Academic literature on the topic 'Vrram'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vrram.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vrram"
Sun, Wookyung, Sujin Choi, Bokyung Kim, and Hyungsoon Shin. "Effect of Initial Synaptic State on Pattern Classification Accuracy of 3D Vertical Resistive Random Access Memory (VRRAM) Synapses." Journal of Nanoscience and Nanotechnology 20, no. 8 (August 1, 2020): 4730–34. http://dx.doi.org/10.1166/jnn.2020.17798.
Full textChen, Zhisheng, Renjun Song, Qiang Huo, Qirui Ren, Chenrui Zhang, Linan Li, and Feng Zhang. "Analysis of Leakage Current of HfO2/TaOx-Based 3-D Vertical Resistive Random Access Memory Array." Micromachines 12, no. 6 (May 26, 2021): 614. http://dx.doi.org/10.3390/mi12060614.
Full textSun, Wookyung, Sujin Choi, Bokyung Kim, and Junhee Park. "Three-Dimensional (3D) Vertical Resistive Random-Access Memory (VRRAM) Synapses for Neural Network Systems." Materials 12, no. 20 (October 22, 2019): 3451. http://dx.doi.org/10.3390/ma12203451.
Full textAlimkhanuly, Batyrbek, Sanghoek Kim, Lok-won Kim, and Seunghyun Lee. "Electromagnetic Analysis of Vertical Resistive Memory with a Sub-nm Thick Electrode." Nanomaterials 10, no. 9 (August 20, 2020): 1634. http://dx.doi.org/10.3390/nano10091634.
Full textChoi, Sujin, Wookyung Sun, and Hyungsoon Shin. "Analysis of Read Margin and Write Power Consumption of a 3-D Vertical RRAM (VRRAM) Crossbar Array." IEEE Journal of the Electron Devices Society 6 (2018): 1192–96. http://dx.doi.org/10.1109/jeds.2018.2873016.
Full textWu, Min‐Ci, Yi‐Hsin Ting, Jui‐Yuan Chen, and Wen‐Wei Wu. "Low Power Consumption Nanofilamentary ECM and VCM Cells in a Single Sidewall of High‐Density VRRAM Arrays." Advanced Science 6, no. 24 (October 7, 2019): 1902363. http://dx.doi.org/10.1002/advs.201902363.
Full textChoi, Sujin, Wookyung Sun, and Hyungsoon Shin. "Analysis of Cell Variability Impact on a 3-D Vertical RRAM (VRRAM) Crossbar Array Using a Modified Lumping Method." IEEE Transactions on Electron Devices 66, no. 1 (January 2019): 759–65. http://dx.doi.org/10.1109/ted.2018.2878440.
Full textYu, Jie, Woyu Zhang, Danian Dong, Wenxuan Sun, Jinru Lai, Xu Zheng, Tiancheng Gong, et al. "Long-Term Accuracy Enhancement of Binary Neural Networks Based on Optimized Three-Dimensional Memristor Array." Micromachines 13, no. 2 (February 17, 2022): 308. http://dx.doi.org/10.3390/mi13020308.
Full textLo, Shih-Che, and Hung-Hsu Tsai. "Design of 3D Virtual Reality in the Metaverse for Environmental Conservation Education Based on Cognitive Theory." Sensors 22, no. 21 (October 30, 2022): 8329. http://dx.doi.org/10.3390/s22218329.
Full textChaudhry, Arif, Jeremie D. Oliver, Krishna S. Vyas, Nho V. Tran, Jorys Martinez-Jorge, David Larson, Eric Dozois, Heidi Nelson, and Oscar J. Manrique. "Comparison of Outcomes in Oncoplastic Pelvic Reconstruction with VRAM versus Omental Flaps: A Large Cohort Analysis." Journal of Reconstructive Microsurgery 35, no. 06 (January 18, 2019): 425–29. http://dx.doi.org/10.1055/s-0038-1677524.
Full textDissertations / Theses on the topic "Vrram"
Ezzadeen, Mona. "Conception d'un circuit dédié au calcul dans la mémoire à base de technologie 3D innovante." Electronic Thesis or Diss., Aix-Marseille, 2022. http://theses.univ-amu.fr.lama.univ-amu.fr/221212_EZZADEEN_955e754k888gvxorp699jljcho_TH.pdf.
Full textWith the advent of edge devices and artificial intelligence, the data deluge is a reality, making energy-efficient computing systems a must-have. Unfortunately, classical von Neumann architectures suffer from the high cost of data transfers between memories and processing units. At the same time, CMOS scaling seems more and more challenging and costly to afford, limiting the chips' performance due to power consumption issues.In this context, bringing the computation directly inside or near memories (I/NMC) seems an appealing solution. However, data-centric applications require an important amount of non-volatile storage, and modern Flash memories suffer from scaling issues and are not very suited for I/NMC. On the other hand, emerging memory technologies such as ReRAM present very appealing memory performances, good scalability, and interesting I/NMC features. However, they suffer from variability issues and from a degraded density integration if an access transistor per bitcell (1T1R) is used to limit the sneak-path currents. This thesis work aims to overcome these two challenges. First, the variability impact on read and I/NMC operations is assessed and new robust and low-overhead ReRAM-based boolean operations are proposed. In the context of neural networks, new ReRAM-based neuromorphic accelerators are developed and characterized, with an emphasis on good robustness against variability, good parallelism, and high energy efficiency. Second, to resolve the density integration issues, an ultra-dense 3D 1T1R ReRAM-based Cube and its architecture are proposed, which can be used as a 3D NOR memory as well as a low overhead and energy-efficient I/NMC accelerator
Bartholomé, Lenka [Verfasser], Vera [Akademischer Betreuer] Schellerer, and Vera [Gutachter] Schellerer. "Komplikationen am Hebedefekt nach vertikaler Rektus-abdominis-Muskel (VRAM)-Lappenplastik -Erfahrungen bei 192 Patienten- / Lenka Bartholomé ; Gutachter: Vera Schellerer ; Betreuer: Vera Schellerer." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1201886821/34.
Full textHsiung, W. C., and 熊玟清. "A Frame Store Designed with VRAM Approach to Radar Information." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/00034741765688514060.
Full text義守大學
電機工程研究所
83
A non-interlaced raster scan display which has a screen resolution of 1280X1024 pixels with 256 colors is suitable to be used to display the sampled radar data. There are 1280X1024X8 bits data stored in an eight plane frame store. The frame store is constructed by ten video random access memory devices (VRAM) with size of 256kX4 bits each. Using 386/486 CPU's protected mode and IBM ISA bus architecture, the frame store can be accessed by the microprocessors and multiple radar scan converters to store and transfer the data to the raster scan radar display improving the disadvantages of traditional radar display (Plan Position Indicator: PPI). This makes the architecture of frame store central to the radar display system. So, the major purpose of this paper is to describe the design and construction of a frame store. The access rate of frame store is an important factor which affects the performance of the radar display system. The multipe I/O port VRAM device are chosen to make up the frame store. VRAM has dual ports, the DRAM port and SAM prot, which can be operated independently. This increases the access rate of frame store. The line scan rate is divided cyclely to three memory access cycles. There are update read, update write, and read tranfer cycle (DRAM tranfers data to SAM for next screen refresh). The screen read cycle is executed in active video time during line scan rate as the SAM port operates independently. Five bytes data is read parallelly from frame store transfered into screen processor in 41.7ns time period. During the screen read cycle, the 8 bit data is fed serially to D/A converter to generate the red, green, and blue analog signals respectively for raster scan display. The pixel rate is 119.843 Mhz.
Books on the topic "Vrram"
Corporation, Toshiba. MOS memory (VRAM, SRAM). Tokyo: Toshiba Corporation, 1991.
Find full textCorporation, Toshiba. MOS memory (VRAM): Data book. Tokyo: Toshiba Corporation, 1993.
Find full textBook chapters on the topic "Vrram"
Weik, Martin H. "VRAM." In Computer Science and Communications Dictionary, 1906. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20965.
Full textFlügel, M. "VRAM-Lappen." In Fortschritte in der Chirurgie im letzten Jahrzehnt, 199. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-07303-2_88.
Full textErdmann, D., A. Petracic, M. Sauerbier, H. Menke, and G. Germann. "Der „Vertical/Transverse Rectus abdominis Muscle“ (VRAM/TRAM)-Lappen zur Deckung langstreckiger osteokutaner Defekte der Sternumregion." In Bilanz zur Jahrtausendwende, 1344–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60248-1_378.
Full textSilva, Jason, Amy Jackson, and Justin Broyles. "Plastic Surgery and Flap Graft Management of Radial Forearm, VRAM, and TRAM Flaps in Critically Ill Cancer Patients." In Oncologic Critical Care, 1–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-74698-2_161-1.
Full textSilva, Jason, Amy Jackson, and Justin Broyles. "Plastic Surgery and Flap Graft Management of Radial Forearm, VRAM, and TRAM Flaps in Critically Ill Cancer Patients." In Oncologic Critical Care, 1719–26. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-74588-6_161.
Full textLefèvre, Jérémie, and Emmanuel Tiret. "VRAM flap." In Operative Surgery of the Colon, Rectum and Anus, Sixth Edition, 675–81. CRC Press, 2015. http://dx.doi.org/10.1201/b18337-78.
Full text"altenheim norra vram." In raumverloren, 114–17. Birkhäuser, 2014. http://dx.doi.org/10.1515/9783038210856.114.
Full text"Norra Vram Nursing Home." In lost in space, 114–17. Birkhäuser, 2014. http://dx.doi.org/10.1515/9783038211204-021.
Full textConference papers on the topic "Vrram"
Piccolboni, G., G. Molas, D. Garbin, T. Werner, E. Vianello, B. DeSalvo, G. Ghibaudo, and L. Perniola. "Investigation of variability in Vertical Resistive RAM (VRRAM): Physical Model." In 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.b-7-04.
Full textBaek, I. G., C. J. Park, H. Ju, D. J. Seong, H. S. Ahn, J. H. Kim, M. K. Yang, et al. "Realization of vertical resistive memory (VRRAM) using cost effective 3D process." In 2011 IEEE International Electron Devices Meeting (IEDM). IEEE, 2011. http://dx.doi.org/10.1109/iedm.2011.6131654.
Full textPiccolboni, G., G. Molas, J. M. Portal, R. Coquand, M. Bocquet, D. Garbin, E. Vianello, et al. "Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications." In 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, 2015. http://dx.doi.org/10.1109/iedm.2015.7409717.
Full textZhang, Leqi, Stefan Cosemans, Dirk J. Wouters, Bogdan Govoreanu, Guido Groeseneken, and Malgorzata Jurczak. "Analysis of vertical cross-point resistive memory (VRRAM) for 3D RRAM design." In 2013 5th IEEE International Memory Workshop (IMW). IEEE, 2013. http://dx.doi.org/10.1109/imw.2013.6582122.
Full textWu, T. Y., Y. S. Chen, P. Y. Gu, W. S. Chen, H. Y. Lee, P. S. Chen, K. H. Tsai, et al. "Vertical resistive switching memory (VRRAM): A real 3D device demonstration and analysis of high-density application." In 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2014. http://dx.doi.org/10.1109/vlsi-tsa.2014.6839683.
Full textGong, Tiancheng, Qing Luo, Hangbing Lv, Xiaoxin Xu, Jie Yu, Peng Yuan, Danian Dong, et al. "Switching and Failure Mechanism of Self-Selective Cell in 3D VRRAM by RTN-Based Defect Tracking Technique." In 2018 IEEE International Memory Workshop (IMW). IEEE, 2018. http://dx.doi.org/10.1109/imw.2018.8388852.
Full textHaitong Li, Tony F. Wu, Subhasish Mitra, and H. S. Philip Wong. "Device-architecture co-design for hyperdimensional computing with 3d vertical resistive switching random access memory (3D VRRAM)." In 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2017. http://dx.doi.org/10.1109/vlsi-tsa.2017.7942490.
Full textLi, Haitong, Tony F. Wu, Abbas Rahimi, Kai-Shin Li, Miles Rusch, Chang-Hsien Lin, Juo-Luen Hsu, et al. "Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient language recognition." In 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016. http://dx.doi.org/10.1109/iedm.2016.7838428.
Full textPark, Seong-Geon, Min Kyu Yang, Hyunsu Ju, Dong-Jun Seong, Jung Moo Lee, Eunmi Kim, Seungjae Jung, et al. "A non-linear ReRAM cell with sub-1μA ultralow operating current for high density vertical resistive memory (VRRAM)." In 2012 IEEE International Electron Devices Meeting (IEDM). IEEE, 2012. http://dx.doi.org/10.1109/iedm.2012.6479084.
Full textWong, Tamar Hei Ting, and Kee Ka Ki Wong. "VRgram." In SA '16: SIGGRAPH Asia 2016. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2996376.2996380.
Full text