Academic literature on the topic 'Wannier function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wannier function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wannier function"
Panayotaros, Panayotis. "Discrete Nonlinear Schrödinger Systems for Periodic Media with Nonlocal Nonlinearity: The Case of Nematic Liquid Crystals." Applied Sciences 11, no. 10 (May 13, 2021): 4420. http://dx.doi.org/10.3390/app11104420.
Full textKarabulut, Hasan. "A Wannier function made from distributed Gaussians." Journal of Mathematical Physics 46, no. 7 (July 2005): 073504. http://dx.doi.org/10.1063/1.1946529.
Full textAlbert, J. P., C. Jouanin, D. Cassagne, and D. Bertho. "Generalized Wannier function method for photonic crystals." Physical Review B 61, no. 7 (February 15, 2000): 4381–84. http://dx.doi.org/10.1103/physrevb.61.4381.
Full textFitzhenry, P., M. M. M. Bilek, N. A. Marks, N. C. Cooper, and D. R. McKenzie. "Wannier function analysis of silicon carbon alloys." Journal of Physics: Condensed Matter 15, no. 2 (December 18, 2002): 165–73. http://dx.doi.org/10.1088/0953-8984/15/2/316.
Full textMcCulloch, D. G., A. R. Merchant, N. A. Marks, N. C. Cooper, P. Fitzhenry, M. M. M. Bilek, and D. R. McKenzie. "Wannier function analysis of tetrahedral amorphous networks." Diamond and Related Materials 12, no. 10-11 (October 2003): 2026–31. http://dx.doi.org/10.1016/s0925-9635(03)00196-1.
Full textWilkinson, M. "Generalized Wannier function and renormalization of Harper's equation." Journal of Physics A: Mathematical and General 27, no. 24 (December 21, 1994): 8123–48. http://dx.doi.org/10.1088/0305-4470/27/24/021.
Full textMizel, A., and M. L. Cohen. "Wannier function analysis of InP nanocrystals under pressure." Solid State Communications 113, no. 4 (December 1999): 189–93. http://dx.doi.org/10.1016/s0038-1098(99)00466-4.
Full textBusch, Kurt, Sergei F. Mingaleev, Antonio Garcia-Martin, Matthias Schillinger, and Daniel Hermann. "The Wannier function approach to photonic crystal circuits." Journal of Physics: Condensed Matter 15, no. 30 (July 18, 2003): R1233—R1256. http://dx.doi.org/10.1088/0953-8984/15/30/201.
Full textNAKAMURA, Kazuma. "First-principles Calculations for Polarization and Wannier Function." Hyomen Kagaku 29, no. 7 (2008): 432–36. http://dx.doi.org/10.1380/jsssj.29.432.
Full textBu, Xiangtian, and Shudong Wang. "Electron–phonon scattering and mean free paths in D-carbon." Physical Chemistry Chemical Physics 22, no. 7 (2020): 4010–14. http://dx.doi.org/10.1039/c9cp06504k.
Full textDissertations / Theses on the topic "Wannier function"
Stangel, Anders. "Wannier functions from Bloch orbitals in solids." Thesis, Uppsala universitet, Materialteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202140.
Full textNacbar, Denis Rafael [UNESP]. "Cálculo de funções de Wannier eletrônicas para aplicações em ciência dos materiais." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/88467.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
São calculadas e analisadas as funções de Wannier de localização máxima para elétrons em cristais unidimensionais. Essas funções formam uma base apropriada para descrever estados eletrônicos em materiais sólidos. Para cristais com simetria de inversão é utilizado o método desenvolvido por Bruno-Alfonso e Hai [J. Phys: Condensed Matter 15, 6701 (2003)]. Cada banda de energia é classificada segundo a simetria das funções de Bloch nos pontos 'gama' e 'qui' da zona de Brillouin. Para cada classe de banda a fase das funções de Bloch é escolhida para que as funções de Wannier tenham localização máxima. A simetria da últimas é determinda pelo tipo de banda. São apresentados resultados analíticos e numéricos para o modelo de Kronig-Penney obtidos através da técnica da matriz de transferência e do método tight binding. Posteriormente, apresenta-se um novo procedimento para calcular funções de Wannier de localização máxima em cristais sem simetria de inversão. Para isso são utilizadas técnicas do Cálculo Variacional. A teoria é aplicada para obter e analisar funções de Wannier de elétrons de condução em duas superredes de materiais semicondutores. Uma dessas estruturas tem simetria de inversão e a outra, não. O comportamento assintótico das funções de Wannier é predito analiticamente e verificado através dos cálculos numéricos. As funções de Wannier de localização máxima mostram um decaimento exponencial multiplicado por um decaimento em lei de potência, ambos isotrópicos. O mesmo acontece com parte das funções que não tem localização máxima. Porém, há outras que que apresentam decaimento exponecial reduzido e anisotropia em seu decaimento em lei de potência. Esses resultados novos são explicados levando em conta pontos de ramificação da continuação analítica das funções de Bloch sobre o plano de vetor de onda complexo.
The maximally localized Wannier functions of electrons in one-dimensional crystals are calculated and analyzed. Those functions form a suitable basis to describe localized states in solid materials. For crystals with inversion symmetry we use the procedure of Bruno-Alfonso and Hai [J. Phys: Condensed Matter 15, 6701 (2003)]. Each energy band is classified according to the symmetry of the Bloch functions at the points 'gama' e 'qui' of the Brillouin zone. For each band class, the phase of the Bloch functions in chosen to give the maximally localized Wannier functions. The symmmetry of those functions depends on the band class. Analytical and numerical results are presented for the Kronig-Penney model. Those result are obtained through the tight-binding method or a transfer-matrix technique. A new procedure to calculate the maximally localized Wannier functions in crystals without inversion symmetry is established. This involves techniques of the Variational Calculus. The theory is applied to obtain the Wannier functions of conduction electrons in superlattices of semiconductor materials. One of the superlattices presents inversion symmetry, but the other does not. The asymptotic behavior of the Wannier functions is predicted analytically and verified through numerical calculations. The maximally localized Wannier functions display an isotropic exponetial decal times an isotropic power-law decay. The same applies to a class of non-optimal Wannier functions. However, there is another class of non-optimal Wannier functions with reduced exponential decay and anisotropic power-law decay. Such new results are explained by taking into account branch points in the analytical continuation of the Bloch functions into the plane of complex wave vector.
Nacbar, Denis Rafael. "Cálculo de funções de Wannier eletrônicas para aplicações em ciência dos materiais /." Bauru : [s.n.], 2007. http://hdl.handle.net/11449/88467.
Full textBanca: Guo-Qiang Hai
Banca: Aguinaldo Robinson de Souza
O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp
Resumo: São calculadas e analisadas as funções de Wannier de localização máxima para elétrons em cristais unidimensionais. Essas funções formam uma base apropriada para descrever estados eletrônicos em materiais sólidos. Para cristais com simetria de inversão é utilizado o método desenvolvido por Bruno-Alfonso e Hai [J. Phys: Condensed Matter 15, 6701 (2003)]. Cada banda de energia é classificada segundo a simetria das funções de Bloch nos pontos 'gama' e 'qui' da zona de Brillouin. Para cada classe de banda a fase das funções de Bloch é escolhida para que as funções de Wannier tenham localização máxima. A simetria da últimas é determinda pelo tipo de banda. São apresentados resultados analíticos e numéricos para o modelo de Kronig-Penney obtidos através da técnica da matriz de transferência e do método tight binding. Posteriormente, apresenta-se um novo procedimento para calcular funções de Wannier de localização máxima em cristais sem simetria de inversão. Para isso são utilizadas técnicas do Cálculo Variacional. A teoria é aplicada para obter e analisar funções de Wannier de elétrons de condução em duas superredes de materiais semicondutores. Uma dessas estruturas tem simetria de inversão e a outra, não. O comportamento assintótico das funções de Wannier é predito analiticamente e verificado através dos cálculos numéricos. As funções de Wannier de localização máxima mostram um decaimento exponencial multiplicado por um decaimento em lei de potência, ambos isotrópicos. O mesmo acontece com parte das funções que não tem localização máxima. Porém, há outras que que apresentam decaimento exponecial reduzido e anisotropia em seu decaimento em lei de potência. Esses resultados novos são explicados levando em conta pontos de ramificação da continuação analítica das funções de Bloch sobre o plano de vetor de onda complexo.
Abstract: The maximally localized Wannier functions of electrons in one-dimensional crystals are calculated and analyzed. Those functions form a suitable basis to describe localized states in solid materials. For crystals with inversion symmetry we use the procedure of Bruno-Alfonso and Hai [J. Phys: Condensed Matter 15, 6701 (2003)]. Each energy band is classified according to the symmetry of the Bloch functions at the points 'gama' e 'qui' of the Brillouin zone. For each band class, the phase of the Bloch functions in chosen to give the maximally localized Wannier functions. The symmmetry of those functions depends on the band class. Analytical and numerical results are presented for the Kronig-Penney model. Those result are obtained through the tight-binding method or a transfer-matrix technique. A new procedure to calculate the maximally localized Wannier functions in crystals without inversion symmetry is established. This involves techniques of the Variational Calculus. The theory is applied to obtain the Wannier functions of conduction electrons in superlattices of semiconductor materials. One of the superlattices presents inversion symmetry, but the other does not. The asymptotic behavior of the Wannier functions is predicted analytically and verified through numerical calculations. The maximally localized Wannier functions display an isotropic exponetial decal times an isotropic power-law decay. The same applies to a class of non-optimal Wannier functions. However, there is another class of non-optimal Wannier functions with reduced exponential decay and anisotropic power-law decay. Such new results are explained by taking into account branch points in the analytical continuation of the Bloch functions into the plane of complex wave vector.
Mestre
Eichelhardt, Frank. "Wannier-Function based Scattering-Matrix Formalism for Photonic Crystal Circuitry." [S.l. : s.n.], 2009. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000010434.
Full textHermann, Daniel. "Wannier-Function based Scattering-Matrix Formalism for Photonic Crystal Circuitry." [S.l. : s.n.], 2008. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000009666.
Full textSivadas, Nikhil. "First-Principles and Wannier-Function-Based Study of Two-Dimensional Electronic Systems." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/990.
Full textHardrat, Björn [Verfasser]. "Ballistic transport in one-dimensional magnetic nanojunctions: A first-principles Wannier function approach / Björn Hardrat." Kiel : Universitätsbibliothek Kiel, 2012. http://d-nb.info/1028798954/34.
Full textMerchant, Alexander Raymond. "An investigation of carbon nitride." Thesis, The University of Sydney, 2001. http://hdl.handle.net/2123/832.
Full textMerchant, Alexander Raymond. "An investigation of carbon nitride." University of Sydney. Physics, 2001. http://hdl.handle.net/2123/832.
Full textBernasconi, Leonardo. "Interpretation of the electronic structure in condensed phase calculatioons." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249511.
Full textBooks on the topic "Wannier function"
Thygesen, K. S., and A. Rubio. Correlated electron transport in molecular junctions. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.23.
Full textElbe, Martin, ed. Die Gesundheit des Militärs. Nomos Verlagsgesellschaft mbH & Co. KG, 2020. http://dx.doi.org/10.5771/9783748907459.
Full textBook chapters on the topic "Wannier function"
Hamaguchi, Chihiro. "Wannier Function and Effective Mass Approximation." In Basic Semiconductor Physics, 73–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03303-2_3.
Full textHamaguchi, Chihiro. "Wannier Function and Effective Mass Approximation." In Basic Semiconductor Physics, 65–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04656-2_3.
Full textHamaguchi, Chihiro. "Wannier Function and Effective Mass Approximation." In Graduate Texts in Physics, 125–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66860-4_3.
Full textAlbert, J. P., C. Jouanin, D. Cassagne, and D. Monge. "Tight-Binding Wannier Function Method for Photonic Band Gap Materials." In Photonic Crystals and Light Localization in the 21st Century, 545–53. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0738-2_39.
Full textEschrig, Helmut. "Wannier Functions." In Optimized LCAO Method and the Electronic Structure of Extended Systems, 73–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-02562-8_4.
Full textKohn, Walter. "Density Functional Theory and Generalized Wannier Functions." In Condensed Matter Theories, 13–16. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2934-7_2.
Full textAmbrosetti, Alberto, and Pier Luigi Silvestrelli. "Introduction to Maximally Localized Wannier Functions." In Reviews in Computational Chemistry, 327–68. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119148739.ch6.
Full textPisante, Adriano. "Maximally localized Wannier functions: existence and exponential localization." In Geometric Partial Differential Equations proceedings, 227–50. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-473-1_12.
Full textO’Regan, David Daniel. "Projector Self-Consistent DFT+U Using Nonorthogonal Generalised Wannier Functions." In Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems, 65–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23238-1_3.
Full textFrempong-Mireku, P., and K. J. K. Moriarty. "Kramers and Wannier V-Matrices for the Partition Functions of the Ising Model." In Maple V: Mathematics and its Applications, 97–104. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0263-9_12.
Full textConference papers on the topic "Wannier function"
Mack, P., K. Busch, and Dmitry N. Chigrin. "Additional Basis Functions for the Photonic Wannier Function Method." In THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2009): Proceedings of the 2nd International Workshop. AIP, 2009. http://dx.doi.org/10.1063/1.3253885.
Full textLeung, K. M. "Localized defects in photonic crystals: a Green’s function formalism." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tuz26.
Full textSihi, Antik, Sohan Lal, and Sudhir K. Pandey. "Studying the hopping parameters of half-Heusler NaAuS using maximally localized Wannier function." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028934.
Full textWolff, Christian, Kurt Busch, and Dmitry N. Chigrin. "Generation of 3D Wannier Functions." In THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2009): Proceedings of the 2nd International Workshop. AIP, 2009. http://dx.doi.org/10.1063/1.3253901.
Full textHazeghi, Aryan, and Sina Khorasani. "Wannier functions for surface plasmon polaritons." In SPIE OPTO, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2011. http://dx.doi.org/10.1117/12.872175.
Full textMuradoglu, M. S., and Alireza R. Baghai-Wadji. "Construction of Wannier functions in phononic structures." In Smart Materials, Nano-and Micro-Smart Systems, edited by Jung-Chih Chiao, Alex J. Hariz, David V. Thiel, and Changyi Yang. SPIE, 2008. http://dx.doi.org/10.1117/12.814452.
Full textMuradoglu, M. S., and A. R. Baghai-Wadji. "On the anatomy of Wannier functions in photonic structures." In 2008 4th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS). IEEE, 2008. http://dx.doi.org/10.1109/uwbus.2008.4669348.
Full textMarzari, Nicola, and David Vanderbilt. "Maximally-localized Wannier functions in perovskites: Cubic BaTiO[sub 3]." In The 5th Williamsburg workshop on first-principles calculations for ferroelectrics. AIP, 1998. http://dx.doi.org/10.1063/1.56269.
Full textBaghai-Wadji, Alireza, and Andrew Smith. "On the Customized Construction of Periodic Basis Functions: Towards Designing Maximally-locallized Wannier Functions." In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9886864.
Full textMacek, J. H. "Wave functions for double electron escape and Wannier-type threshold laws." In The fourteenth international conference on the application of accelerators in research and industry. AIP, 1997. http://dx.doi.org/10.1063/1.52393.
Full text