Academic literature on the topic 'WASTE ADSORBENTS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'WASTE ADSORBENTS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "WASTE ADSORBENTS"

1

Pokhrel, Megh Raj, Bhoj Raj Poudel, Ram Lochan Aryal, Hari Paudyal, and Kedar Nath Ghimire. "Removal and Recovery of Phosphate from Water and Wastewater Using Metal-Loaded Agricultural Waste-Based Adsorbents: A Review." Journal of Institute of Science and Technology 24, no. 1 (June 27, 2019): 77–89. http://dx.doi.org/10.3126/jist.v24i1.24640.

Full text
Abstract:
There is a growing research interest in the development of adsorbents based on agricultural wastes (AWs) for the removal of phosphate from waste water sources, which otherwise can cause eutrophication. Nevertheless, due to the lack of active exposed surface sites, raw AWs-based adsorbents are usually inefficient for the adsorption of phosphate from aquatic environment. Consequently, modification of raw adsorbents has been frequently used to improve their phosphate adsorption capacity. Of the various methods of modification, this review paper focused on most widely used chemical modification method. It presents a critical and comprehensive review of the literature on the effectiveness of metal-loaded agricultural wastes (MLAWs)-based adsorbents in removing and recovering of phosphate from waste waters. Mechanisms and factors affecting phosphate adsorption as well as phosphate desorption and regeneration from MLAW adsorbents are critically evaluates. If phosphate from waste waters can be of economical value, regeneration may partly overcome the future shortage of global phosphate rock reserves. It is evident from the literature survey presented herein that MLAWs-based adsorbents exhibited as potential adsorbent for the removal/recovery of phosphate from waste waters. However, there still needs a refined practical utility of these adsorbents on a commercial scale, which may serve as the novel, cost effective and environmentally benign methods of modification.
APA, Harvard, Vancouver, ISO, and other styles
2

Mehralian, Mohammad, Zahra Goodarzvand Chegini, and Maryam Khashij. "Activated carbon prepared from pistachio waste for dye adsorption: experimental and CCD-based design." Pigment & Resin Technology 49, no. 2 (October 14, 2019): 136–44. http://dx.doi.org/10.1108/prt-06-2019-0052.

Full text
Abstract:
Purpose This study aims to activated carbon prepared from pistachio waste by using phosphoric acid as chemical activator agent. Activated carbon adsorbents were prepared from pistachio waste by using phosphoric acid as chemical activator agent. Design/methodology/approach The optimum conditions for the highest adsorption performance were determined by central composite design (CCD). The adsorbent was used for the adsorption of dye reactive black 5 (RB5), and the parameters affecting the adsorption were discussed like pH, initial concentration, contact time and adsorbent dosage. The adsorbent synthesized has been characterized by FTIR spectroscopy and scanning electron microscopy. The kinetic models including pseudo-first-order, pseudo-second-order and intraparticle diffusion with Langmuir and Freundlich isotherm models were applied to investigate the kinetic and isotherms parameters. Findings When the dye concentration is 10 mg/L, RB5 dye removal rates reach 87.5 per cent. Moreover, the adsorption process of RB5 follows the pseudo-second-order kinetics and the Freundlich adsorption isotherm. Practical implications This study provided a simple and effective way to prepare activated carbon adsorbents from pistachio wastes. This way was conductive to protect environmental from a huge amount of agricultural waste produced and subsequent application for removal of pollutants from aqueous solutions. Originality/value The activated carbon adsorbents are prepared via chemical activation, which is prepared with pistachio wastes. There are two main innovations: one is that the novel adsorbents are prepared successfully by waste and the other is that the optimized conditions are designed by CCD.
APA, Harvard, Vancouver, ISO, and other styles
3

Matei, Ecaterina, Maria Râpă, Andra Mihaela Predescu, Anca Andreea Țurcanu, Ruxandra Vidu, Cristian Predescu, Constantin Bobirica, Liliana Bobirica, and Cristina Orbeci. "Valorization of Agri-Food Wastes as Sustainable Eco-Materials for Wastewater Treatment: Current State and New Perspectives." Materials 14, no. 16 (August 15, 2021): 4581. http://dx.doi.org/10.3390/ma14164581.

Full text
Abstract:
The paper addresses environmental protection by valorizing an important agri-food waste category, namely fruit and vegetables with focusing on the main characteristics regarding consumption, waste quantities, and ways for valorizing these materials. Thus, vast research was undertaken in order to emphasize the main commodities and their potential application as adsorbents for organic and inorganic pollutants. The main methods or treatment techniques applied for the valorization of eco-materials as adsorbents were presented and the principal efficiency results were indicated. The advantages and disadvantages of using these eco-materials as adsorbents in wastewater treatment were revealed and future recommendations were established. According to the international statistics, the most purchased and consumed five commodities were studied regarding waste generations as potential conversion into eco-materials with an adsorbent role for water pollutants. Thus, the performances for adsorbents based on fruit wastes (such as citrus, banana, apples, grapes, mango) and vegetable wastes (such as potatoes, tomatoes, cabbage, carrots, cauliflower, and/or broccoli) were studied and highlighted in this research.
APA, Harvard, Vancouver, ISO, and other styles
4

Shirazi, Alireza Raygan, Nejad Maryam Molaei, Arsalan Jamshidi, and Ghasem Hassani. "Removal of 17β-estradiol (E2) from Aqueous Solutions by Adsorption Using Oak Jaft and Tea Waste, Isotherm Investigation, and Adsorption Kinetics." Pakistan Journal of Analytical and Environmental Chemistry 24, no. 1 (June 27, 2023): 13–30. http://dx.doi.org/10.21743/pjaec/2023.06.02.

Full text
Abstract:
The present study aims to investigate wastewater treatment of hormones by oak jaft and tea waste adsorbents. Various factors were used to evaluate the adsorption process, such as the initial pollutant concentration, adsorbent concentration, contact time, and pH. The results showed that both adsorbents, jaft, and tea waste, can adsorb 17β-estradiol. Maximum adsorption was 82.4% for jaft adsorbent and 81.5% for tea waste at 85 min, 7 g/L of adsorbent dose, and pH = 4.5, respectively. The adsorption equilibrium was performed using Langmuir, Freundlich, and Liu models, based on the results, Freundlich model with R2 values >0.97 demonstrated better agreement with the adsorption experimental data. To obtain information on adsorption velocity, three models of pseudo-first-order, pseudo-second-order, and Elovich were used. The findings revealed that the pseudo-second-order model with R2 > 0.98 is a better fit for the experimental data. Therefore, the jaft adsorbent and tea waste can be used as effective and economical adsorbents for the removal of organic pollutants in wastewater treatment plants.
APA, Harvard, Vancouver, ISO, and other styles
5

Boakye, Patrick, Godfred Ohemeng-Boahen, Lawrence Darkwah, Yen Adams Sokama-Neuyam, Eugene Appiah-Effah, Sampson Oduro-Kwarteng, Barnabas Asamoah Osei, Prince Junior Asilevi, and Seung Han Woo. "Waste Biomass and Biomaterials Adsorbents for Wastewater Treatment." Green Energy and Environmental Technology 2022 (March 28, 2022): 1–25. http://dx.doi.org/10.5772/geet.05.

Full text
Abstract:
This paper highlights some of the commonly used bio-based materials studied for their applicability as adsorbents in wastewater treatment. Additionally, few processing techniques employed to enhance the ability and or affinity of the adsorbents for wastewater treatment have been discussed. More so, some of the commonly used characterization techniques such as Scanning Electron Microscopy (SEM), Fourier Transform InfraRed (FTIR) spectroscopy among others often employed in a bid to elucidate the properties and morphologies of the adsorbents as well as the potential mechanism(s) underlying the adsorbate-adsorbent interaction(s) has also been extensively conferred. The potential draw-backs, recommendations and future perspectives on the use of bio-based materials as adsorbents in wastewater treatment has also been discussed in the concluding section of this paper.
APA, Harvard, Vancouver, ISO, and other styles
6

Ghanim, Alaa. "Utilization of date pits derived Bio-adsorbent for heavy metals in wastewater treatment: Review." Al-Qadisiyah Journal for Engineering Sciences 16, no. 1 (March 30, 2023): 58–69. http://dx.doi.org/10.30772/qjes.v16i1.910.

Full text
Abstract:
This article provides an overview of the role of raw and burnt date pits as bio-waste for heavy metal removal. In recent years, many studies on the adsorption properties of various low-cost adsorbents, such as agricultural waste and activated carbons based on agricultural waste, have been published. This review summarizes recent research demonstrating the utility of raw and modified date pits biomass-based adsorbents in the removal of heavy metal pollutants from wastewater. Additionally, the chemical compositions, the derived activated carbon, and the proposed mechanism of heavy metal ions were discussed. It thoroughly showed how essential variables including pH, adsorbent dosage, initial metal ion concentration, physical and chemical properties, and temperature affect the adsorption of heavy metals. The significant application of date pits as a bio-adsorbent of heavy metal ions was demonstrated. According to the literature, date pit-based adsorbents are the most promising adsorbents for removing toxic materials because they adsorb heavy metals from aqueous solutions with high capacity in a short period.
APA, Harvard, Vancouver, ISO, and other styles
7

N'diaye, Abdoulaye Demba, Mohamed Sid' Ahmed Kankou, Belkheir Hammouti, Asep Bayu Dani Nandiyanto, and Dwi Fitria Al Husaeni. "A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as adsorbent." Communications in Science and Technology 7, no. 2 (December 28, 2022): 140–53. http://dx.doi.org/10.21924/cst.7.2.2022.977.

Full text
Abstract:
This paper presents a review of adsorption isotherms of some dyes from aqueous solutions by biomaterial. In this paper, we reported Typha waste as a model of biomaterial classified as a low-cost adsorbent. The paper also briefly discusses about the literature information from the definition of dyes and adsorbents, bibliometric analysis, adsorption phenomena, adsorption isotherm models, and factors affecting the adsorption, to the use of Typha species waste as a low-cost adsorbent. The operational parameters factors are explained in terms of pH, adsorbent dosage, contact time, and initial dye concentration that will affect the process of removing textile dye. The solution of pH turns out to be the most important condition in the adsorption process for anionic dye, a low pH value are preferable in contrast to cationic dye where the suitable pH value is high. For the adsorbent dose, the adsorption capacity increase along with the increment of adsorbent dosage due to the increase of theavailable amount of adsorption site. The contact time between the adsorbent and dye affects the efficiency of dye removal where a strong attraction force will shorten the time. As for the effect of dye initial concentration, increasing the initial concentration enhances the increment of adsorbent surface area to adsorb dyes. Several isotherm models are described. The Langmuir model is frequently used to evaluate the adsorption capacity of the Typha species waste as adsorbents. This review paper suggested that the accuracy level obtained from adsorption processes is greatly dependent on the successful modeling of adsorption isotherms. Typha biomaterial wastes can be considered as the new useful low-cost natural adsorbents for dye clean-up operations in aquatic systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Stoycheva, Ivanka, Bilyana Petrova, Boyko Tsyntsarski, Pavlina Dolashka, Angelina Kosateva, and Nartzislav Petrov. "Investigation of the Adsorption Process of Triclosan from an Aqueous Solution, Using Nanoporous Carbon Adsorbents, Obtained after Treatment of Organic Household and Vegetable Waste." Processes 11, no. 9 (September 4, 2023): 2643. http://dx.doi.org/10.3390/pr11092643.

Full text
Abstract:
The absorption of triclosan on the surface of four different carbon adsorbents, obtained on the base of plant and household waste (RDF), provided by Sofia Waste Plant, was investigated. The obtained results indicate that the most important parameters, which determine the process of triclosan adsorption by adsorbent surface are pore texture, the size of the accessible surface for the molecules of triclosan, and the chemical nature of the adsorbent surface. It was found that the obtained adsorbents can be successfully applied for the extraction of triclosan from waste and drinking water. The possibilities for solid products, obtained by thermal treatment of household and vegetable waste, to be applied successfully in a water purification technique are discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Hasanah, Ulfa Imroathul, Budi Utami, and Endang Susilowati. "Combination of Corn Waste and Egg Shell as Zn Metal Adsorbent with Batch System." JKPK (Jurnal Kimia dan Pendidikan Kimia) 7, no. 2 (August 30, 2022): 223. http://dx.doi.org/10.20961/jkpk.v7i2.55440.

Full text
Abstract:
<p>This study aims to determine: the ability of corn cobs and eggshells as Zn metal adsorbents, functional groups of corn cobs and eggshells adsorbent, what isotherm patterns occur in the adsorbent corn cobs and eggshells in adsorbing Zn metal, the optimum ratio and optimum mass of the adsorbent composition of corn cobs and eggshells in Zn metal adsorption, the optimum contact time for adsorbent corn cobs and eggshell in adsorbing Zn metal, the optimum concentration of adsorbate to be adsorbed by corn cobs and eggshell adsorbents. This study used an experimental method in the laboratory. characterization includes functional groups using FTIR, and test the effectiveness of adsorbents using the AAS instrument. Kinetic analysis of adsorbent by adsorption isotherm with Langmuir isotherm, Freundlich isotherm, Temkin isotherm, and dubinin-radushkevivh isotherm. The results showed that: Corn cobs and eggshells can be used as zinc metal adsorbents; in the corn cobs adsorbent, there is a functional group -OH at wave number 3415,15 cm<sup>-1</sup> and in the eggshell, there is a bent vibration of calcium carbonate at wave number 3400,65 cm<sup>-1</sup>, the adsorption process of Zn metal by adsorbent corn cobs and egg shells follows the Langmuir isotherm pattern (chemical adsorption), the comparison of the optimum composition and mass of the adsorbent corn cobs and eggshells in Zn metal adsorption are 1:2 and 0,15 grams with Zn metal adsorbed by 80,4571%, the optimum contact time for the adsorbent corn cobs and eggshells in adsorbing Zn metal is 90 minutes with the percentage of absorbed Zn metal concentration is 75,5957%, and the optimum concentration of adsorbate for adsorbed by corn cob and eggshell adsorbents is 1 mg/L with adsorbed Zn percentage of 82,8377%.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Handayani, Lia, Azwar Thaib, Nurhayati Nurhayati, Yayuk Astuti, and Adi Darmawan. "Production and Characterization of Adsorbent from Oyster Shell (Crassostrea gigas) Using Physics and Chemical Activation with ZnCl2 and Its Application for Removal of Hexavalent Chromium." Elkawnie 6, no. 2 (December 30, 2020): 329. http://dx.doi.org/10.22373/ekw.v6i2.7333.

Full text
Abstract:
Abstract: Oyster shell waste has been investigated as a raw material for making adsorbents that will be activated. Physical activation uses temperatures of 500 ºC, 600 ºC, 700 ºC, 800 ºC, 900 ºC and chemical activation uses ZnCl2 with a concentration of 1 %, 5 %, 10 % and 15 %. Based on the analysis of the characteristics that have been carried out for physically activated adsorbents, the oyster shell calcined at 800 ºC produces the best characteristics, it is a radius of 35.11 Å with a percentage of removal of 38.04 %, as well as the results of the FTIR, XRF and SEM analysis gives the best results among others. Whereas for chemically activated adsorbents, the use of activator ZnCl2 10% produces adsorbents with the best characteristics among others with a radius of 84.14 Å and removal percentage of 65.68 %, the best results for adsorbents activated using 10% ZnCl2 are also supported by analysis results given by FTIR, XRF, and SEM.Keywords: Adsorbent; BET; Cr6+; Oyster Shell Waste; XRF Abstrak: Cangkang tiram (Crassostrea gigas) telah diteliti sebagai bahan baku pembuatan adsorben yang akan diaktivasi secara fisika dan kimia. Pembuatan adsorben dengan aktivasi secara fisika menggunakan variasi suhu 500 ºC, 600 ºC, 700 ºC, 800 ºC dan 900 ºC. sedangkan aktivasi kimia yaitu menggunakan aktivator ZnCl2 menggunakan variasi konsentrasi 1 %, 5 %, 10% dan 15 %. Berdasarkan analisa karakteristik yang telah dilakukan untuk adsorben-adsorben yang telah diaktivasi secara fisika, cangkang tiram yang di kalsinasi pada suhu 800ºC menghasilkan karakteristik yang paling baik, yaitu radius pori-pori 35,11 Å dengan persentase penyisihan sebesar 38,04 %, begitu pula dengan hasil analisa FTIR, XRF dan SEM memberikan hasil terbaik diantara yang lain. sedangkan untuk adsorben-adsorben yang diaktivasi secara kimia, penggunaan aktivator ZnCl2 10% menghasilkan adsorben dengan karakteristik yang paling baik diantara lainnya dengan radius pori-pori 84,14 Å dan persentase penyisihan sebesar 65,68%, hasil terbaik untuk adsorben yang diaktivasi menggunakan ZnCl2 10 % juga didukung oleh hasil analisa dari FTIR, XRF dan SEM.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "WASTE ADSORBENTS"

1

Pollard, Simon J. T. "Low-cost adsorbents from industrial wastes." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/8387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Madiraju, Saisantosh Vamshi Harsha. "COLOR REMOVAL AND TREATMENT OF DYE AND SUGAR WASTE WATER USING LOW COST ADSORBENTS." Cleveland State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=csu1530272885958543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Melo, Diego de Quadros. "LIGNOCELLULOSIC ACTIVATED WASTE USE ADSORBENTS IN TOXIC METALS IONS REMOVAL: BATCH AND COLUMN STUDIES USING DESING EXPERIMENTAL." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17236.

Full text
Abstract:
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
The tururi and buriti fibers, and the castor bean stalks are extremely efficient to sorption of metal ions from aqueous solutions. In this study, the adsorbents were activated with different concentrations of alkali solutions (5, 7, 10 and 15% w/v). The materials were characterized by analytical techniques as infrared, X-ray Diffraction (XRD) and Thermogravimetry analysis. The infrared spectra revealed that associated groups to macromolecules of hemicellulose and lignin after alkaline activation have less intensity compared to the initial samples. The XRD revealed, that after castor bean stalks alkaline activation, the presence of the cellulose type II peaks, which did not occur with tururi and buriti fibers. The fluorescence X-ray data showed that the cations present in the initial adsorbents, K+ and Ca2 + are exchanged by Cu (II), Ni (II), Cd (II) and Pb (II) in the sorption process. Studies of the influences of variables: mass of adsorbent; agitation rate; the initial pH and concentration using a fractional factorial design 24-1 demonstrated that all variables affect the response (adsorption capacity mg g-1). As a result for a larger value of qtotal, conditions were observed while maintaining the pH at 5.5; mass of the adsorbent 50 mg; agitation at 200 rpm and the initial concentration: 500 mg L-1. The adsorption kinetics revealed fast adsorption process, about 30 minutes, and good fitting to pseudo-second-order theoretical model to all adsorption process studied. Intraparticle diffusion models as Weber-Morris and Boyd were testes in order to study the limiting steps of the process.The results showed that for tururi and buriti fibers (with the exception of nickel ions) the rate-limiting step is not the intraparticle diffusion, while for the castor bean stalks, it was found that the rate-limiting step of the process is the intraparticle diffusion. The study of monoelement and multielement systems were performed at pH 5.5, initial concentrations from 20-500 mg L-1, which the experimental data were fitted to the Langmuir, Freundlich and Sips theoretical models. The tururi fibers adsorption capacities (mg g-1) in monoelementar and multielement system follows the order Pb (188.79)> Cd (92.20)> Cu (32.82)> Ni (22.23) and Cd (77.53)> Pb (43.93)> Cu (24.99)> Ni (19.51), respectively. Buriti fibers adsorption capacities (g-1 mg) in monoelementar and multielement systems follows the order of Cu (143.1)> Pb (112.1)> Ni (103.7)> Cd (86.33) and Pb (69.12)> Cu (49.28)> Ni (45.10)> Cd (24.95), respectively. Castor bean stalks adsorption capacities (g-1 mg) in in monoelementar and multielement systems follows the order of Pb (175.1)> Cd (124.8)> Ni (111.1)> Cu (89.23) and Cu (56.78)> Pb (55.82)> Cd (44.72)> Ni (43.48), respectively. The results showed a better fit for the Sips model, relating to a heterogeneous adsorption. Fixed bed studies using castor bean stalks checking the influence of variables adsorbent flow (1, 2 and 3 mL min-1), the height of the column (5, 7 and 10 cm) and initial concentration (100 , 200, 300 mg L-1) by the Box-Behnken planning revealed that there were no influence between the variables in the studied. The breakthrough curves were well fitted to the Thomas model. The study in real effluent with Cu (II) (galvanoplastic sector) was carried out using the optimized condition: flow (1 ml min-1); bed height (10 cm) initial concentration: (245.5 mg L-1) and it was found adsorption capacity of 32.42 mg g-1. The mamoneira stalks adsorbent was used for five cycles to verify their potential reuse, and it was found no significant efficiency losses.
As fibras tururi, buriti e talos da mamoneira sÃo resÃduos lignocelulÃsicos extremamente eficientes na sorÃÃo de metais de soluÃÃes aquosas. Neste trabalho, eles foram ativados com diferentes concentraÃÃes de soluÃÃes alcalinas (5, 7, 10 e 15% m/v). Os materiais foram caracterizados pelas tÃcnicas analÃticas de Infravermelho, DifraÃÃo de Raios-X (DRX) e Termogravimetria. Os espectros de infravermelho revelaram que os grupos associados Ãs macromolÃculas de hemicelulose e lignina diminuem em intensidade ou desaparecem apÃs a ativaÃÃo alcalina. Os DRX revelaram que apÃs a ativaÃÃo alcalina, os talos da mamoneira apresentaram picos de celulose tipo II, o que nÃo ocorreu com as fibras de tururi e buriti. O dados de FluorescÃncia de Raios-X revelaram que os cÃtions presentes nos adsorventes como Na(I) e Ca(II) sÃo trocados pelos Ãons Cu(II), Ni(II), Cd(II) e Pb(II) no processo de sorÃÃo. Os estudos das influÃncias das variÃveis: massa do adsorvente; taxa de agitaÃÃo; pH e concentraÃÃo inicial utilizando planejamento experimental fracionÃrio 24-1 demostrou que todas as variÃveis afetaram a resposta (capacidade de adsorÃÃo mg g-1). Como resultado para um maior valor de qtotal, as condiÃÃes observadas foram mantendo o pH em 5,5; massa do adsorvente em 50 mg; taxa de agitaÃÃo em 200 rpm e concentraÃÃo inicial 500 mg L-1. A cinÃtica de adsorÃÃo revelou rÃpida adsorÃÃo, cerca de 30 minutos em geral, seguindo o modelo de pseudo-segunda ordem em todos os processos adsortivos. Modelos de difusÃo intrapartÃcula como de Webber-Morris e Boyd foram estudados a fim de determinar as etapas limitantes do processo. Os dados evidenciaram que para as fibras de tururi e buriti (com exceÃÃo dos Ãons nÃquel) a etapa limitante da velocidade nÃo à a difusÃo intraporo, enquanto para os talos de mamoneira foi verificado que a etapa limitante do processo à a difusÃo intrapartÃcula. O estudo com sistema monoelementar e multielementar foi realizado em pH 5,5, concentraÃÃes variando de 20-500 mg L-1, nos quais os dados foram aplicados aos modelos de Langmuir, Freundlich e Sips. As capacidades de adsorÃÃo (mg g-1) em sistema monoelementar e multielementar das fibras de tururi segue a ordem Pb(188,79)> Cd(92,20)> Cu(32,82)> Ni(22,23) e Cd(77,53)> Pb(43,93)> Cu(24,99)> Ni(19,51), respectivamente. As capacidades de adsorÃÃo (mg g-1) das fibras de buriti em sistema monoelementar e multielementar segue a ordem Cu(143,1)> Pb(112,1)> Ni(103,7) > Cd(86,33) e Pb(69,12)> Cu(49,28)> Ni(45,10)> Cd(24,95), respectivamente. As capacidades de adsorÃÃo (mg g-1) dos talos de mamoneira em sistema monoelementar e multielementar segue a ordem Pb(175,1)> Cd(124,8)> Ni(111,1)> Cu(89,23) e Cu(56,78)> Pb(55,82)> Cd(44,72)> Ni(43,48), respectivamente. Em geral, os resultados evidenciaram melhor aplicabilidade ao modelo de Sips, o qual prediz que os sÃtios disponÃveis para adsorÃÃo sÃo heterogÃneos. Em relaÃÃo ao estudo de adsorÃÃo em leito fixo utilizando talos de mamoneira, a verificaÃÃo da influÃncia das variÃveis: fluxo do adsorvente (1, 2 e 3mL min-1), altura da coluna (5, 7 e 10 cm) e concentraÃÃo inicial (100, 200, 300 mg L-1) pelo planejamento de Box-Behnken, revelou que nÃo hà influencia mutua entre as variÃveis no intervalo estudado. As curvas de ruptura experimentais foram bem aplicadas ao modelo teÃrico de Thomas. O estudo com efluente real de Ãons Cu (II) (setor galvanoplÃstico) utilizando a condiÃÃo otimizada: fluxo (1mL min-1); altura de leito (10 cm) e concentraÃÃo inicial: (245,5 mg L-1) obteve 32,42 mg g-1 de capacidade de adsorÃÃo O adsorvente talos de mamoneira foi utilizado por cinco ciclos para verificar seu potencial de uso, nÃo havendo perdas significativas de eficiÃncia.
APA, Harvard, Vancouver, ISO, and other styles
4

ORTIZ, NILCE. "Estudo da utilizacao de magnetita como material adsorvedor dos metais Cusup(2+), Pbsup(2+), Nisup(2+) e Cdsup(2+), em solucao." reponame:Repositório Institucional do IPEN, 2000. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10825.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:44:25Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:07:22Z (GMT). No. of bitstreams: 1 06909.pdf: 4920910 bytes, checksum: d6e37e56c96b5266b7fcce3da3d56d3b (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
5

LEAL, ROBERTO. "Estudo da magnetita como material adsorvedor de íons uranilo." reponame:Repositório Institucional do IPEN, 2006. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9299.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:25:53Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:00:29Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
6

Leal, Roberto. "Estudo da magnetita como material adsorvedor de íons uranilo." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-15052012-132433/.

Full text
Abstract:
A magnetita, também chamada de ferrita de ferro, é um minério conhecido como imã natural e encontrada em depósitos de ferro. Além desse comportamento intrínseco, a magnetita possui a capacidade de remover os íons metálicos do meio aquoso por fenômenos de adsorção. O seu caráter fortemente magnético a distingue de outros tipos de adsorventes, visto que, é facilmente removida da solução por separação magnética. Neste trabalho estudou-se a adsorção de urânio(VI), na forma de íons UO22+, de solução nítrica pela magnetita sintética. Esta foi preparada por precipitação simultânea adicionando-se uma solução de NaOH à solução contendo os íons Fe2+ e Fe3+. A magnetita sintética, na forma de um pó preto, exibiu uma resposta magnética de atração intensa na presença de um campo magnético, sem contudo tornar-se magnética, um comportamento típico de material superparamagnético constatado por medidas de magnetização. Estudou-se a influência dos parâmetros de adsorção de íons UO22+ tais como o pH, a dose do adsorvente, tempo de contato e a isoterma de equilíbrio. A máxima adsorção de urânio foi encontrada no intervalo de pH entre 4 e 5. Verificou-se que quanto maior a dose de magnetita menor a capacidade de adsorção e maior a remoção de U. Da relação entre adsorção e tempo de contato verificou-se que a remoção aumentou rapidamente com o tempo e atingiu-se a condição de equilíbrio em 30 min. Os resultados da isoterma de equilíbrio apresentaram maior concordância com o modelo de Langmuir, o qual permitiu a determinação da capacidade teórica de saturação da magnetita para o urânio. A interação entre os íons UO22+ e a magnetita foi caracterizada como uma adsorção química e espontânea.
Magnetite, also known as iron ferrite, is a mineral iron and a natural magnet found in iron deposits. In addition to its magnetic intrinsic behavior, the magnetite has the capacity to remove the metallic ions from aqueous medium by adsorption phenomena. The strong magnetic character of magnetite distinguishes it from other adsorbent types, which it allows to be readily removed from solution by magnetic separation. In this work, uranium (VI) adsorption, as UO22+ ions, from nitric solution by synthetic magnetite was investigated. It was prepared by simultaneous precipitation process, adding a NaOH solution into a solution containing Fe2+ and Fe3+ ions. The synthetic magnetite, a black powder, has exhibited a strong magnetic response in presence of a magnetic field, without nevertheless becomes magnetic. This typical superparamagnetic behavior was confirmed by magnetization measurements. Adsorption parameters of UO22+ ions such as pH. the adsorbent dose, contact time and equilibrium isotherm were evaluated. Maximum uranium adsorption was observed in the pH 4.0-5.0 range. It was noticed that increase in magnetite dose increased the percent removal of uranium, but decreased the adsorption capacity of the magnetite. It was observed from the relation between adsorption and contact time that the removal has increased very fast with time, and achieved the equilibrium within 30 minutes. The results of equilibrium isotherm agreed well with the Langmuir model, and so the theorical saturation capacity of the magnetite was determined for uranyl ions. The interaction between UO22+ ions and the magnetite was defined as a spontaneous chemical adsorption.
APA, Harvard, Vancouver, ISO, and other styles
7

Xin, Jiat Lee. "Evaluation of cost effective adsorbent and biochar from Malaysia oil palm wastes : synthesis, characterisation and optimisation studies." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/48864/.

Full text
Abstract:
The rapid development of palm oil industry in Malaysia has generated significant amount of solid and liquid wastes, contributing to major environmental issues in the past five decades. Palm oil residues such as palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS) are difficult to be disposed of. Thus, the potential application of the oil palm wastes for synthesis of value added products such as adsorbents for heavy metals removal and solid biochars for fuel generation, are presented in this thesis. In the past three decades, industrialisation and urbanisation in Malaysia have led to an increase of heavy metals, such as copper, cadmium, lead, zinc, chromium and nickel, in the rivers and lakes. The presence of the heavy metals is causing harmful effects on the aquatic environment and human health, hence it is necessary to control the discharge of industrial effluent into the environment. Among various heavy metals abatement technologies, adsorption is by far the most promising technique due to its relatively easy operation and high efficiency. However, adsorption is associated with costly adsorbent, such as activated carbon which is usually made from non-renewable resource. This has motivated many researchers to investigate and develop cost effective adsorbents for the removal of heavy metals. In this research, biosorbent was prepared from palm oil sludge. The preparation steps were relatively simple and low cost, involving mechanical treatments such as drying, milling and sieving. The POS biosorbent was tested on removal of copper (Cu2+) and cadmium (Cd2+), followed by process optimisation using response surface methodology (RSM), based on central composite design (CCD). Comparing between one-factor-at-a-time (OFAT) and RSM-CCD methods, both studies produced results which were in good agreement. The investigation was carried out to evaluate the effects of adsorbent dosage (W), initial pH, initial concentration (C0) and contact time (t), on the heavy metals removal. From optimisation study using RSM-CCD, the optimum adsorption parameters for Cu2+ removal were as follows: W = 0.3 g; pH 4.56; C0 = 200 mg L-1; t = 60 min, with maximum adsorption capacity (q) of 15.84 mg g-1, and for Cd2+ removal were as follows: W = 0.3 g; pH 5.8; C0 = 200 mg L-1; t = 60 min, with maximum q of 18.49 mg g-1. The adsorption equilibrium of Cu2+ and Cd2+ were best described by Langmuir and Freundlich models, respectively, based on the lowest sum of normalised error (SNE). The adsorption kinetic of Cu2+ and Cd2+ were best fitted with pseudo-second-order kinetic model. Thermodynamically, the adsorption processes were spontaneous, exothermic and feasible. Regeneration of POS biosorbent was carried out using hydrochloric acid (HCl) as the eluent, and the results indicated the high desorption efficiency for Cu2+ (up to 0.98) and Cd2+ (0.95) from the biosorbent, respectively. The POS biomass was also converted to POS-char by slow pyrolysis which was subsequently used in lead (Pb2+) adsorption study. The synthesis of POS-char was optimised by RSM-CCD based on simultaneous maximisation of biochar yield and q of Pb2+. The interactive effects of nitrogen flowrate (FN2), heating rate (HR), pyrolysis temperature (Tpyro) and pyrolysis time (tpyro) on the responses were investigated. It was determined that the maximum biochar yield was 80.35 % and q was 4.11 mg g-1, formed at the following slow pyrolysis conditions: FN2 = 30 mL min-1; HR = 10 °C min-1; Tpyro = 500 °C; tpyro = 30 min. In Pb2+ adsorption study, the optimum parameters determined by RSM-CCD optimisation were as follows: W = 0.3 g, pH 3.2, C0 = 200 mg L-1 and t = 60 min, with a maximum q of 21.76 mg g-1. The adsorption equilibrium of Pb2+ was best represented by Freundlich model. This finding indicated that the sorption sites in POS-char were heterogeneous. The kinetic study revealed that at low concentrations, the kinetic of adsorption complied with pseudo-first-order model, while at high concentrations, it obeyed pseudo-second-order model. Regeneration of POS-char was successfully conducted using HCl and the adsorbent exhibited reusability up to 5 adsorption-desorption cycles, with the desorption efficiencies between 0.58 and 0.99. Beyond 3 cycles, the adsorbent showed noticeable structural damage. Overall, the adsorption of Pb2+ onto POS-char was spontaneous, exothermic and feasible. The slow pyrolysis of PKS and EFB to biochars was investigated by simultaneously varying factors such as FN2, HR, Tpyro and tpyro. The synthesis parameters were optimised by RSM-CCD with respect to multiple responses, including biochar yield, higher heating value (HHV) and energy yield. The interactive effects of FN2, HR, Tpyro and tpyro on the three responses were in good agreement with literature data. The determined optimum conditions for PKS-char and EFB-char production by slow pyrolysis were as follows: FN2 = 30 mL min-1, HR = 18.9 – 20.0 °C min-1, Tpyro = 500.0 – 504.3 °C and tpyro = 30 min. The combustion kinetic on the optimised PKS-char and EFB-char were found to possess favourable combustion characteristics such as low activation energy (Ea), high energy yield and HHV. Overall, the combustion of PKS-char and EFB-char occurred in multi-step kinetics behaviour until burnout. The cost analysis on synthesis of PKS-char, EFB-char, POS-char and POS biosorbent was performed based on independent case studies which considered the capital and operating costs. The results revealed that addition of the thermochemical conversion plant to existing oil palm mill was highly feasible. The unit cost for production of PKS-char, EFB-char, POS-char and POS were USD$ 3.94 kg-1, USD$ 1.21 kg-1, USD$ 2.17 kg-1 and USD$ 0.19 kg-1 ̧ respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

Trieu, An. "Design of hybrid nano-composite adsorbent for recovery of Pd And Au from electronic wastewater." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1314.

Full text
Abstract:
Les sources secondaires de métaux précieux, tels que les déchets électroniques, ont récemment attiré l’attention générale suite à la sensibilisation sur l’épuissement des ressources naturelles et sur l’industrie du recyclage sur l’emploi et la croissance économique. Developper des technologies de recyclage qui permettent l’extraction de palladium (Pd) et d’or (Au) en très faibles concentrations (10-100 ppm) dans les effluents électroniques s’avère aujourd’hui économiqueemnt viable.Dans ce contexte, notre étude aborde l’utilisation de nanoparticules de ZrO2 modifiées avec des ligands complexants en surface pour capturer efficacement et sélectivement des ions Pd(II) et Au(III) dan les effluents électroniques. Les avantages de l’utilisation de acide thioctique commercial (TOA) par rapport aux acides dialkyldiglycoamide ou (N, N)-dialkylcarbamoylméthylphosphoniques en termes de capacité d’adsorption et de sélectivité ont été démontrés. Des expériences d’adsorption en mode batch combinées à la méthode ICP-OES ont été réalisées et nos résultats ont montré des capacités d’adsorption envers le Pd et l’Au de 6.3 mg/g et de 43 mg/g, respectivement. Les processus d’adsorption suivaient le modèle de Langmuir et les cinétiques chimiques d’adsorption étaient mieux adaptés à l’équation du pseudo-second ordre. Les conditions d’optimisation pour la mise en place du stripping sélectif à l’aide de solutions acidifiées de thiourée ont également été étudiées. En particulier, afin d’améliorer la réutilisation de ce matériau hybride, des processus de modification des surface en deux étapes ont été développés par fonctionnalisation de la surface de nano-ZrO2 avec de l’acide alendronique et par une réaction de couplage peptidique avec du TOA.De plus, les procédés de greffage de nano-ZrO2 sur un textile en polypropylène modifié avec les groupements carboxylique ont été étudiés via des méthodes traditionnelles de revêtement par immersion (dip-coating) et de revêtement couche par couche (LbL). Cette dernière s’est avérée être une méthode prometteuse en termes de flexibilité, de facilité de manipulation et de respect de l’environnment. Les nanocomposites obtenus ont démontré d’excellentes propriétés d’adsorption de Pd et d’Au
Secondary sources of precious metals, such as e-waste, have been recently gaining more attention thanks to raising awareness of natural resources depletion and sound impact of recycling industry on employment and economic growth. Recycling technologies have now to be developed, enabling extraction of very small concentration (10-100 ppm) of precious metals, such as palladium (Pd) and gold (Au), from effluents of recycling factories economically viable.In this context, our study addresses the use of thioctic surface-modified zirconia nanoparticles to capture efficiently and selectively Pd(II) and Au(III) ions from industrial electronic wastewater. The advantages of using the commercial thioctic acid (TOA) over dialkyldiglycoamide or (N,N)-dialkylcarbamoylmethylphosphonic acids ones in terms of adsorption capacity and selectivity were demonstrated. Batch-mode adsorption experiments combined with ICP-OES method were conducted and our findings have displayed adsorption capacities toward Pd and Au of 6.3 mg/g and 43.3 mg/g, respectively. The adsorption processes were found to follow the Langmuir model and adsorption rates were best-fitted to pseudo-second order equation. The optimization conditions for selective stripping set-up using acidified solutions of thiourea were also investigated. Particularly, in order to improve the reusability of this hybrid nanomaterial, two-step surface modification processes were developed through alendronic acid-surface functionalization of nano-ZrO2 and amide coupling reaction with TOA.Furthermore, the grafting processes of nano-ZrO2 onto carboxylic-modified polypropylene textile were studied via traditional dip-coating and layer-by-layer coating methods. It has been realized that layer-by-layer coating method is a promising method in terms of its flexibility, ease of handling, and environmental friendliness
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Zhibin, Xingzhong Yuan, Hua Zhong, Hou Wang, Guangming Zeng, Xiaohong Chen, Hui Wang, Lei zhang, and Jianguang Shao. "Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal–organic framework/reduced graphene oxide composite." NATURE PUBLISHING GROUP, 2016. http://hdl.handle.net/10150/614746.

Full text
Abstract:
In this study, the composite of aluminum metal-organic framework MIL-68(Al) and reduced graphene oxide (MA/RG) was synthesized via a one-step solvothermal method, and their performances for pnitrophenol (PNP) adsorption from aqueous solution were systematically investigated. The introduction of reduced graphene oxide (RG) into MIL-68(Al) (MA) significantly changes the morphologies of the MA and increases the surface area. The MA/RG-15% prepared at RG-to-MA mass ratio of 15% shows a PNP uptake rate 64% and 123% higher than MIL-68(Al) and reduced graphene oxide (RG), respectively. The hydrogen bond and pi-pi dispersion were considered to be the major driving force for the spontaneous and endothermic adsorption process for PNP removal. The adsorption kinetics, which was controlled by film-diffusion and intra-particle diffusion, was greatly influenced by solution pH, ionic strength, temperature and initial PNP concentration. The adsorption kinetics and isotherms can be well delineated using pseudo-second-order and Langmuir equations, respectively. The presence of phenol or isomeric nitrophenols in the solution had minimal influence on PNP adsorption by reusable MA/RG composite.
APA, Harvard, Vancouver, ISO, and other styles
10

Su, Lingcheng. "Soil contamination and plant uptake of metal pollutants released from Cu(In, Ga)Se₂ thin film solar panel and remediation using adsorbent derived from mineral waste material." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/552.

Full text
Abstract:
The Cu(In,Ga)Se2 (CIGS) thin-film solar panels (TFSPs) are widely used in integrated photovoltaic (PV) and solar power systems because of their perfect PV characteristics and ductility. However, the semiconductor layers of these panels contain potentially toxic metals. In this study, the potential environmental pollution arisen by CIGS TFSP treated as construction trash at the end of their useful life was examined. Acid extraction was used to simulate leaching toxicity followed by burying CIGS TFSP material in different soils, namely a synthetic soil, a Mollisol, and an Oxisol, to determine whether metal pollutants might be released into the soil. A vegetable, Brassica parachinensis L. H. Bariley (VegBrassica), was selected to grow in these polluted soils to investigate the uptake of metals and their bioaccumulation. The simulative remediation of contaminated soils was carried out using a remediation module created by the combination of activated carbon and modified mineral waste material (MMWM) in this research. The activated carbon derived from the waste biomass material was produced by an environmental friendly method, and the MMWM was obtained through a thermal dehydroxylation treatment. The physiochemical properties of MMWM, with focusing on mineral phase transformation, were related to the changes in surface morphology due to dehydroxylation occurred during the process of thermal treatment of MMWM samples, and the adsorption performances of metal (lead, Pb) and organic compound (methyl orange, MO) onto this newly modified MMWM were studied. Furthermore, an end-of-life treatment method was designed and proposed for harmless disposal of CIGS TFSP. Various metals, including Pb, zinc (Zn), nickel (Ni), chromium (Cr), gallium (Ga), copper (Cu), indium (In) and aluminum (Al) were found to be released into the soil and caused contamination when scrapped end-of-life CIGS TFSP were buried, and the rates of metal release changed with the variations of both the amounts of CIGS TFSP material in the soil and the soil properties. The increases in concentrations of heavy metals such as Zn, Cu, Ni, Ga, Pb, In, and Cr were correlated with the amounts of CIGS TFSP material added in soils. The Pollution Index and the Nemerow Contamination Index calculated from our results confirmed that, when buried, the CIGS TFSP material polluted the soil. Plants grew well in the synthetic soil and the Mollisol, but those in the Oxisol showed prominent signs of chlorosis and died after 30 days. The bioaccumulation factor (BF) and concentration of Zn were 3.61 and 296 mg/kg, respectively in VegBrassica grown in the synthetic soil with 10% (200 g to 2 kg of soil) of added CIGS TFSP, while the BF and concentration of In were 3.80 and 13.72 mg/kg, respectively in VegBrassica grown in the Mollisol, indicating that bioaccumulation occurred. The thermally treated MMWM samples showed morphological transformation mainly on surface based on the scanning electron microscopy (SEM) observations, and an increasing trend in BET specific surface area (SSA) from 120 to 500 ℃ followed by a decreasing trend up to 1000 ℃. Thermal modification had successfully improved Pb adsorption capacity up to 515 mg/g, corresponding to MMWM modified at 600 ℃ with an SSA of 6.5 m2/g. The MO adsorption capacity was also improved after thermal treatment of MMWM, which performed the best adsorption of 87.6 mg/g at 400 ℃. The adsorption of Pb and MO were mainly chemisorption and monolayer coverage, as pseudo-second-order model and Langmuir equation displayed good relationships of correlation for Pb and MO adsorption data. It is therefore indicated that the newly designed soil remediation modules could significantly remove metals from the contaminated soils. In summary, c
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "WASTE ADSORBENTS"

1

Advances in Wastewater Treatment I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901144.

Full text
Abstract:
The book presents new materials and methods for waste water treatments; including advanced oxidation processes, membrane technologies, detection and removal of heavy metals and organic compounds, and the use of nanomaterials, low cost adsorbents and bio flocculants.
APA, Harvard, Vancouver, ISO, and other styles
2

Advances in Wastewater Treatment I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901151.

Full text
Abstract:
The book presents new materials and methods for waste water treatments; including advanced oxidation processes, membrane technologies, detection and removal of heavy metals and organic compounds, and the use of nanomaterials, low cost adsorbents and bio flocculants.
APA, Harvard, Vancouver, ISO, and other styles
3

Ren, Jianwei, and Philiswa Nosizo Nomngongo. Waste PET-MOF-Cleanwater: Waste PET-Derived Metal-Organic Framework as Cost-Effective Adsorbents for Removal of Hazardous Elements from Polluted Water. UJ Press, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

May, Michael Lee. Preparation and laboratory evaluation of stationary-phase iron-oxide-based adsorbents for removal of metals from waste waters. 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

(Editor), José Miguel Loureiro, and Mykola T. Kartel (Editor), eds. Combined and Hybrid Adsorbents: Fundamentals and Applications (NATO Security through Science Series / NATO Security through Science Series C: Environmental Security). Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sen, Tushar Kanti. Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sen, Tushar Kanti. Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sen, Tushar Kanti. Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sen, Tushar Kanti. Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "WASTE ADSORBENTS"

1

Dhingra, Neha, Ngangbam Sarat Singh, Talat Parween, and Ranju Sharma. "Heavy Metal Remediation by Natural Adsorbents." In Modern Age Waste Water Problems, 233–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-08283-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sheikh, Md Sadiqul Islam, Md Mahinur Islam, Md Saddam Hossain, and Md Mominul Islam. "Polymeric Adsorbents for Toxic Waste Removal." In Specialty Polymers, 185–201. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003278269-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmad, Nafees, Saima Sultana, Mohammad Zain Khan, and Suhail Sabir. "Chitosan Based Nanocomposites as Efficient Adsorbents for Water Treatment." In Modern Age Waste Water Problems, 69–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-08283-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khan, Amjad Mumtaz, and Sajad Ahmad Ganai. "Removal and Recovery of Heavy Metal Ions Using Natural Adsorbents." In Modern Age Waste Water Problems, 251–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-08283-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lim, Soh-Fong, Siti Kartina Abdul Karim, S. N. David Chua, and Bee-Huah Lim. "Agricultural Waste-Derived Adsorbents for Decontamination of Heavy Metals." In Handbook of Environmental Engineering, 371–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55172-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Esfandian, Hossein, Amir Hoshang Taheri, Saeideh Kholghi Eshkalak, and Reza Katal. "Application of Adsorbents Prepared from Waste for the Removal of Heavy Metals from Water and Wastewater." In Handbook of Solid Waste Management, 1927–50. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4230-2_114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Esfandian, Hossein, Amir Hoshang Taheri, Saeideh Kholghi Eshkalak, and Reza Katal. "Application of Adsorbents Prepared from Waste for the Removal of Heavy Metals from Water and Wastewater." In Handbook of Solid Waste Management, 1–24. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7525-9_114-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manojkumar Danak, Vedant, and Yashawant P. Bhalerao. "Removing heavy metals from industrial wastewater using economically modified biopolymers and hydrogel adsorbents." In Novel Applications in Polymers and Waste Management, 207–22. Toronto ; New Jersey : Apple Academic Press, 2018.: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781315365848-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sarma, Jyotirmoy, Anannya Kalita, Puspa Sharma, Mousumi Bora, and Sanchayita Rajkhowa. "Removal of Organic Pollutants from Waste Water by Adsorption onto Rice Husk-Based Adsorbents, an Agricultural Waste." In Recent Trends in Wastewater Treatment, 287–313. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99858-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Phanthuwongpakdee, Jakkapon, Sandhya Babel, and Tatsuo Kaneko. "Natural Adsorbents for Removal of Different Iodine Species from Aqueous Environment: A Review." In Recent Trends in Waste Water Treatment and Water Resource Management, 171–98. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0706-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "WASTE ADSORBENTS"

1

Mohammed, Nuur Hani Bte, and Wan Zuhairi Wan Yaacob. "Remediation of AMD using industrial waste adsorbents." In THE 2016 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium. Author(s), 2016. http://dx.doi.org/10.1063/1.4966881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chan, K. C., and Christopher Y. H. Chao. "Improved Thermal Conductivity of 13X/CaCl2 Composite Adsorbent by CNT Embedment." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17168.

Full text
Abstract:
Adsorption cooling systems utilize the principle of adsorption to generate cooling effect. Composite adsorbents synthesized from zeolite 13X and CaCl2 have previously been shown to have a high adsorption capacity and high adsorption rate with lower desorption temperature where the adsorption capacity and adsorption rate are 420% and 122% of zeolite 13X under the same condition respectively. This results in more compact design and a lower temperature waste-heat source can be used. The system performance is, however, limited by the low thermal conductivity of the 13X/CaCl2 composite adsorbent which is common for many adsorbents. Due to the low thermal conductivity of the adsorbent, poor heat transfer and slow temperature change in the adsorbent bed lead to longer time for the adsorbent to achieve the adsorption/desorption temperature. This directly reduces the adsorption/desorption rate of the adsorbate on the adsorbent, such as water on zeolite, and results in lower system coefficient of performance (COP) and specific cooling power (SCP). It was proposed that embedding carbon nanotube (CNT) into the 13X/CaCl2 composite absorbents can increase the thermal conductivity of the adsorbent bed to improve the system performance. Thus, the properties of the multi-wall CNT (MWCNT) embedded zeolite 13X/CaCl2 composite adsorbents were investigated to find out the optimized composition for the cooling system. The material properties of the MWCNT embedded zeolite 13X/CaCl2 composite adsorbent were measured. The thermal conductivities of the MWCNT embedded 13X/CaCl2 composite adsorbents were predicted by developing a new theoretical model modified based on area contact model. The performance of the adsorption cooling system using zeolite 13X and MWCNT embedded composite adsorbent were studied numerically. It is found that the COP and SCP are improved by 3.6 and 26 times respectively. This results in a much more compact and energy efficient cooling system.
APA, Harvard, Vancouver, ISO, and other styles
3

Grimes, Chelsea. "Silica adsorbents for biofuel feedstock pretreatment." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/igmv2523.

Full text
Abstract:
Feedstock pretreatment is an essential component of the renewable fuels refining process however it can be quite challenging due to the variety of feedstock sources available. To overcome this challenge, Grace has developed multiple grades of silica adsorbents for removing phosphorus- and metal-based impurities from feedstocks which tend to foul equipment and poison catalysts at refining conditions. Due to its superior adsorption capacity, pretreatment with silica adsorbents allows refiners to protect their catalysts, extend their reactor cycles, minimize operational maintenance, and increase time on-line. Compared to traditional clay and DE adsorbents, Grace's synthetic silica adsorbents can help deliver higher productivity up to 2.5%, operational cost savings up to 90%, and up to 85% less solid waste generated by reducing spent filter cake disposal and associated feedstock losses.
APA, Harvard, Vancouver, ISO, and other styles
4

Nakaso, Koichi, Erfina Oktariani, Atsushi Noda, Kazuya Nakashima, Keisuke Tahara, Bing Xue, Agung Tri Wijayanta, and Jun Fukai. "Estimation of Performance of Absorption/Desorption System for Regenerating Waste Water From Industrial Process." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54875.

Full text
Abstract:
More reduction in energy consumption is requested to the industrial processes. In particular, large quantity of waste water at low temperature is released from chemical and steel processes. In this study, adsorption/desorption process of zeolite and water pair were selected to generate steam from water at low temperature. Contacting water liquid and zeolite directly, adsorption heat released from zeolite makes excess water evaporate. Basic experiments for adsorption/desorption process were carried out. First of all, adsorbents with different type were tested to find the candidate of the proposed system, and then suitable adsorbent was selected. From the basic adsorption experiment, generation of steam from the water liquid was confirmed by the proposed system. In the desorption process, hot dry gas was introduced to the adsorbent. The effect of gas temperature and its flow rate was investigated. The performance of the system was theoretically investigated based on overall heat and mass balances. As a result, the ratio of enthalpy of recovered steam of 140°C to input waste water of 80°C was around 6 when adsorption process was only considered. On the other hand, the ratio was 0.57 when waste heat was utilized for the desorption process. However if waste heat such as exhaust gas can be utilized for the desorption process, the ratio, that is, the efficiency would increase.
APA, Harvard, Vancouver, ISO, and other styles
5

Ruskova, Kamelia, Vessislava Toteva, and Liliya Manoilova. "Obtaining of Activated Carbon Adsorbents Based on Wood Waste Material via Chemical Activation." In 2020 III International Conference on High Technology for Sustainable Development (HiTech). IEEE, 2020. http://dx.doi.org/10.1109/hitech51434.2020.9363992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Salishcheva, Olesya, Yuliya Tarasova, Natalia Moldagulova, Igor Proskunov, and Vladimir Yustratov. "Investigation of efficiency of adsorption treatment of waste water using natural materials as adsorbents." In THE 2ND INTERNATIONAL SCIENTIFIC CONFERENCE «ECOSYSTEMS WITHOUT BORDERS - 2021». AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0105240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

OH, CHANG-GUN, SEON-KI SONG, JOO-IL PARK, JEONG-RANG KIM, MUN YONG, SANG KYUNG, and SON-KI IHM. "A STUDY ON THE ADSORPTION BEHAVIOR OF PHENOLIC WASTE WATEROVER THE HYPERCROSSLINKED POLYSTYRENIC ADSORBENTS." In Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Flayyih, Fatimah Hameed, and Luma Ahmed Mohammed Ali. "Removal of pesticide (trifluralin) by using toxic environmental waste as a natural low-cost adsorbents." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tan, Gang, Yongjie Xue, and Li Wan. "Phenol Adsorption onto Modified Industrial Solid Waste Adsorbents in the Presence of Cationic and Anionic Surfactant." In 2014 International Conference on Computer Science and Electronic Technology. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/iccset-14.2015.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Junfeng, and Wen-qiang Lu. "A Design of a Multiple-Level Magnetic Field Used for Driving Micro Magnetic Particles During a Dialysate Adsorption Process." In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6335.

Full text
Abstract:
Recently in our research studies, ferroferric oxide magnetic micro particles were used as magnetic seeds combining with adsorbent materials during post hemodialysis (HD) nutrition recovery process. The combined particles were designed as magnetic adsorbents to selectively take back nutritional substances from waste dialysate solution, and then, these substances can be further chemically released to blood. To allow a better adsorption performance, these particles should be trapped inside their working area. So, a gradient magnetic field was designed accordingly. Instead to use a permanent magnet which could accumulate magnetic particles, the field was produced by multiple-level magnetic solenoid coils. This paper outlined the design method for the multiple-level solenoid field. And then, the measurement results for the magnetic intensity at different axis locations inside the solenoid field were compared with the numerical computation results. The computation results also showed that, near the axis area of the multiple-level solenoid, the magnetic intensity is smoothly developed. This feature allows the easy movement of magnetic particles since an abrupt gradient tends to accumulate the particles.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "WASTE ADSORBENTS"

1

Kochen, R. L., and J. D. Navratil. Magnetic adsorbents for actinide and heavy metal removal from waste water. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10173970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Premuzic, E. T., M. S. Lin, T. H. Yen, and I. Yang. Biochemical Production of Adsorbents and Specialty Chemicals from Fossil Fuel Wastes. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/770451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography