Academic literature on the topic 'Vuza canon'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vuza canon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vuza canon"

1

Fabien Lévy. "Three Uses of Vuza Canons." Perspectives of New Music 49, no. 2 (2011): 23. http://dx.doi.org/10.7757/persnewmusi.49.2.0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fabien Lvy. "Three Uses of Vuza Canons." Perspectives of New Music 49, no. 2 (2011): 23–31. http://dx.doi.org/10.1353/pnm.2011.0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Annisa, Salma. "Studi Pemetaan Sistematis: Strategi Employer Branding dalam Keberlanjutan Organisasi di Era VUCA." JURNAL MANAJEMEN DAN BISNIS SRIWIJAYA 19, no. 3 (March 4, 2022): 163–76. http://dx.doi.org/10.29259/jmbs.v19i3.15666.

Full text
Abstract:
Volatility, Uncertainty, Complexity, Ambiguity melanda dunia bisnis. Untuk dapat terus bertahan, setiap organisasi berlomba-lomba dalam mendapatkan talenta terbaik sebagai aset utama organisasi (the war for talent). Hal tersebut membuat tugas organisasi menarik calon talenta potensial menjadi lebih sulit dilakukan sehingga diperlukannya strategi employer branding sebagai keunggulan kompetitif yang dapat organisasi tawarkan. Artikel ini bertujuan untuk memberikan gambaran umum hasil pemetaan sistematis kajian employer branding. Penelitian ini merupakan studi sekunder menggunakan metode systematic mapping study (SMS) Berdasarkan hasil pemetaan sistematis, tren publikasi atas kajian employer branding masih sedikit dilakukan. Publikasi employer branding baru dimulai dari 2011 dan memiliki tren tertinggi pada tahun 2021. Negara yang mendominasi publikasi adalah dari Eropa, yaitu Germany. Pendekatan yang paling banyak digunakan adalah pendekatan kuantitatif dengan metode survei. Hal tersebut sesuai dengan fokus terbanyak yang diteliti, yaitu mengenai employer branding identification yang bertujuan untuk mengetahui hubungan sebab akibat dari employer branding dengan berbagai variabel lainnya. Jenis penelitian terbanyak yang diteliti adalah evaluation research dengan fokus terbayak adalah institusi karena mahasiswa tingkat akhir dianggap sebagai calon tenaga kerja potensial bagi setiap organisasi. Hasil penelitian pemetaan sistematis ini memberikan temuan bahwa penelitian mengenai konsep employer branding masih sangat perlu untuk dikembangkan. Penelitian dengan jenis phyloshopical research dan metode grounded theory masih sangat sedikit dilakukan. Dengan pentingnya konsep employer branding bagi keberlanjutan organisasi di masa depan, kajian mengenai employer branding tentu akan lebih banyak dan dikembangkan ke depannya
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Vuza canon"

1

LANZAROTTO, GRETA. "EXTENDED VUZA CANONS." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/393094.

Full text
Abstract:
In questa tesi ci occupiamo di Canoni Ritmici a Mosaico, che sono composizioni contrappuntistiche puramente ritmiche. I canoni nella musica hanno una tradizione molto lunga; tra questi emergono i canoni ritmici a mosaico (cioè, canoni tali che, dato un tempo, ad ogni battito suona esattamente una voce). Solo nel secolo scorso, a partire dall'analogo problema della fattorizzazione di gruppi abeliani finiti, sono stati studiati i canoni ritmici a mosaico aperiodici: si tratta di canoni che tassellano un certo intervallo di tempo in cui ciascuna voce (voce interna) suona su una sequenza aperiodica di battiti, e anche la sequenza dei battiti iniziali di ogni voce (voce esterna) è aperiodica. Dal punto di vista musicale, l'articolo fondamentale è stato probabilmente quello in quattro parti scritto da D.T. Vuza tra il 1991 e il 1993, mentre la controparte matematica del problema è stata studiata anche prima, ad esempio, da de Bruijn, Sands, ecc., e successivamente, ad esempio, da Coven e Meyerowitz, Jedrzejewski, Amiot, Andreatta, ecc. Non è stata ancora stabilita una teoria approfondita delle condizioni di esistenza e della struttura dei canoni ritmici a mosaico aperiodici. In questa tesi, cerchiamo di dare un contributo a questo affascinante campo. Nel capitolo 2, presentiamo i canoni ritmici a mosaico da un punto di vista matematico e algebrico, concentrandoci sulla loro rappresentazione polinomiale e riportando i risultati fondamentali noti in letteratura. Nel capitolo 3 ci occupiamo di canoni ritmici aperiodici, cioè di canoni in cui in entrambi i ritmi non vi sono strutture interne ripetute: né il ritmo interno né quello esterno si ottengono come ripetizione di un ritmo più breve. Da un punto di vista matematico, sono i canoni più interessanti in quanto diventano un possibile approccio per risolvere la congettura di Fuglede sui domini spettrali. Se viene fornito uno degli insiemi, diciamo $A$, è noto che il problema di trovare un complementare $B$ non ha, in generale, una soluzione univoca. È molto facile trovare canoni a mosaico in cui almeno uno degli insiemi è periodico, cioè è costruito ripetendo un ritmo più breve. Nel Capitolo 4 ci occupiamo della realizzazione di due algoritmi il cui scopo è trovare il ritmo complementare di un dato ritmo aperiodico in un certo periodo $n$. Per enumerare tutti i canoni a mosaico aperiodici, bisogna l’ostacolo della dimensione combinatoria del dominio che diventa ben presto enorme. I principali contributi all'approccio algoritmico al problema sono il modello ILP (Integer Linear Programming) e la codifica SAT per risolvere il problema dei complementari aperiodici. Utilizzando un moderno solutore SAT, siamo stati quindi in grado di calcolare l'elenco completo dei complementari aperiodici di alcune classi di ritmi di Vuza per periodi n = {180, 420, 900}.
In this thesis, we deal with Tiling Rhythmic Canons, which are purely rhythmic contrapuntal compositions. Canons in music have a very long tradition; among these, a few cases of tiling rhythmic canons (i.e., canons such that, given a fixed tempo, at every beat exactly one voice is playing) have emerged. Only in the last century, stemming from the analogous problem of factorizing finite abelian groups, aperiodic tiling rhythmic canons have been studied: these are canons that tile a certain interval of time in which each voice (inner voice) plays at an aperiodic sequence of beats, and the sequence of starting beats of every voice (outer voice) is also aperiodic. From the musical point of view, the seminal paper was probably the four-part article written by D.T. Vuza between 1991 and 1993, while the mathematical counterpart of the problem was studied also before, e.g., by de Bruijn, Sands, etc., and after, e.g., by Coven and Meyerowitz, Jedrzejewski, Amiot, Andreatta, etc. A thorough theory of the conditions of existence and the structure of aperiodic tiling rhythmic canons has not been established yet. In this thesis, we try to give a contribution to this fascinating field. In Chapter 2, we present tiling rhythmic canons from a mathematical and algebraic point of view, focusing on their polynomial representation and reporting the fundamental results known in the literature. In Chapter 3, we deal with aperiodic rhythmic canons, that is canons in which in both rhythms there are no repeated inner structures: neither the inner nor the outer rhythm is obtained as a repetition of a shorter rhythm. From a mathematical point of view, they are the most interesting canons since they become a possible approach to solving the Fuglede conjecture on spectral domains. If one of the sets, say $A$, is given, it is well-known that the problem of finding a complement $B$ has, in general, no unique solution. It is very easy to find tiling canons in which at least one of the sets is periodic, i.e., it is built by repeating a shorter rhythm. In Chapter 4 we deal with the realization of two algorithms whose purpose is to find the complementary tiling rhythm of a given aperiodic rhythm in a certain period $n$. To enumerate all aperiodic tiling canons, one must overcome the problem that the combinatorial size of the domain becomes very soon enormous. The main contributions to the algorithmic approach to the problem are the Integer Linear Programming (ILP) model and the SAT Encoding to solve the Aperiodic Tiling Complements Problem. Using a modern SAT solver, we have been therefore able to compute the complete list of aperiodic tiling complements of some classes of Vuza rhythms for periods n = {180, 420, 900}.
APA, Harvard, Vancouver, ISO, and other styles
2

Caure, Hélianthe. "Canons rythmiques et pavages modulaires." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066126/document.

Full text
Abstract:
Ce mémoire de thèse est une contribution à l'étude des canons modulo p. De nombreux outils mathématiques et informatiques ont été employés pour l'étude des canons rythmiques mosaïques. La recherche récente s'est particulièrement attachée à trouver les canons sans périodicité interne, dits de Vuza. Ces canons ont la particularité d'être une base pour la construction de tous les canons rythmiques mosaïques, cependant ils sont très difficiles à obtenir. La meilleure méthode actuellement est un algorithme exhaustif de recherche, qui malgré de récentes améliorations reste exponentiel. Plusieurs techniques ont été utilisées dans l'espoir de mieux les comprendre ou de les générer plus rapidement. Ce mémoire présente donc un nouveau sujet d'étude pour mieux comprendre le pavage apériodique
This thesis is a contribution to the study of modulo p tiling. Many mathematical and computational tools were used for the study of rhythmic tiling canons. Recent research has mainly focused in finding tiling without inner periodicity, being called Vuza canons. Those canons are a constructive basis for all rhythmic tiling canons, however, they are really difficult to obtain. Best current method is a brut force exploration that, despite a few recent enhancements, is exponential. Many technics have been used, hoping to understand Vuza canons better or to generate them faster. Hence, this thesis presents a completely new way to study aperiodic tiling
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Vuza canon"

1

Lanzarotto, Greta, and Ludovico Pernazza. "Extended Vuza Canons." In Mathematics and Computation in Music, 112–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07015-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography