Academic literature on the topic 'Warfare agents'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Warfare agents.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Warfare agents"

1

Ganesan, K., SK Raza, and R. Vijayaraghavan. "Chemical warfare agents." Journal of Pharmacy and Bioallied Sciences 2, no. 3 (2010): 166. http://dx.doi.org/10.4103/0975-7406.68498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thavaselvam, Duraipandian, and Rajagopalan Vijayaraghavan. "Biological warfare agents." Journal of Pharmacy and Bioallied Sciences 2, no. 3 (2010): 179. http://dx.doi.org/10.4103/0975-7406.68499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kamboj, Dev Vrat, Ajay Kumar Goel, and Lokendra Singh. "Biological Warfare Agents." Defence Science Journal 56, no. 4 (October 1, 2006): 495–506. http://dx.doi.org/10.14429/dsj.56.1915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shenoi, Rohit. "Chemical warfare agents." Clinical Pediatric Emergency Medicine 3, no. 4 (December 2002): 239–47. http://dx.doi.org/10.1016/s1522-8401(02)90036-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Geoghegan, James, and Jeffrey L. Tong. "Chemical warfare agents." Continuing Education in Anaesthesia Critical Care & Pain 6, no. 6 (December 2006): 230–34. http://dx.doi.org/10.1093/bjaceaccp/mkl052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chauhan, S., S. Chauhan, R. D’Cruz, S. Faruqi, K. K. Singh, S. Varma, M. Singh, and V. Karthik. "Chemical warfare agents." Environmental Toxicology and Pharmacology 26, no. 2 (September 2008): 113–22. http://dx.doi.org/10.1016/j.etap.2008.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sidell, Frederick R., and Jonathan Borak. "Chemical warfare agents: II. nerve agents." Annals of Emergency Medicine 21, no. 7 (July 1992): 865–71. http://dx.doi.org/10.1016/s0196-0644(05)81036-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spencer, R. C., and M. H. Wilcox. "Agents of biological warfare." Reviews in Medical Microbiology 4, no. 3 (July 1993): 138–43. http://dx.doi.org/10.1097/00013542-199307000-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Linan, Soohyoun Ahn, and David R. Walt. "Detecting Biological Warfare Agents." Emerging Infectious Diseases 11, no. 10 (October 2005): 1629–32. http://dx.doi.org/10.3201/eid1110.050269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Awaad, M. "Protection Against Chemical Warfare Agents." International Conference on Chemical and Environmental Engineering 7, no. 7 (May 1, 2014): 1. http://dx.doi.org/10.21608/iccee.2014.35464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Warfare agents"

1

Lee, Ching Ching. "Utilising phase transfer agents to enhance rapid detection of chemical warfare nerve agents." Thesis, Lee, Ching Ching (2021) Utilising phase transfer agents to enhance rapid detection of chemical warfare nerve agents. Masters by Research thesis, Murdoch University, 2021. https://researchrepository.murdoch.edu.au/id/eprint/64514/.

Full text
Abstract:
Methylphosphonic acid (MPA) is the final degradant of many chemical warfare nerve agents (CWAs). Its detection in environmental and biological samples is a potential indicator of nerve agent use. Due to its high polarity and low volatility, analysis using gas chromatography-mass spectrometry (GC-MS) requires the derivatisation of MPA into a more volatile and less polar species. Currently, to derivatise MPA, it is typically necessary to perform the time-consuming and error-inducing water removal process prior to derivatisation. Therefore, it is of paramount importance to develop alternate rapid derivatisation methods for MPA to reduce the turnaround time for its detection and analysis. Pilot studies undertaken at Murdoch University found that MPA could be derivatised without the removal of water via tert-butyldimethylsilylation using a two-phase aqueous/organic system. Although the reaction could be completed within 30 minutes, the derivatisation efficiency was found to be low. Therefore, this study aimed to improve the derivatisation efficiency of this method using phase transfer agents. Four phase transfer agents were tested (tetramethylammonium bromide, tetrabutylammonium bromide, tetrahexylammonium bromide and tetraoctylammonium bromide). Tetraoctylammonium bromide was discovered to significantly improve the efficiency of two-phase derivatisation in only half the time. Amount of phase transfer agent, reaction temperature and time were also optimised. Optimal derivatisation occurred in 15 minutes at 60 °C using 10 mol% of phase transfer agent. Initial attempts to quantify derivatisation efficiency using 31P-NMR to determine the concentration of MPA remaining in aqueous phase were unsuccessful. However, quantification of the derivative using GC-MS, revealed the efficiency of this two-phase phase transfer agent method was 30.25 ± 1.78%, a tenfold increase compared to the previous method. The qualitative detection limit of this phase transfer agent method was 1 ppm, which was yet another significant improvement from the initial 1000 ppm. Attempts were also made to isolate pure bis[tert-butyl(dimethyl)silyl] ester of MPA for the first time, but were terminated due to time constraint. However, high performance liquid chromatography (HPLC) separation results suggested that isolation of the derivative is possible.
APA, Harvard, Vancouver, ISO, and other styles
2

Beck, Jeremy M. "Organophosphorus nerve agent chemistry; interactions of chemical warfare agents and their therapeutics with acetylcholinesterase." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313416337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jeune, Gareth Huw. "An investigation into hydroxyl radical processes for the destruction of chemical warfare agents." Thesis, University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yaofang. "Elemental Detection with ICPMS - Implications from Warfare Agents to Metallomics." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1335463155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kern, Rory James. "Enzyme-based detoxification of organophosphorus neurotoxic pesticides and chemical warfare agents." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bacena, Dulay Samuel. "Development of electrochemical biosensors for the detection of biological warfare agents." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/279295.

Full text
Abstract:
En aquesta tesi, s’ha desenvolupat un sensitiu bio-sensor electroquímic, amb capacitat de multiplexió, simple, de baix cost i portable, per a la detecció ràpida i fiable d’agents de guerra biològica en diferents situacions com la seguretat nacional, operacions militars i seguretat en instal•lacions dels transports públics. En el desenvolupament de l’immuno-sensor es van explorar diferents superfícies químiques, utilitzant fragments d’anticossos o anticossos sencers per a la detecció de cèl•lules bacterianes. També es va explorar la detecció d’anticossos d’anti-Francisella tularensis en mostres de sèrum animal infectades amb tularemia. Els resultats van mostrar un bon grau de correlació en ésser comparats amb els obtinguts mitjançant mètodes ELISA. En el desenvolupament del bio-sensor d’ADN, es va dur a terme la detecció simultània de vuit (8) espècies virulentes, emprant un conjunt de sensors, amb diferents dissenys de sondes. El conjunt de bio-sensors i l’immuno-sensor van ser integrats amb micro-fluids localitzats en un dispositiu de testeig. Utilitzant un mètode de nano-plantilles (diferents fases de surfactant octaethylene glycol monohexadecyl ether) per a una millor distribució de les sondes, es va aconseguir millorar la sensibilitat i el límit inferior de detecció del bio-sensor d’ADN, millorant l’eficiència d’hibridació. Les superfícies modificades d’elèctrode d’or van ser avaluades mitjançant fluorescència i força atòmica microscòpica i electroquímica. En general, aquest treball constitueix una completa visió del desenvolupament de bio-sensors electroquímics per a la detecció de cèl•lules bacterianes de F. tularensis, anticossos anti-F. Tularensis, així com d’un conjunt de bio-sensors d’ADN multiplexats, altament sensitius i selectius per a la detecció de productes RCP.
n esta tesis, se desarrolló un sensitivo bio-sensor electroquímico, con capacidad de multiplexión, simple, de bajo coste y portable, para la detección rápida y fiable de agentes de guerra biológica en diferentes situaciones como la seguridad nacional, operaciones militares y seguridad en instalaciones de los transportes públicos. En el desarrollo del inmuno-sensor, se exploraron diferentes superficies químicas usando fragmentos de anticuerpos o anticuerpos enteros para la detección de células bacterianas. También se exploró la detección de anticuerpos de anti-Francisella tularensis en muestras de suero animal infectadas con tularemia. Los resultados mostraron un buen grado de correlación al ser comparados con los obtenidos mediante métodos ELISA. En el desarrollo del bio-sensor de ADN se llevó a cabo la detección simultánea de ocho (8) especies virulentas utilizando un conjunto de sensores, con diferentes diseños de sondas. El conjunto de bio-sensores i el inmuno-sensor fueron integrados con micro-fluidos localizados en un dispositivo de testeo. Usando un método de nano-plantillas (diferentes fases de surfactante octaethylene glycol monohexadecyl ether) para una mejor distribución de las sondas, se consiguió mejorar la sensibilidad y el límite inferior de detección del bio-sensor de ADN, mejorando la eficiencia de hibridación. Las superficies modificadas de electrodo de oro fueron evaluadas mediante fluorescencia y fuerza atómica microscópica y electroquímica. En general, este trabajo constituye una completa visión del desarrollo de bio-sensores electroquímicos para la detección de células bacterianas de F. tularensis, anticuerpos anti-F. Tularensis, así como de un conjunto de bio-sensores de ADN multiplexados altamente sensitivos y selectivos para la detección de productos RCP.
In this thesis, a simple, low cost, portable, multiplexing capable and sensitive electrochemical biosensor was developed for rapid and reliable detection of biowarfare agents for different situations like homeland security, military operations, public transportation securities such as airports, metro and railway stations. In the development of immunosensor, different surface chemistry using antibody fragments or whole antibodies were explored for bacterial cells detection. The detection of anti-Francisella tularensis antibodies in animal serum samples known to be infected with tularemia was also explored. The results obtained were compared to that obtained using ELISA methods with a good degree of correlation. In the development of multiplexed DNA biosensor, simultaneous detection of eight (8) virulent species using a sensor array was developed using different designs of capture probes. The developed multiplexed biosensor array and immunosensor for detecting bacterial cells were integrated with microfluidics housed in a tester set-up device. The search to improve sensitivity and lower limit of detection of a DNA biosensor was achieved using a nanotemplating method for a better probe distribution enhancing hybridisation efficiency. Different phases of the surfactant octaethylene glycol monohexadecyl ether were used as templates. Fluorescence and atomic force microscopy as well as electrochemistry were used to evaluate the modified surfaces of gold electrode. Overall, this work constitutes a complete overview of the development of electrochemical biosensors for the detection of bacterial cells of F. tularensis, anti-F. tularensis antibodies as well a highly sensitive and selective multiplexed DNA biosensor array for the detection of PCR products.
APA, Harvard, Vancouver, ISO, and other styles
7

Swartz, Jeffrey R. "Biological toxin warfare : threat, proliferation, and the effects of neutron energy on BTW agents /." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://edocs.nps.edu/npspubs/scholarly/theses/1995/Sep/95Sep_Swartz.pdf.

Full text
Abstract:
Thesis (M.S. in Systems Technology (Scientific and Technical Intelligence)) Naval Postgraduate School, September 1995.
"September 1995." Thesis advisor(s): K.E. Woehler, Peter Lavoy. Bibliography: p. 73-74. Also available online.
APA, Harvard, Vancouver, ISO, and other styles
8

Price, Sarah Ellen. "Ion mobility and mass spectrometric investigations of organophosphates related to chemical warfare agents and pesticides." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1027/.

Full text
Abstract:
A commercial Ion Mobility Spectrometer that is designed to detect Chemical Warfare Agents (CWAs), is modified by the addition of a second ion gate, and connected to a commercial Ion Trap Mass Spectrometer (ITMS). The addition of the second gate allows selection of individual ion mobility peaks for m/z analysis in the ITMS. This was demonstrated with the organophosphorus ester ions (CWA nerve gas simulants). The ITMS was used to perform isolation and fragmentation of the CWA simulants ions produced in the IMS. For the organophosphates dimethyl methylphosphonate, diethyl methylphosphonate and diisopropyl methylphosphonate, two ion mobility peaks were observed, which are shown to be the ammoniated monomer and ammoniated dimer ions. Using an ElectroSpray Ionisation (ESI) - ITMS, the fragmentation pathway of dimethyl ethylphosphonate (DMEP) is investigated. The isotopomers of DMEP have unusual fragmentations, and density functional theory calculations are used to aid in the interpretation of the mechanisms involved in these fragmentations. Of note, it is shown that entropy must be taken into consideration, and hence the free energy of the final transition involved in the mechanism, so that the true rate-limiting steps can be determined. Preliminary fragmentations using ESI-ITMS of eighteen other organophosphorus esters have been undertaken. These give an insight as to which fragmentations will require further investigations involving Density Functional Theory (DFT) calculations and deuterated isotopomers to fully understand the mechanisms involved.
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, Ashish C. "Improving the survivability of agents in a first-person shooter urban combat simulation by incorporating military skills." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/a_singh_111607.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chapleski, Jr Robert Charles. "Computational Investigations at the Gas-Surface Interface: Organic Surface Oxidation and Hydrolysis of Chemical Warfare Agents and Simulants." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77514.

Full text
Abstract:
Motivated by recent experiments in gas-surface chemistry, we report our results from computational investigations of heterogeneous systems relevant to atmospheric chemistry and protection against chemical weapons. To elucidate findings of ultra-high vacuum experiments that probe the oxidation of carbon-carbon double bonds on model surfaces, we used electronic structure and QM/MM methods to study the reaction of ozone with C60-fullerene and the products of nitrate addition to a vinyl-terminated self-assembled monolayer. In the first system, we followed a reaction pathway beginning with primary ozonide formation through the formation of stable products. Theoretical vibrational spectra were used to identify a ketene product in prior experimental work. Next, through the construction of a multilayer model for the initial addition product of a nitrate radical to a chain embedded within a self-assembled monolayer, we report theoretical spectra that are consistent with experimental results. We then examined the fundamentals of the hydrolysis mechanism for nerve agents by a catalyst of interest in the development of filtration materials for chemical-warfare-agent defense. By following the gas-surface reaction pathway of the nerve agent Sarin on the Lindqvist polyoxoniobate Cs8Nb6O19, we determined that the rate-limiting step is the transfer of a proton from an adsorbed water molecule to the niobate surface, concomitant with the nucleophilic addition of the nascent hydroxide to the phosphorus atom in Sarin. Our results support a general base hydrolysis mechanism, though high product-adsorption energies suggest that thermal treatment of the system is required to fully regenerate the catalyst. We report similar mechanisms for the simulants dimethyl methylphosphonate and dimethyl chlorophosphate, though the latter may serve as a better simulant in studies of this type. Finally, an investigation of Sarin hydrolysis with solvated Cs8Nb6O19 shows an increase in the rate-limiting barrier relative to the gas-surface system, revealing the role of Cs counterions in the reaction. Then, we further increased explicit solvation to model the homogeneous solution-phase reaction, finding a different mechanism in which a water molecule adds to phosphorus in the rate-limiting step and protonation of the niobate surface occurs in a subsequent barrierless step. By examining the rate-limiting barrier for protonation, we suggest that specific base hydrolysis is also likely in the homogeneous system.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Warfare agents"

1

Marrs, Timothy C., Robert L. Maynard, and Frederick R. Sidell, eds. Chemical Warfare Agents. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470060032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

(Sweden), Försvarets forskningsanstalt, ed. Biological warfare agents. Stockholm: Liber, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

M, Somani Satu, ed. Chemical warfare agents. San Diego: Academic Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giannakoudakis, Dimitrios A., and Teresa J. Bandosz. Detoxification of Chemical Warfare Agents. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70760-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ellison, D. Hank. Handbook of chemical and biological warfare agents. 2nd ed. Boca Raton: Taylor & Francis, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ellison, D. Hank. Handbook of chemical and biological warfare agents. 2nd ed. Boca Raton, FL: CRC Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Warfare, Working Party on Chemical and Biological. Medical effects of chemical warfare agents. Bodmin: Working Party on Chemical and Biological Warfare, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

L, Maynard Robert, and Sidell Frederick R, eds. Chemical warfare agents: Toxicology and treatment. Chichester: Wiley, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

service), ScienceDirect (Online, ed. Handbook of toxicology of chemical warfare agents. London: Academic Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

D, Tuorinsky Shirley, United States. Dept. of the Army. Office of the Surgeon General., and Borden Institute (U.S.), eds. Medical aspects of chemical warfare. Falls Church, Va: Office of the Surgeon General, United States Army, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Warfare agents"

1

Wormser, Uri, Yoram Finkelstein, Elena Proscura, Berta Brodsky, and Michael Aschner. "Chemical Warfare Agents." In Oxidative Stress in Applied Basic Research and Clinical Practice, 369–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19096-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuča, Kamil, and Miroslav Pohanka. "Chemical warfare agents." In Experientia Supplementum, 543–58. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-7643-8338-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pohanka, Miroslav, and Kamil Kuča. "Biological warfare agents." In Experientia Supplementum, 559–78. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-7643-8338-1_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmiermund, Torsten. "Chemical Warfare Agents." In The Chemistry Knowledge for Firefighters, 621–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64423-2_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Travers, Stéphane. "Warfare Chemical Agents." In Disaster Medicine Pocket Guide: 50 Essential Questions, 127–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00654-8_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spiers, Edward M. "Chemical Warfare Agents." In Chemical Weaponry, 1–19. London: Palgrave Macmillan UK, 1989. http://dx.doi.org/10.1007/978-1-349-19881-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sanderson, H. "Chemical Warfare Agents." In Encyclopedia of Environmental Health, 587–96. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-444-52272-6.00386-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

D’Agostino, P. A. "CHEMICAL WARFARE AGENTS." In Encyclopedia of Analytical Science, 495–505. Elsevier, 2005. http://dx.doi.org/10.1016/b0-12-369397-7/00068-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Greenbaum, Elias, Charlene Sanders, and Miguel Rodriguez. "Chemical Warfare Agents." In Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition - Six Volume Set (Print Version), 842–55. CRC Press, 2008. http://dx.doi.org/10.1201/noe0849396397.ch74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Witkiewicz, Zygfryd, and Stanis_aw Popiel. "Chemical Warfare Agents." In Encyclopedia of Chromatography, Third Edition (Print Version). CRC Press, 2009. http://dx.doi.org/10.1201/noe1420084597.ch75.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Warfare agents"

1

Dong, Liqiang, Jinglin Kong, Weiwei Liu, Liu Yang, Molin Qin, and Wenxiang Fu. "Fast detection of chemical warfare agent simulants by photoacoustic spectroscopy." In Optical Spectroscopy and Applications, edited by Zongyin Yang, 4. SPIE, 2024. https://doi.org/10.1117/12.3045779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

White, Stephanie, Philip Miller, Marieke Sorge, Clayton Curtis, Alexander Hare, Joshua Whiting, Jason Sammon, and William C. Corbin. "Colorimetric/Electrical Sensing of Chemical Warfare Agent Surrogates with Polydiacetylenes." In 2024 IEEE SENSORS, 1–4. IEEE, 2024. https://doi.org/10.1109/sensors60989.2024.10785078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Beriwal, Madhu, and Barbara Cochran. "Protecting communities from chemical warfare agents." In 2013 IEEE International Conference on Technologies for Homeland Security (HST). IEEE, 2013. http://dx.doi.org/10.1109/ths.2013.6699041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Ang, Hussein A. Abbass, and Ruhul Sarker. "Evolving agents for network centric warfare." In the 2005 workshops. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1102256.1102303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ewing, Kenneth J., Jas Sanghera, Ishwar D. Aggarwal, and Myron J. Block. "Kromoscopy for detection of chemical warfare agents." In Optics East, edited by Arthur J. Sedlacek III, Steven D. Christesen, Tuan Vo-Dinh, and Roger J. Combs. SPIE, 2004. http://dx.doi.org/10.1117/12.575636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Comini, E., A. Ponzoni, M. Ferroni, G. Faglia, and G. Sberveglieri. "SnO2 nanowires for detection of chemical warfare agents." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Howle, Chris R., Rhea J. Clewes, Keith Ruxton, Gordon Robertson, William Miller, Graeme P. A. Malcolm, Gareth T. Maker, Rick Cox, Brad Williams, and Matt Russell. "Stand-off detection of liquid chemical warfare agents." In Optical Sensors. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/sensors.2013.sw3b.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kullander, Fredrik, Pär Wästerby, and Lars Landström. "Ultraviolet Raman scattering from persistent chemical warfare agents." In SPIE Defense + Security, edited by Augustus W. Fountain. SPIE, 2016. http://dx.doi.org/10.1117/12.2223601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, Ashok, Sulatha Dwarakanath, John G. Bruno, and L. D. Stephenson. "RECEPTOR-CONJUGATED NANOPARTICLES TO DETECT BIOLOGICAL WARFARE AGENTS." In Proceedings of the 24th US Army Science Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772572_0063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pushkarsky, Michael B., Michael E. Webber, Tyson MacDonald, and C. Kumar N. Patel. "High-sensitivity photoacoustic detection of chemical warfare agents." In European Symposium on Optics and Photonics for Defence and Security, edited by John C. Carrano and Arturas Zukauskas. SPIE, 2004. http://dx.doi.org/10.1117/12.579102.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Warfare agents"

1

Carron, Keith, Aaron Strickland, and Bryan Ray. Plasmonic Nanosensors for Chemical Warfare Agents. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada581804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raushel, Frank M. Enzymatic Detoxification of Chemical Warfare Agents. Fort Belvoir, VA: Defense Technical Information Center, December 2003. http://dx.doi.org/10.21236/ada421843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ong, Kwok Y., Terri Longworth, and Jacob L. Barnhouse. Domestic Preparedness Program: Testing of APD2000 Chemical Warfare Agent Detector Against Chemical Warfare Agents Summary Report. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada393519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Somani, Satu M. 35TH Conference Chemical Warfare Agents: Therapeutic Measures. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada413461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Longworth, Terri L., Kwok Y. Ong, and Jacob L. Barnhouse. Domestic Preparedness Program: Testing of M90-D1-C Chemical Warfare Agent Detector Against Chemical Warfare Agents Summmary Report. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada400064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Langry, K., and J. Horn. Chemiluminescence assay for the detection of biological warfare agents. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/15013394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cload, Sharon. Novel Biosensors for the Detection of Biological Warfare Agents. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada415590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Willis, Matthew P., Lawrence Procell, John Davies, and Brent A. Mantooth. Reactivity of Dual-Use Decontaminants with Chemical Warfare Agents. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1012762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaseman, Derrick. Earth’s Field NMR for Detection of Chemical Warfare Agents. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1699433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ASHBY, CAROL I., TIMOTHY J. SHEPODD, WILLIAM G. YELTON, and DAVID J. MURON. Rapid Ultrasensitive Chemical-Fingerprint Detection of Chemical and Biochemical Warfare Agents. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/808603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography