyd were testes in order to study the limiting steps of the process.The results showed that for tururi and buriti fibers (with the exception of nickel ions) the rate-limiting step is not the intraparticle diffusion, while for the castor bean stalks, it was found that the rate-limiting step of the process is the intraparticle diffusion. The study of monoelement and multielement systems were performed at pH 5.5, initial concentrations from 20-500 mg L-1, which the experimental data were fitted to the Langmuir, Freundlich and Sips theoretical models. The tururi fibers adsorption capacities (mg g-1) in monoelementar and multielement system follows the order Pb (188.79)> Cd (92.20)> Cu (32.82)> Ni (22.23) and Cd (77.53)> Pb (43.93)> Cu (24.99)> Ni (19.51), respectively. Buriti fibers adsorption capacities (g-1 mg) in monoelementar and multielement systems follows the order of Cu (143.1)> Pb (112.1)> Ni (103.7)> Cd (86.33) and Pb (69.12)> Cu (49.28)> Ni (45.10)> Cd (24.95), respectively. Castor bean stalks adsorption capacities (g-1 mg) in in monoelementar and multielement systems follows the order of Pb (175.1)> Cd (124.8)> Ni (111.1)> Cu (89.23) and Cu (56.78)> Pb (55.82)> Cd (44.72)> Ni (43.48), respectively. The results showed a better fit for the Sips model, relating to a heterogeneous adsorption. Fixed bed studies using castor bean stalks checking the influence of variables adsorbent flow (1, 2 and 3 mL min-1), the height of the column (5, 7 and 10 cm) and initial concentration (100 , 200, 300 mg L-1) by the Box-Behnken planning revealed that there were no influence between the variables in the studied. The breakthrough curves were well fitted to the Thomas model. The study in real effluent with Cu (II) (galvanoplastic sector) was carried out using the optimized condition: flow (1 ml min-1); bed height (10 cm) initial concentration: (245.5 mg L-1) and it was found adsorption capacity of 32.42 mg g-1. The mamoneira stalks adsorbent was used for five cycles to verify their potential reuse, and it was found no significant efficiency losses.<br>As fibras tururi, buriti e talos da mamoneira sÃo resÃduos lignocelulÃsicos extremamente eficientes na sorÃÃo de metais de soluÃÃes aquosas. Neste trabalho, eles foram ativados com diferentes concentraÃÃes de soluÃÃes alcalinas (5, 7, 10 e 15% m/v). Os materiais foram caracterizados pelas tÃcnicas analÃticas de Infravermelho, DifraÃÃo de Raios-X (DRX) e Termogravimetria. Os espectros de infravermelho revelaram que os grupos associados Ãs macromolÃculas de hemicelulose e lignina diminuem em intensidade ou desaparecem apÃs a ativaÃÃo alcalina. Os DRX revelaram que apÃs a ativaÃÃo alcalina, os talos da mamoneira apresentaram picos de celulose tipo II, o que nÃo ocorreu com as fibras de tururi e buriti. O dados de FluorescÃncia de Raios-X revelaram que os cÃtions presentes nos adsorventes como Na(I) e Ca(II) sÃo trocados pelos Ãons Cu(II), Ni(II), Cd(II) e Pb(II) no processo de sorÃÃo. Os estudos das influÃncias das variÃveis: massa do adsorvente; taxa de agitaÃÃo; pH e concentraÃÃo inicial utilizando planejamento experimental fracionÃrio 24-1 demostrou que todas as variÃveis afetaram a resposta (capacidade de adsorÃÃo mg g-1). Como resultado para um maior valor de qtotal, as condiÃÃes observadas foram mantendo o pH em 5,5; massa do adsorvente em 50 mg; taxa de agitaÃÃo em 200 rpm e concentraÃÃo inicial 500 mg L-1. A cinÃtica de adsorÃÃo revelou rÃpida adsorÃÃo, cerca de 30 minutos em geral, seguindo o modelo de pseudo-segunda ordem em todos os processos adsortivos. Modelos de difusÃo intrapartÃcula como de Webber-Morris e Boyd foram estudados a fim de determinar as etapas limitantes do processo. Os dados evidenciaram que para as fibras de tururi e buriti (com exceÃÃo dos Ãons nÃquel) a etapa limitante da velocidade nÃo à a difusÃo intraporo, enquanto para os talos de mamoneira foi verificado que a etapa limitante do processo à a difusÃo intrapartÃcula. O estudo com sistema monoelementar e multielementar foi realizado em pH 5,5, concentraÃÃes variando de 20-500 mg L-1, nos quais os dados foram aplicados aos modelos de Langmuir, Freundlich e Sips. As capacidades de adsorÃÃo (mg g-1) em sistema monoelementar e multielementar das fibras de tururi segue a ordem Pb(188,79)> Cd(92,20)> Cu(32,82)> Ni(22,23) e Cd(77,53)> Pb(43,93)> Cu(24,99)> Ni(19,51), respectivamente. As capacidades de adsorÃÃo (mg g-1) das fibras de buriti em sistema monoelementar e multielementar segue a ordem Cu(143,1)> Pb(112,1)> Ni(103,7) > Cd(86,33) e Pb(69,12)> Cu(49,28)> Ni(45,10)> Cd(24,95), respectivamente. As capacidades de adsorÃÃo (mg g-1) dos talos de mamoneira em sistema monoelementar e multielementar segue a ordem Pb(175,1)> Cd(124,8)> Ni(111,1)> Cu(89,23) e Cu(56,78)> Pb(55,82)> Cd(44,72)> Ni(43,48), respectivamente. Em geral, os resultados evidenciaram melhor aplicabilidade ao modelo de Sips, o qual prediz que os sÃtios disponÃveis para adsorÃÃo sÃo heterogÃneos. Em relaÃÃo ao estudo de adsorÃÃo em leito fixo utilizando talos de mamoneira, a verificaÃÃo da influÃncia das variÃveis: fluxo do adsorvente (1, 2 e 3mL min-1), altura da coluna (5, 7 e 10 cm) e concentraÃÃo inicial (100, 200, 300 mg L-1) pelo planejamento de Box-Behnken, revelou que nÃo hà influencia mutua entre as variÃveis no intervalo estudado. As curvas de ruptura experimentais foram bem aplicadas ao modelo teÃrico de Thomas. O estudo com efluente real de Ãons Cu (II) (setor galvanoplÃstico) utilizando a condiÃÃo otimizada: fluxo (1mL min-1); altura de leito (10 cm) e concentraÃÃo inicial: (245,5 mg L-1) obteve 32,42 mg g-1 de capacidade de adsorÃÃo O adsorvente talos de mamoneira foi utilizado por cinco ciclos para verificar seu potencial de uso, nÃo havendo perdas significativas de eficiÃncia.
APA, Harvard, Vancouver, ISO, and other styles
4

ORTIZ, NILCE. "Estudo da utilizacao de magnetita como material adsorvedor dos metais Cusup(2+), Pbsup(2+), Nisup(2+) e Cdsup(2+), em solucao." reponame:Repositório Institucional do IPEN, 2000. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10825.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:44:25Z (GMT). No. of bitstreams: 0<br>Made available in DSpace on 2014-10-09T14:07:22Z (GMT). No. of bitstreams: 1 06909.pdf: 4920910 bytes, checksum: d6e37e56c96b5266b7fcce3da3d56d3b (MD5)<br>Tese (Doutoramento)<br>IPEN/T<br>Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
5

LEAL, ROBERTO. "Estudo da magnetita como material adsorvedor de íons uranilo." reponame:Repositório Institucional do IPEN, 2006. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9299.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:25:53Z (GMT). No. of bitstreams: 0<br>Made available in DSpace on 2014-10-09T14:00:29Z (GMT). No. of bitstreams: 0<br>Dissertacao (Mestrado)<br>IPEN/D<br>Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
6

Leal, Roberto. "Estudo da magnetita como material adsorvedor de íons uranilo." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-15052012-132433/.

Full text
Abstract:
A magnetita, também chamada de ferrita de ferro, é um minério conhecido como imã natural e encontrada em depósitos de ferro. Além desse comportamento intrínseco, a magnetita possui a capacidade de remover os íons metálicos do meio aquoso por fenômenos de adsorção. O seu caráter fortemente magnético a distingue de outros tipos de adsorventes, visto que, é facilmente removida da solução por separação magnética. Neste trabalho estudou-se a adsorção de urânio(VI), na forma de íons UO22+, de solução nítrica pela magnetita sintética. Esta foi preparada por precipitação simultânea adicionando-se uma solução de NaOH à solução contendo os íons Fe2+ e Fe3+. A magnetita sintética, na forma de um pó preto, exibiu uma resposta magnética de atração intensa na presença de um campo magnético, sem contudo tornar-se magnética, um comportamento típico de material superparamagnético constatado por medidas de magnetização. Estudou-se a influência dos parâmetros de adsorção de íons UO22+ tais como o pH, a dose do adsorvente, tempo de contato e a isoterma de equilíbrio. A máxima adsorção de urânio foi encontrada no intervalo de pH entre 4 e 5. Verificou-se que quanto maior a dose de magnetita menor a capacidade de adsorção e maior a remoção de U. Da relação entre adsorção e tempo de contato verificou-se que a remoção aumentou rapidamente com o tempo e atingiu-se a condição de equilíbrio em 30 min. Os resultados da isoterma de equilíbrio apresentaram maior concordância com o modelo de Langmuir, o qual permitiu a determinação da capacidade teórica de saturação da magnetita para o urânio. A interação entre os íons UO22+ e a magnetita foi caracterizada como uma adsorção química e espontânea.<br>Magnetite, also known as iron ferrite, is a mineral iron and a natural magnet found in iron deposits. In addition to its magnetic intrinsic behavior, the magnetite has the capacity to remove the metallic ions from aqueous medium by adsorption phenomena. The strong magnetic character of magnetite distinguishes it from other adsorbent types, which it allows to be readily removed from solution by magnetic separation. In this work, uranium (VI) adsorption, as UO22+ ions, from nitric solution by synthetic magnetite was investigated. It was prepared by simultaneous precipitation process, adding a NaOH solution into a solution containing Fe2+ and Fe3+ ions. The synthetic magnetite, a black powder, has exhibited a strong magnetic response in presence of a magnetic field, without nevertheless becomes magnetic. This typical superparamagnetic behavior was confirmed by magnetization measurements. Adsorption parameters of UO22+ ions such as pH. the adsorbent dose, contact time and equilibrium isotherm were evaluated. Maximum uranium adsorption was observed in the pH 4.0-5.0 range. It was noticed that increase in magnetite dose increased the percent removal of uranium, but decreased the adsorption capacity of the magnetite. It was observed from the relation between adsorption and contact time that the removal has increased very fast with time, and achieved the equilibrium within 30 minutes. The results of equilibrium isotherm agreed well with the Langmuir model, and so the theorical saturation capacity of the magnetite was determined for uranyl ions. The interaction between UO22+ ions and the magnetite was defined as a spontaneous chemical adsorption.
APA, Harvard, Vancouver, ISO, and other styles
7

Xin, Jiat Lee. "Evaluation of cost effective adsorbent and biochar from Malaysia oil palm wastes : synthesis, characterisation and optimisation studies." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/48864/.

Full text
Abstract:
The rapid development of palm oil industry in Malaysia has generated significant amount of solid and liquid wastes, contributing to major environmental issues in the past five decades. Palm oil residues such as palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS) are difficult to be disposed of. Thus, the potential application of the oil palm wastes for synthesis of value added products such as adsorbents for heavy metals removal and solid biochars for fuel generation, are presented in this thesis. In the past three decades, industrialisation and urbanisation in Malaysia have led to an increase of heavy metals, such as copper, cadmium, lead, zinc, chromium and nickel, in the rivers and lakes. The presence of the heavy metals is causing harmful effects on the aquatic environment and human health, hence it is necessary to control the discharge of industrial effluent into the environment. Among various heavy metals abatement technologies, adsorption is by far the most promising technique due to its relatively easy operation and high efficiency. However, adsorption is associated with costly adsorbent, such as activated carbon which is usually made from non-renewable resource. This has motivated many researchers to investigate and develop cost effective adsorbents for the removal of heavy metals. In this research, biosorbent was prepared from palm oil sludge. The preparation steps were relatively simple and low cost, involving mechanical treatments such as drying, milling and sieving. The POS biosorbent was tested on removal of copper (Cu2+) and cadmium (Cd2+), followed by process optimisation using response surface methodology (RSM), based on central composite design (CCD). Comparing between one-factor-at-a-time (OFAT) and RSM-CCD methods, both studies produced results which were in good agreement. The investigation was carried out to evaluate the effects of adsorbent dosage (W), initial pH, initial concentration (C0) and contact time (t), on the heavy metals removal. From optimisation study using RSM-CCD, the optimum adsorption parameters for Cu2+ removal were as follows: W = 0.3 g; pH 4.56; C0 = 200 mg L-1; t = 60 min, with maximum adsorption capacity (q) of 15.84 mg g-1, and for Cd2+ removal were as follows: W = 0.3 g; pH 5.8; C0 = 200 mg L-1; t = 60 min, with maximum q of 18.49 mg g-1. The adsorption equilibrium of Cu2+ and Cd2+ were best described by Langmuir and Freundlich models, respectively, based on the lowest sum of normalised error (SNE). The adsorption kinetic of Cu2+ and Cd2+ were best fitted with pseudo-second-order kinetic model. Thermodynamically, the adsorption processes were spontaneous, exothermic and feasible. Regeneration of POS biosorbent was carried out using hydrochloric acid (HCl) as the eluent, and the results indicated the high desorption efficiency for Cu2+ (up to 0.98) and Cd2+ (0.95) from the biosorbent, respectively. The POS biomass was also converted to POS-char by slow pyrolysis which was subsequently used in lead (Pb2+) adsorption study. The synthesis of POS-char was optimised by RSM-CCD based on simultaneous maximisation of biochar yield and q of Pb2+. The interactive effects of nitrogen flowrate (FN2), heating rate (HR), pyrolysis temperature (Tpyro) and pyrolysis time (tpyro) on the responses were investigated. It was determined that the maximum biochar yield was 80.35 % and q was 4.11 mg g-1, formed at the following slow pyrolysis conditions: FN2 = 30 mL min-1; HR = 10 °C min-1; Tpyro = 500 °C; tpyro = 30 min. In Pb2+ adsorption study, the optimum parameters determined by RSM-CCD optimisation were as follows: W = 0.3 g, pH 3.2, C0 = 200 mg L-1 and t = 60 min, with a maximum q of 21.76 mg g-1. The adsorption equilibrium of Pb2+ was best represented by Freundlich model. This finding indicated that the sorption sites in POS-char were heterogeneous. The kinetic study revealed that at low concentrations, the kinetic of adsorption complied with pseudo-first-order model, while at high concentrations, it obeyed pseudo-second-order model. Regeneration of POS-char was successfully conducted using HCl and the adsorbent exhibited reusability up to 5 adsorption-desorption cycles, with the desorption efficiencies between 0.58 and 0.99. Beyond 3 cycles, the adsorbent showed noticeable structural damage. Overall, the adsorption of Pb2+ onto POS-char was spontaneous, exothermic and feasible. The slow pyrolysis of PKS and EFB to biochars was investigated by simultaneously varying factors such as FN2, HR, Tpyro and tpyro. The synthesis parameters were optimised by RSM-CCD with respect to multiple responses, including biochar yield, higher heating value (HHV) and energy yield. The interactive effects of FN2, HR, Tpyro and tpyro on the three responses were in good agreement with literature data. The determined optimum conditions for PKS-char and EFB-char production by slow pyrolysis were as follows: FN2 = 30 mL min-1, HR = 18.9 – 20.0 °C min-1, Tpyro = 500.0 – 504.3 °C and tpyro = 30 min. The combustion kinetic on the optimised PKS-char and EFB-char were found to possess favourable combustion characteristics such as low activation energy (Ea), high energy yield and HHV. Overall, the combustion of PKS-char and EFB-char occurred in multi-step kinetics behaviour until burnout. The cost analysis on synthesis of PKS-char, EFB-char, POS-char and POS biosorbent was performed based on independent case studies which considered the capital and operating costs. The results revealed that addition of the thermochemical conversion plant to existing oil palm mill was highly feasible. The unit cost for production of PKS-char, EFB-char, POS-char and POS were USD$ 3.94 kg-1, USD$ 1.21 kg-1, USD$ 2.17 kg-1 and USD$ 0.19 kg-1 ̧ respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

Trieu, An. "Design of hybrid nano-composite adsorbent for recovery of Pd And Au from electronic wastewater." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1314.

Full text
Abstract:
Les sources secondaires de métaux précieux, tels que les déchets électroniques, ont récemment attiré l’attention générale suite à la sensibilisation sur l’épuissement des ressources naturelles et sur l’industrie du recyclage sur l’emploi et la croissance économique. Developper des technologies de recyclage qui permettent l’extraction de palladium (Pd) et d’or (Au) en très faibles concentrations (10-100 ppm) dans les effluents électroniques s’avère aujourd’hui économiqueemnt viable.Dans ce contexte, notre étude aborde l’utilisation de nanoparticules de ZrO2 modifiées avec des ligands complexants en surface pour capturer efficacement et sélectivement des ions Pd(II) et Au(III) dan les effluents électroniques. Les avantages de l’utilisation de acide thioctique commercial (TOA) par rapport aux acides dialkyldiglycoamide ou (N, N)-dialkylcarbamoylméthylphosphoniques en termes de capacité d’adsorption et de sélectivité ont été démontrés. Des expériences d’adsorption en mode batch combinées à la méthode ICP-OES ont été réalisées et nos résultats ont montré des capacités d’adsorption envers le Pd et l’Au de 6.3 mg/g et de 43 mg/g, respectivement. Les processus d’adsorption suivaient le modèle de Langmuir et les cinétiques chimiques d’adsorption étaient mieux adaptés à l’équation du pseudo-second ordre. Les conditions d’optimisation pour la mise en place du stripping sélectif à l’aide de solutions acidifiées de thiourée ont également été étudiées. En particulier, afin d’améliorer la réutilisation de ce matériau hybride, des processus de modification des surface en deux étapes ont été développés par fonctionnalisation de la surface de nano-ZrO2 avec de l’acide alendronique et par une réaction de couplage peptidique avec du TOA.De plus, les procédés de greffage de nano-ZrO2 sur un textile en polypropylène modifié avec les groupements carboxylique ont été étudiés via des méthodes traditionnelles de revêtement par immersion (dip-coating) et de revêtement couche par couche (LbL). Cette dernière s’est avérée être une méthode prometteuse en termes de flexibilité, de facilité de manipulation et de respect de l’environnment. Les nanocomposites obtenus ont démontré d’excellentes propriétés d’adsorption de Pd et d’Au<br>Secondary sources of precious metals, such as e-waste, have been recently gaining more attention thanks to raising awareness of natural resources depletion and sound impact of recycling industry on employment and economic growth. Recycling technologies have now to be developed, enabling extraction of very small concentration (10-100 ppm) of precious metals, such as palladium (Pd) and gold (Au), from effluents of recycling factories economically viable.In this context, our study addresses the use of thioctic surface-modified zirconia nanoparticles to capture efficiently and selectively Pd(II) and Au(III) ions from industrial electronic wastewater. The advantages of using the commercial thioctic acid (TOA) over dialkyldiglycoamide or (N,N)-dialkylcarbamoylmethylphosphonic acids ones in terms of adsorption capacity and selectivity were demonstrated. Batch-mode adsorption experiments combined with ICP-OES method were conducted and our findings have displayed adsorption capacities toward Pd and Au of 6.3 mg/g and 43.3 mg/g, respectively. The adsorption processes were found to follow the Langmuir model and adsorption rates were best-fitted to pseudo-second order equation. The optimization conditions for selective stripping set-up using acidified solutions of thiourea were also investigated. Particularly, in order to improve the reusability of this hybrid nanomaterial, two-step surface modification processes were developed through alendronic acid-surface functionalization of nano-ZrO2 and amide coupling reaction with TOA.Furthermore, the grafting processes of nano-ZrO2 onto carboxylic-modified polypropylene textile were studied via traditional dip-coating and layer-by-layer coating methods. It has been realized that layer-by-layer coating method is a promising method in terms of its flexibility, ease of handling, and environmental friendliness
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Zhibin, Xingzhong Yuan, Hua Zhong, et al. "Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal–organic framework/reduced graphene oxide composite." NATURE PUBLISHING GROUP, 2016. http://hdl.handle.net/10150/614746.

Full text
Abstract:
In this study, the composite of aluminum metal-organic framework MIL-68(Al) and reduced graphene oxide (MA/RG) was synthesized via a one-step solvothermal method, and their performances for pnitrophenol (PNP) adsorption from aqueous solution were systematically investigated. The introduction of reduced graphene oxide (RG) into MIL-68(Al) (MA) significantly changes the morphologies of the MA and increases the surface area. The MA/RG-15% prepared at RG-to-MA mass ratio of 15% shows a PNP uptake rate 64% and 123% higher than MIL-68(Al) and reduced graphene oxide (RG), respectively. The hydrogen bond and pi-pi dispersion were considered to be the major driving force for the spontaneous and endothermic adsorption process for PNP removal. The adsorption kinetics, which was controlled by film-diffusion and intra-particle diffusion, was greatly influenced by solution pH, ionic strength, temperature and initial PNP concentration. The adsorption kinetics and isotherms can be well delineated using pseudo-second-order and Langmuir equations, respectively. The presence of phenol or isomeric nitrophenols in the solution had minimal influence on PNP adsorption by reusable MA/RG composite.
APA, Harvard, Vancouver, ISO, and other styles
10

Su, Lingcheng. "Soil contamination and plant uptake of metal pollutants released from Cu(In, Ga)Se₂ thin film solar panel and remediation using adsorbent derived from mineral waste material." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/552.

Full text
Abstract:
The Cu(In,Ga)Se2 (CIGS) thin-film solar panels (TFSPs) are widely used in integrated photovoltaic (PV) and solar power systems because of their perfect PV characteristics and ductility. However, the semiconductor layers of these panels contain potentially toxic metals. In this study, the potential environmental pollution arisen by CIGS TFSP treated as construction trash at the end of their useful life was examined. Acid extraction was used to simulate leaching toxicity followed by burying CIGS TFSP material in different soils, namely a synthetic soil, a Mollisol, and an Oxisol, to determine whether metal pollutants might be released into the soil. A vegetable, Brassica parachinensis L. H. Bariley (VegBrassica), was selected to grow in these polluted soils to investigate the uptake of metals and their bioaccumulation. The simulative remediation of contaminated soils was carried out using a remediation module created by the combination of activated carbon and modified mineral waste material (MMWM) in this research. The activated carbon derived from the waste biomass material was produced by an environmental friendly method, and the MMWM was obtained through a thermal dehydroxylation treatment. The physiochemical properties of MMWM, with focusing on mineral phase transformation, were related to the changes in surface morphology due to dehydroxylation occurred during the process of thermal treatment of MMWM samples, and the adsorption performances of metal (lead, Pb) and organic compound (methyl orange, MO) onto this newly modified MMWM were studied. Furthermore, an end-of-life treatment method was designed and proposed for harmless disposal of CIGS TFSP. Various metals, including Pb, zinc (Zn), nickel (Ni), chromium (Cr), gallium (Ga), copper (Cu), indium (In) and aluminum (Al) were found to be released into the soil and caused contamination when scrapped end-of-life CIGS TFSP were buried, and the rates of metal release changed with the variations of both the amounts of CIGS TFSP material in the soil and the soil properties. The increases in concentrations of heavy metals such as Zn, Cu, Ni, Ga, Pb, In, and Cr were correlated with the amounts of CIGS TFSP material added in soils. The Pollution Index and the Nemerow Contamination Index calculated from our results confirmed that, when buried, the CIGS TFSP material polluted the soil. Plants grew well in the synthetic soil and the Mollisol, but those in the Oxisol showed prominent signs of chlorosis and died after 30 days. The bioaccumulation factor (BF) and concentration of Zn were 3.61 and 296 mg/kg, respectively in VegBrassica grown in the synthetic soil with 10% (200 g to 2 kg of soil) of added CIGS TFSP, while the BF and concentration of In were 3.80 and 13.72 mg/kg, respectively in VegBrassica grown in the Mollisol, indicating that bioaccumulation occurred. The thermally treated MMWM samples showed morphological transformation mainly on surface based on the scanning electron microscopy (SEM) observations, and an increasing trend in BET specific surface area (SSA) from 120 to 500 ℃ followed by a decreasing trend up to 1000 ℃. Thermal modification had successfully improved Pb adsorption capacity up to 515 mg/g, corresponding to MMWM modified at 600 ℃ with an SSA of 6.5 m2/g. The MO adsorption capacity was also improved after thermal treatment of MMWM, which performed the best adsorption of 87.6 mg/g at 400 ℃. The adsorption of Pb and MO were mainly chemisorption and monolayer coverage, as pseudo-second-order model and Langmuir equation displayed good relationships of correlation for Pb and MO adsorption data. It is therefore indicated that the newly designed soil remediation modules could significantly remove metals from the contaminated soils. In summary, c
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography